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ABSTRACT: 
 
Mapping of sugarcane planted area is an important information for decision making, mainly when the search for alternatives to 
mitigate greenhouse gas emissions has indicated the use of biofuels as a viable option. Thus, the aim of this research was to develop 
a methodology in order to automate the sugarcane mapping task when remote sensing data are used. Thus the integration of two 
major approaches of Artificial Intelligence, Object-Based Image Analysis (OBIA) and Data Mining (DM), were tested in a study area 
located in São Paulo state, which is well representative of the agriculture of large regions of Brazil and other countries. OBIA was 
used to emulate the interpreter knowledge in the process of sugarcane mapping, and DM techniques were employed for automatic 
generation of knowledge model. A time series of four Landsat images was acquired in order to represent the wide variability of the 
patterns during sugarcane crop season. Definiens Developer® multiresolution segmentation algorithm produced the objects and 
properly trained decision tree applied to the Landsat data for the generation of the thematic map with sugarcane as the main class of 
interest. An overall accuracy of 94% (Kappa = 0,87) was obtained, showing that OBIA and DM are very efficient and promising in 
the direction of automating the sugarcane classification process with Landsat multitemporal time series. 
 
 

                                                                 
*  Corresponding author. 

1. INTRODUCTION 

Agriculture has an important role in the global socioeconomic 
context, and against this background the sugarcane rises as one 
of the major crops, with Brazil being the biggest producer and 
exporter of sugarcane products (Rudorff et al., 2009) stimulated 
by the growing worldwide demand for biofuels. The area 
planted with sugarcane has grown 94.3% in the country since 
year 2000, occupying today approximately 9.4 million hectares 
(IBGE, 2008). 
 
Customarily, sugarcane mapping with remote sensing (RS) 
images is made through visual interpretation (Rudorff et al., 
2009; Aguiar et al., 2009), but this procedure, albeit capable of 
providing precise and consistent results, has proved to be costly 
both in terms of time and the great number of people involved, 
considering the large extensions of sugarcane crop in Brazil.  
 
In that sense, there is an evident requirement of process 
automation when RS images must be classified (DeFries & 
Chan 2000). However, conventional procedures of digital 
classification have met with great difficulties in the automated 
recognition of sugarcane patterns, due to the high variability of 
patterns found along its crop cycle.  
 
In the described context, Knowledge-Based Systems (KBS), a 
branch of Artificial Intelligence (AI), appear with a large 
potential. According to Cohen and Shoshany (2005), while 
conventional systems perform algorithmic processing guided 
only by statistical variables of data, KBS are computing systems  
based on knowledge that have the ability to emulate or replicate 
human judgment in structured or well-known problems. Inside 
this context, we find the Object-Based Image Analysis (OBIA), 

a new approach that makes possible a simulation of visual 
interpretation through knowledge-modeling. To that end 
semantic nets are built based on the usage of attributes such as 
shape, spectral behavior, texture, morphology, and context, 
among others that may be used in image analysis (Blaschke, 
2010).  
 
A task that is certainly the most important for knowledge-based 
applications such as OBIA, but is often difficult to perform, is 
the acquisition of knowledge (Witten & Frank, 2005). In most 
cases the process is typically slow and arduous, because the 
specialist finds it difficult to express and organize his 
knowledge in the form of a semantic net; and thus, an 
interesting and potential help is the adoption of Data Mining 
(DM) techniques to generate automatically the structure of 
knowledge.  
 
DM is a special stage within the process known as Knowledge 
Discovery in Databases (KDD), and it involves the selection 
and application of intelligent techniques that will extract 
patterns of interest for the effective production of knowledge 
(Fayyad et. al., 1996). 
 
Considering the above mentioned situation, in regard to the 
need of obtaining information on sugarcane in extensive areas, 
we observe the importance of developing and testing 
methodologies based on AI techniques that will be able to 
support the automation of the process of classification of RS 
images.  
 
Thus, the objective of the present work has been to propose and 
evaluate a method to map sugarcane through the integration of 
DM and OBIA, starting from a time series of Landsat data. Both 
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DM and OBIA are founded on knowledge; however, in general 
terms and for the methodology considered in the present 
research, it is adequate to mention that, while DM deals with 
knowledge discovery, OBIA shall be in charge of representing 
the acquired knowledge. 
 
The class of interest to be mapped in the images of the present 
research was concentrated in “areas planted with sugarcane and 
available for harvesting”. Therefore, the proposed approach 
should be able to model the process of identification and 
extraction of information from a time series of Landsat images, 
having as final objective to automatically find/determine the 
area with sugarcane available for harvesting in a given region of 
interest and in a given crop year.    
 
 
 

2. METHOD 

 
2.1 Study Area 

The area studied in the survey includes the municipalities of 
Ipuã, Guará and São Joaquim da Barra, all three located in the 
North of the State of São Paulo (Fig. 1). 
 

 
 
Figure 1: Localization of the Study Area, highlighting the 

municipalities of Guará, Ipuã, and São Joaquim da 
Barra (central coordinates: 47o54’W x 20o30’S), in 
the State of São Paulo (SP), Brazil. 

 
The three appointed municipalities have together a total area of 
124,100 ha, and the region has been selected because it 
represents well the farming conditions of a great part of the 
Southeastern and Southern regions in Brazil, and of several 
countries with tropical agriculture. Major crops in the region 
include: cotton, peanut, rice, sugarcane, bean, manioc, corn, 
soybean, sorghum, tomatoes, banana, coffee, and orange. 
However, soybean, sugarcane, and corn crops are predominant 
and occupy the largest part of planted areas in the region 
(IBGE, 2008). 
 
2.2 Dataset and pre-processing 

Four dates have been selected for images captured by sensors 
TM/Landsat-5 and ETM+/Landsat-7, to make up the time series 
used to map the area with sugarcane available for harvest: 
September 20, 2000 (TM/Landsat-5), October 22, 2000 
(TM/Landsat-5), February 19, 2001 (ETM+/Landsat-7), and 
March 23, 2001 (ETM+/Landsat-7), corresponding to key 
periods for the extraction of sugarcane-related information. 
 
The images have been georeferenced through the use of 21 
control points collected in the field with a double-frequency 

GPS (Global Position System) receptor. Coordinates of those 
points have been processed and referenced to the WGS84 
system through the utilization of two landmarks of the Brazilian 
Network of Continuous Monitoring (Rede Brasileira de 
Monitoramento Contínuo, UBER / MGUB) located in the city 
of Uberlândia, State of Minas Gerais (MG). Georeferencing has 
been applied to each image by adjusting the coordinates with 
the use of a first-degree polynomial, and with interpolation 
applying the nearest neighbour technique. All procedures have 
produced values of RMS (Root Mean Square) under 0.5 pixel. 
 
All four used Landsat dates have been normalized using the 
technique known as Iteratively Re-weighted Multivariate 
Alteration Detection (IR-MAD), proposed by Schroeder et al. 
(2006). 
 
In order to validate results obtained in the present survey, a 
reference map has been produced by an expert interpreter 
through visual interpretation of the images kept in the database, 
and through fieldwork.  
 
2.3 Knowledge discovery process  

Knowledge discovery has been performed based on what is 
proposed by Hsu et al. (2002). Starting from the time series of 
images defined for classification of sugarcane, the first step it to 
build a training set characterizing the discovery of 
characteristics of the studied object. Later, attributes defined in 
the training set are processed by the structural classifier in the 
Data Mining stage, and finally the acquired knowledge is 
evaluated. 
 
2.3.1  Building the training set 

Basically, this stage is constituted by the extraction or discovery 
of characteristics of the main object of this study, that is, 
sugarcane. The training set is a subset of the time-series images 
formed by sample objects (training instances) selected from 
segments of those images. From the subset is created a Decision 
Tree (DT) that is exercised during the Data Mining stage in 
order to enable the discovery of patterns representative of 
sugarcane in the used time series.  
 
The most important stages in the construction of the training set 
are: (1) Segmentation of images; (2) Definition of the classes of 
interest; (3) Selection of training instances; and (4) Discovery 
of attributes. 
 
In this work we have adopted the multiresolution segmentation 
algorithm developed by Baatz and Shäpe (2000), that was 
implemented in the Definiens Developer® platform to define 
the objects. Then we have determined that the classes of  
interest would be: 1) sugarcane, and 2) others; considering that 
the first represents areas planted with sugarcane that will be 
available for harvest in the respective harvest-year, while the 
class “others” includes all other types of land use that may be 
present in the studied region. 
 
The next stage in the discovery of characteristics is the selection 
of a set of sample objects. Through a process of cognitive 
evaluation, an interpreter with expertise in sugarcane mapping 
analyses such objects and associates them to one of the classes 
of interest previously defined. Working this way, a total amount 
of 396 objects have been selected, among which 184 objects  
represented sugarcane patterns, and the remaining ones 
represented patterns referring to the “others” class. 
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To complete construction of the training set, the next stage has 
been the extraction of attributes. For each sample object 
selected in the previous stage, attributes defined by the platform 
Definiens Developer ® have been extracted.  Several types of 
attributes that can be used in image analysis are implemented 
inside that environment; equations describing each of those 
attributes may be accessed in DEFINIENS (2006). Still in this 
stage, we may highlight the inclusion of the attribute NDVI 
(Normalized Difference Vegetation Index) proposed by Rouse et 
al. (1973), since this vegetation index senses the amount and 
vigor of phytomass existing in the scene under study.  
 
2.3.2 Data Mining 
 
Once the training set has been conveniently organized, it will be 
used in the next stage to mine the different patterns associated 
to both sugarcane and others patterns. 
 
The DM stage involves selection and application of intelligent 
techniques in order to extract patterns of interest for the 
effective production of knowledge (Fayyad et al., 1996).  
 
In the present work, the C4.5 algorithm developed by Quinlan 
(1993) has been selected to generate the model of knowledge. 
That algorithm generates Decision Trees (DT) from a given 
training set, and because this phase of the methodology is 
performed inside the WEKA computing environment (Weka, 
2010), the training set created in the previous stage has been 
imported to this environment. And starting from there, a series 
of experiments followed.  
 
First, a model of knowledge (Decision Tree) was generated 
from the original training set. Later, in order to establish 
whether the algorithm would be able to distinguish objects from 
the training set without the attributes used in the first model, the 
most important attributes have been deleted from original data. 
Then a second model has been generated, and its efficacy in 
distinguishing objects has been tested. Such tests are made until 
the best structure of knowledge (DT) is achieved for the 
problem raised. 
 
2.3.3 Interpretation and evaluation of knowledge  
 
The stage of interpretation and evaluation of knowledge is when 
the patterns identified during the Data Mining stage are 
interpreted and evaluated. First a subjective analysis was made 
of the findings brought by DM. In that stage a coherence of the 
generated model of knowledge was observed. To that end a few 
pieces of relevant information were taken into consideration: 1) 
the size of the decision tree; 2) the attributes and thresholds 
defined; 3) branches that have presented a greater amount of 
errors. 
 
A cross validation (Good, 2001) has been applied to the model 
of knowledge to obtain a statistical parameter that is more strict 
in regard to the generated Decision Tree. This way, when the 
DT was to be exercised, the training set has been partitioned 
into two subsets, and thus the exercise with the decision tree has 
been made with half the instances of the training set, while a 
cross validation test was performed with the other half. 
 
2.3.4 Application of the Decision Tree   
 
Once the Decision Tree had been trained and tested, we 
advanced to the stage of representation of the acquired 

knowledge. This phase configures the classification of time-
series images, and its end product is a thematic map with areas 
planted with sugarcane available for harvest. 
 
OBIA congregates the characteristics that are necessary to 
represent knowledge, and for that reason it uses a formalism 
that gathers a set of nodes connected by means of a set of archs 
(Bittencourt, 2006), resembling the DT structure. That 
characteristic has enabled the DT to be replicated within the 
Definiens Developer® platform, considering the structure and 
relationship of the archs and nodes defined in the stage of 
knowledge discovery. 
 
In the final stage of the methodology, the algorithm of 
hierarchical classification implemented in Definiens platform 
has been executed. The algorithm performs this classification 
across a structure of classes and superclasses, through a relation 
of dependence subjected to the acquired knowledge (Definiens, 
2006). The process classifies the image top-down, that is, it first 
separates classes that are more general or have a higher 
separability, and then separates subclasses or classes with a 
higher uncertainty, classifying parts of the image in sequence. 
 
The hierarchical classification closes the classification 
methodology proposed in this work. The final result is the 
thematic map that identifies areas planted with sugarcane that 
shall be available for harvest. 
 
2.3.5 Validation of the classification  
 
The classification generated according to the methodology 
proposed in the present research – integrating DM and OBIA – 
has been evaluated using as reference the map resulting from 
visual interpretation and fieldword. The purpose of it has been 
to make a direct comparison between visual interpretation and 
the classification method tested in this research. This 
assessment of the quality of the classification has been 
performed in a quantitative way, through indexes of global 
accuracy (GA) and Kappa (κ), both extracted from the 
confusion matrix. Details about these tests can be found in 
Congalton and Green (1999). 
 
Confusion matrices have been generated through the 
intersection of sample points from the theme map and the 
reference map. In total, 500 points have been generated 
randomly and independently. 
 
 

3. RESULTS AND DISCUSSION 

3.1 Decision Tree 

The algorithm C4.5 (Weka, 2010), using the previously defined 
training set, has generated the model of knowledge represented 
by the Decision Tree. 
 
DT training has been performed with half the instances of the 
training set, while a cross validation test was performed with the 
other half. We verified that the DT achieved a success rate of 
96.97% in the classification of tested data, reaching the Kappa 
index of 0.94. Among the 396 instances of the training set, only 
12 have been classified incorrectly. 
 
The attributes selected and used to describe sugarcane patterns 
in the present case were: NDVI_March, NDVI_September,  
CLCM Homegeneity September_bandTM4, Mean 
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February_bandTM3, GLCM Homegeneity October_bandTM5, 
GLCM Homogeneity October_bandTM3, GLCM Homegeneity 
February_bandTM4, NDVI_February, Mean 
October_bandTM5, Mean February_bandTM5. Detailed 
descriptions of those attributes can be found in Definiens 
(2006). 
 
3.2 Classification of the time series  

Starting from the trained model, and exploring the potential of 
the Definiens platform in structuring knowledge through 
networks, we have then proceeded to sugarcane classification.  
 
The DT has been replicated inside that environment with the 
purpose of obtaining the final thematic map. This process is 
characterized as the stage of representation of knowledge, when 
the user has visual contact with the result obtained with DM. 
Figure 2 presents the classified map of the areas with sugarcane 
available for harvest,  which has been obtained according to the 
methodology proposed in this research. 
 
The map presents the spatial distribution of sugarcane plots in 
the study area. The first partitioning made by the DT used the 
attribute NDVI_mar. This first node represents the root of the 
DT and virtually separates all the possible soybean areas from 
the possible sugarcane areas present in the study area. In the 
March image a good part, if not all the soybean, had already 
been harvested, leaving on soil surface just the straw left after 
harvesting. Because sugarcane was in its maximum vegetative 
strength at the time, through the attribute NDVI_mar the 
classifier could quite well separate one crop from the other. 
 
However, in the first moment it was not yet possible to separate 
sugarcane completely from the other classes. For example, 
forest regions also present high values of  NDVI. Therefore, 
algorithm C4.5 uses another strategy to separate these two 
patterns. Through the texture attribute GLCM Homogeneity 
September_bandTM4, the structural classifier separates part of 
the riparian vegetation pattern from the potential sugarcane 
areas (Figures 3-a, 3-b). 
 
In order to classify sugarcane regions, the structural classifier 
has used a combination of the attribute Mean 
February_bandTM3 followed by the attribute GLCM 
Homegeneity_February_bandTM4.  
 
In the sequence, our classifier selects the texture attribute 
GLCM Homegeneity_February_bandTM4 to finally classify 
sugarcane regions (Figure 3). The texture of plots together with 
the presence of roads inside the farms grants sugarcane crops a 
quite peculiar texture characteristic (Figure 3-c). It has enabled 
the structural classifier to identify, through the attribute GLCM 
Homegeneity_February_bandTM4, virtually all the regions 
with sugarcane crop in the region under study. 
 
However, not all sugarcane regions had been apt to be identified 
up to that moment. Highlighted among these are the plots where 
sugarcane planting presented flaws, and/or there is a pattern of 
low-yield plants. These regions have shown a wrinkled texture 
that made it impossible for the classifier to identify them as 
sugarcane.  
 
In order to classify those regions, the algorithm has then created 
a new branch. In this last partitioning, the DT separates 
sugarcane regions from a few soybean plots that have not been 

harvested in March, and therefore have not been identified 
through NDVI in the first partition of the DT. 
 

 
Figure 2: Classified map of the sugarcane areas available for 

harvest, obtained according to the methodology 
proposed in the present research, that combines 
OBIA and DM. 

 
 
 

 
Figure 3: Identification of sugarcane areas: (A) detail of 

classification; (B) detail of the March image in 
composição R(4) G(5) B(3); (C) image of band 3 of 
the TM sensor, illustrating roads inside the plots. 

 
To solve this problem, the classifier used the spectral attribute  
Mean February_bandTM5. Through calculation of the spectral 
mean of objects in the month of February, the DT could 
separate the few soybean regions that had not been identified up 
to that moment. In the region of medium-wave infrared – band 
5 of the TM – electromagnetic radiation incident upon 
vegetation is fairly much absorbed by water (Ponzoni and 
Shimabukuro, 2007). Therefore, we may conclude that the DT 
uses that attribute because in the month of February, the content 
of water in soybean leaves is much lower than sugarcane’s. 
 
In the month of February, while soybean is in its senescence 
period, sugarcane is close to its maximum vegetative strength, 
and consequently the water content in sugarcane leaves is 
greater than in soybean leaves; therefore sugarcane shall present 
lower reflectance values in the mentioned band of the 
electromagnetic spectrum. It enables the DT to separate, using 
the spectral attribute Mean_February_bandTM5, the remaining 
soybean plots (Figure 4). 
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3.3 Validation of the classification 

The confusion matrix (Table 1) has been generated after 
crossing the sample points with the reference map and the 
sugarcane map generated through the proposed methodology. 
 
 

   
(a) (b) 

Figure 4: Separation of soybean areas not harvested in March: 
(a) detail of the the March image – composition 
R(4) G(5) B(3). (b) detail of the classified map 
showing the separation of the mentioned soybean 
plot. 

 
The classification of sugarcane areas following the OBIA 
methodology has obtained a theme map whose Global Accuracy 
(GA) and kappa (k) indexes have been respectively 94% and 
0.87 (Value-p=0,0000). The found value for Kappa coefficient 
actually represents the conformity of the classification with the 
reference map, and this has been confirmed by the Z test in 
which there is agreement between classifications and the 
reference image, for the adopted level of significance (α=5%).  
 
In relation with the Global Accuracy index, according to Foody 
(2002) it is desirable for a classification to reach indexes above 
85%, a condition that has also been confirmed, since our 
classification obtained GA of 94% (Table 1). The values found 
for Global Accuracy and Kappa indicate the quality of the 
classified map that has been generated. 
 
 

 

    Reference map 

 Classes Sugarcane Others ∑ 

Cane 186 10 196 

Others 20 283 303 

O
B

IA
 

∑ 206 293 500 
Kappa coefficient = 0.87; Global Accuracy = 93.99% 

 
Table 1 – Confusion matrix of the classification according to 

OBIA + DM methodology. 
 
 

4. CONCLUSIONS 

The present work has tried to investigate the viability of 
integrating two important approaches of Artificial Intelligence 
in sugarcane mapping based on orbital images of average spatial 
resolution. By exploring the potential of Data Mining and 
Object-Based Analysis, the present research brings relevant 
contribution for the search of automation as regards the process 
of classification of images from remote sensing, applied to 
agriculture mapping.  
 

Results achieved with the experiments performed suggest that it 
is possible to automate the classification process with high 
levels of accuracy, which can be proven with the good Global 
Accuracy and Kappa indexes that could be reached, of 94% and 
0.87 respectively. 
 
One of the first aspects to consider when mapping sugarcane is 
the fact that the process is dynamic and progresses along the 
time. Therefore, the analysis of sugarcane patterns and the task 
of relating them to processes of soil use oblige the use of time 
series. If sugarcane patterns are analyzed based on data obtained 
in a single date, observation of the process shall be seriously 
damaged, since those patterns tend to be the result of a 
combination of processes of different periods, and different 
strategies of crop management. Considering these factors, the 
conducted experiments have used images that picture the field 
scene in several periods, respecting the timewise dynamics of 
sugarcane. 
 
A relevant limitation in structural classification with the use of 
algorithm C4.5 is the high dependence of that algorithm in 
relation to quality of the training set, due to its high sensitivity 
to instances of training. In that sense, small disturbances in the 
training set may cause big alterations in the learned model. In 
training sets where the amount of noise is low, the algorithm 
generates structures that can obtain perfect adjustments to 
training instances. However, when much noise is present, that 
ability is damaged. From a certain depth onwards, decisions 
taken are based on small sets of instances. It provokes the 
fragmentation of concepts, leading to the re-application  of 
several subtrees, and we may remind that smaller trees are easier 
to understand, and they have a better predictive performance. 
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