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ABSTRACT:

This paper presents a method for universal object segmentation from fused laser range and color image data collected by a mobile robot.
By combining both range and color, objects can more easily be distinguished than from either data type alone. The proposed method
utilizes the Expectation Maximization, (EM), algorithm to both determine the number of objects in the scene and to segment the data
into objects modeled by a universal six-dimensional Gaussian distributions. This is achieved by an iterative split and merge process.
Objects segmented from the data by the EM algorithm are then further subdivided, again by EM until the desired resolution is reached.
The resulting objects are then recombined if they are found to have similar traits that indicate the data belongs to the same object. The
universal object model performs well in environments consisting of both man-made (walls, furniture, pavement) and natural objects
(trees, bushes, grass). This makes it ideal for use in both indoor and outdoor environments. Our algorithm does not require the number
of objects to be known prior to calculation nor does it require a training set of data. The ultimate goal of segmentation is to facilitate
automatic classification of objects and to provide landmark recognition for robotic mapping and navigation.

1 INTRODUCTION

As the robotics evolves, the amount and types of data collected
by those robots increases in complexity. The field of data fu-
sion combines different types of sensor data into a unified data
set. The challenge is to automatically process, and make sense
of, these complex, fused data sets. This paper describes a method
to segment colorized range data into universal objects suitable
for both indoor and outdoor environments. No training set is
required and the number of objects segmented is automatically
determined. This method utilizes the Expectation Maximization
(EM) algorithm to segment data into six-degree Gaussian mixture
models.

Methods have been developed for feature detection from range-
only data such as that from laser scanners. Pu and Vosselman
scanned the outside facade of buildings and used the data to de-
tect features like doors, windows, and walls (?). Another work by
Vosselman et al. used voxel space and a 3D Hough transform to
extract geometric shapes like cylinders, spheres, and boxes from
range data in order to produce computer models of industrial en-
vironments and city landscapes. Biber processed range-only in-
formation before mapping images onto his models(?). Instead of
parameterizing geometric shapes, Biswas et al. (?) kept isosur-
faces of a variety of previously scanned objects. The isosurfaces
were created using radial basis functions about 500 pivot points.
Subsequent scans were then compared, using spherical decom-
position, against a database of previously created isosurfaces to
locate similar shapes.

The fusion of range and camera data is attracting a growing body

of researchers. A large portion of this research is devoted to find-
ing better fusion techniques. Teams like Abmayr et al.(?), Se-
queira et al.(?), Nyland (?), and Dias et al.(?) fall into this cat-
egory. All use high resolution laser scanners along with mega-
pixel cameras. The goal of these authors is to create accurate 3D
models of real-world environments for such subjects as histor-
ical preservation, city planning, and high-resolution map build-
ing. Processing such high resolution data on a mobile robot is
computationally impractical.

The paper “A Real-Time Expectation-Maximization Algorithm
for Acquiring Multiplanar Maps of Indoor Environments With
Mobile Robots” (?) explained a method that utilized the Expec-
tation Maximization (EM) algorithm to locate objects in three-
space. The authors achieved this by maximizing the likelihood
of the range data using planar models. In their implementation
of EM, the expectation of each data point was calculated in the
E-Step and the maximum likelihood estimate of planar model
parameters were calculated in each M-Step. Thrun et al. also
developed algorithms to evaluate how “good” a plane fit was.
Planes that were considered “weak” were removed while planes
that were similar were merged. This removal/merging code was
run in between iterations of the EM algorithm. For indoor en-
vironments, a planar model performs very well. Man-made ob-
jects are commonly planar and most indoor environments consist
mainly of walls. For example, in one data set, Thrun et al. report
that planes contained almost 95% of all the measurement points.
For data that is not accurately defined by a plane, their algorithm
leaves the data as a fine-grained polygonal model. Like Biber,
Thrun et al. applied color information to their models but did not
utilize it in the processing.



A work by Ueda, Nakano, Gharamani, and Hinton presented an
Expectation Maximization algorithm along with split and merge
criteria to locate two-dimensional Gaussian densities (?). The
authors remark that their solution helps solve problems when too
many Gaussian densities occupy one region while other regions
contain relatively few Gaussian densities. Ueda et al. described
split values and merge values that are used to represent how accu-
rately points are defined by a density. First, each density receives
a split value and a pair of densities receive a merge value. Next,
the density with the lowest split value is split while the density
pair with the highest merge value is merged. These two calcula-
tions are made after every M-Step. A partial E-Step is run once
the mixtures have been reorganized. If the splitting and merging
has yielded a better likelihood, the new mixtures are kept. If they
did not yield a better likelihood, the new mixtures are discarded
and EM iterates. It may be noted, that in their work, every time
a split occurs, a merge occurs. This kept the number of mixtures
constant and implied that the number of mixtures was known a
priori.

2 EQUIPMENT

Image and range data was gathered from different locations using
the mobile robot in (1). Range data was collected using a SICK
LMS 200 laser range scanner. The range scanner returns range
points in 1 ° increments in a 180 ° field-of-view. Images are cap-
tured with a Watec camera using a Computar lens. During data
collection, the scanner begins at a tilt of —30 ° and increments up
to 60 °, collecting one laser scan and taking one image every 1 °.

Figure 1: A mobile robot outfitted with a SICK LMS 200 laser
scanner and Watec WAT250D color camera mounted on a tilt
mechanism. Fused laser and range data is collected and processed
for mapping and navigation

2.0.1 Image Calibration As with most cameras, the images
collected are distorted. This distortion originates from both the
lens and the CCD array. For an accurate merging of range and
color, this distortion must be modeled. Strobl et al. provides an
inter-active MATLAB program to calibrate a camera image for
distortion called calib_gui.m (?). This program requires sev-
eral shots of a well-defined checkerboard to produce a model for
the camera. Using this model, images taken with the camera can
be rectified. Rectified images are used for the range-color merg-
ing.

Figure 2: A picture taken with a tilt angle of 0° before (a) and
after (b) correcting for distortion.

3 DATA FUSION

Once the range information and image are in the same frame,
they may be fused into a colorized range image. However, the
laser scanner has lower spacial resolution than the camera. If
each range point was back-projected onto the image plane to re-
trieve a color, the higher resolution of the image would be lost.
To maintain resolution, each pixel is projected out onto the range
data. This could have been accomplished by simply determining
which range point’s vector is closest to each image pixel’s vector
using dot products. Because of the higher image resolution, mul-
tiple pixels would be associated with a single range point. How-
ever, this results in colorized range images with anomalies. To
reduce these anomalies the laser range data is segmented into a
fine grained object model. With this model, any given range point
considers its neighbors to only be those adjacent scan points who
have been segmented as belonging to the same object. To cre-
ate a colorized range image, pixels are projected out from the
camera frame and receive a range where they intersect the plane
defined by the nearest range point and its neighbors. With this
method, pixels that fall on the boundary between two objects do
not project to a range where no object resides.

3.1 EM Pre-segmentation

To fuse the image and range data, we must first estimate which
range points belong to the same object. The Expectation Max-
imization algorithm, using three-dimensional (x, y, z) Gaussian
densities, has been shown to segment range data into classes where
all members of a class are from the same real object. Here,
EM is used to pre-segment the range data into a somewhat ar-
bitrary number of classes (64). The number of classes should
be greater than the actual number of objects in an environment.
Over-segmentation is preferable to under-segmentation because
with over-segmentation, classes do not span more than one real
object. Problems occur in the under-segmented case when a class
spans multiple objects, as the neighboring points used to com-
pute the plane of projection come from different objects. This
causes anomalous pixel projections that adversely affect the later
segmentation process on the fused data.

3.2 Norm Vector Calculation

Once each range point has been segmented into a class, a polygon
for each class can be determined. Planes can be described by the
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Figure 3: Color-coded range data. Each color represents a class
after the EM pre-segmentation step.

equation 0 = ax + by + ¢z + d, where (a, b, ¢) represents the
plane’s normal vector and d is defined as —ax — by — cz. To
calculate this normal, we use a least-squares plane fit.
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Figure 4: A planar fit considering only adjacent scan points seg-
mented within the same class provides a normal vector for each
range point.

3.3 Data Fusion

At this step in the process, the rectified image pixels are ready
to be projected out onto the pre-segmented range data. Consider
Do = (xo, Yo, z0) as the normalized pixel vector of interest. Mul-
tiplying po by some constant K extends the pixel vector out onto
the range data. This means that K -pg resides on one of the planes
whose normal was computed in the previous section. With this,
a range estimate is made for each pixel resulting in a colorized
range image which is a fusion of laser and image data.

4 OBJECT SEGMENTATION

With the colorized range image in hand, the next goal is to seg-
ment the data into objects” using information of both color and
range. This work assumes no prior knowledge of the environ-
ment. Also, the exact number and type of objects present in the

.

Figure 5: Data from the camera and the laser scanner are fused
by projecting each pixel into the scene. The original range data
is shown in blue. Note the field of view for the camera is signifi-
cantly less than the field of view for the laser range scanner.

scene are both unknown. Existing methods for extracting objects
from data such as this are often tailored to one specific environ-
ment like inside buildings or around city blocks. The goal of this
research has been to develop a method suitable for generic ob-
jects both indoors and outdoors. The object model must apply to
rigid geometric bodies as well as more loosely defined objects.
To accomplish this, a six-dimensional Gaussian density is used
as a universal object model. The parameters of the object model
are exactly the mean and covariances of the distribution for the
X,y and z coordinates and the r,g and b color information.

Figure 6: A colorized range scan of an outdoor scene containing
both planar objects such as the walls and floor and non-planar
objects such as the orange chairs, the tree, and the potted plants.

4.1 Repetitive EM

The proposed algorithm for segmentation starts with a splitting
phase that successively processes subsets of the colorized range
image data with the EM algorithm, dividing each subset into two
classes. Beginning with a single class containing all the data, the



first splitting step returns two classes. Each of these two classes
is then split again and again until a fine grained segmentation is
achieved. Similar to the earlier range only segmentation phase,
the goal is to sufficiently subdivide the data into classes where no
one class contains data from more than one physical object. Each
class is parameterized by its density function.

The resulting fine grained segmentation is crude. Data from a
single object often falls into multiple classes. Therefore, the en-
tire data set is reprocessed. This time all at once, with an EM
implementation considering all the object models calculated in
the splitting phase. Unlike the splitting phase, the reclassification
phase does not increase the number of classes, but allows the data
from an object to be reclassified into a single model. Objects that
were artificially split may be joined. Some classes grow while
some classes shrink. The reclassification phase also modifies the
distribution models. After this stage, classes that contain too few
points are pruned and their data reclassified. As can be observed
in the results in Fig. 7, although some physical objects are repre-
sented with multiple classes, no class contains multiple objects.
The next section will further refine this segmentation by fitting
simple geometric models to each class and merging classes with
similar models.

Figure 7: Groups of points are segmented into color-coded
classes using several iterations of the Expectation Maximization
algorithm. Note that while an object may have several classes, no
single class spans multiple objects.

4.2 Planar Extraction

Many scenes contain objects that are man-made. Typically, these
objects are characterized well by planar objects. Locating and
segmenting planes from a data set would identify a variety of
man-made objects. The planar extraction step attempts to locate
planes in the fused data using the segmented classes. To achieve
this, a least-squares plane fit is performed for each class. If the
variance of the residuals is small, that class is deemed a plane.
In addition, similar planes are merged, reducing the total number
of classes. Figure 8 displays all the planar classes found in the
scene. Note that the purple wall is now a single plane.

4.3 Discussion of Results

The algorithm presented in this paper was run on three additional
scenes. These scenes were chosen because of the variety of phys-
ical objects located in each. Also, the scenes demonstrate the

Figure 8: Color-coded planar regions after planar merging. Points
in black were determined not to belong to any planar class.

universal nature of this work. Preliminary results, like those in
Figure 9, look promising. Highly planar objects, like the wall
and floor in Figure 9f, are easily extracted and clustered from the
Gaussian densities. The tree trunk in Figure 9e resides in its own
class, as do the three bushes in Figure 9e. However, the ever-
greens in the background of Figure 9e each contain two classes.
The same algorithm segmented two partially viewable desks on
the sides of Figure 9f. While harder to view in these figures, pixel
mis-projections did occur in every scene. However, often these
mis-projected pixels segment into their own class which could
potentially be culled.

5 CONCLUSION AND FUTURE WORK

This paper presented a method to fuse laser range data and color
information gathered from a camera. The resulting data set con-
tained r,g,b and Xx,y,z information. These data points were then
segmented using an Expectation Maximization algorithm and a
universal, six-degree Gaussian density object model. The result-
ing segmentation produces favorable results on a variety of scenes
containing a variety of objects both man-made and natural. Fur-
thermore, these different objects were all segmented using a sin-
gle, universal model. It was only after segmentation that planer
objects were more specifically defined from the generic object
model. Subsequent efforts could search for other simple geo-
metric models such as cylindrical or spherical objects. Alterna-
tively, these new models could be included in a likelihood func-
tion, creating a heterogeneous mixture model. Thrun also used
a heterogeneous mixture model by including a “noise” mixture
along with planar mixtures (?). Objects that are not accurately
described by any simple geometric model may be left modeled
by the generic Gaussian densities.
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