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ABSTRACT:

The Xplorah Planning Support Systems has been under development since 2000 to provide the Puerto Rico Planning Board with an
advanced capacity to forecast land-use changes as the result of various scenarios and to assess alternative planning and policy options
in their fully integrated, dynamic and spatial context. To fully deploy the analytic capabilities of Xplorah, high quality geographically
referenced data are a necessity. These are typically available from Geographical Information Systems at the Planning Board, or other
government agencies. The most crucial of all GIS data layers are high quality time series of land-use maps. In order to facilitate
regular updating of the land-use map featuring all 21 land-use classes of Xplorah, while assuring a high accuracy, an automatic image
processing procedure is being developed. In this procedure the contextual reclassification algorithm OSPARK (Optimised Spatial
Reclassification Kernel) is applied to level-sliced, segmented pre-classification of digital aerial photographs with blue, green, red and
near-infrared bands. Like SPARK, it is a kernel-based reclassification algorithm, however it automatically adapts the kernel size as a
function of spatial variation in the neighbourhood of each pixel to be classified. The algorithm uses the configuration of objects within
a kernel in order to effectively discriminate functional land-use classes and land cover. This paper presents the automatic classification
procedure and evaluates the results using independent land-use data derived from visual interpretation. Suggestions to improve the
procedure are given.

1 INTRODUCTION

With a population just below 4 million living on an area less than
10,000 km2, the Commonwealth of Puerto Rico is a densely pop-
ulated island state. The island is unique thanks to its vibrant cul-
tural life, the architecture of its towns, the remnants of its past,
and its natural resources: coral reefs, beaches, caves, and tropi-
cal forests. It experiences many of the problems typifying small
island nations: an open and relatively small economy, a strong de-
pendency on externally provided fossil energy, an overall rugged
landscape with a concentration of the population and activities
in the coastal zone, fragmentation and loss of the limited high
quality agricultural land, high pressure on the coastal wetlands,
deforestation, flooding, pollution of surface waters, scarcity of
drinking water, solid waste, etc. Moreover, Puerto Rico is lo-
cated on the path of many a tropical storm entering the Caribbean
seas. Some of these gain hurricane force and cause tremendous
damage.

Perceptive of the policy and planning problems thus posed, the
Graduate School for Planning (GSP) of the University of Puerto
Rico (UPR) initiated in 1999 the development of Xplorah, an an-
alytical instrument supporting integrated spatial planning. Since
then it has become the planning tool of the Puerto Rico Planning
Board to design planning measures and assess their effectiveness.
Xplorah is a constrained cellular automata based land-use model
of the kind developed by White, Engelen and Uljee (White et
al., 1997). It consists essentially of coupled models representing
processes operating at three hierarchically embedded geographi-
cal levels: the island, the 78 municipalities and the cellular level
consisting of cells covering 5.76 ha. At each level, a model repre-
sentation is adapted to the precise needs of the problems studied,
the degree of sophistication required and spatial resolution ap-
plied. The models simulate changes in all variables on a yearly

basis from the present until a future state, typically 2030. At the
cellular level, the land-use functions modelled are: natural veg-
etation, rangeland, forest, agriculture, construction, mining, in-
dustry, trade and services (high and low density) forest reserves,
mangroves and swamps. In addition the model comprises land
uses that are treated as static features in the model: sea, beach,
fresh water, public and recreational areas, utilities, infrastructure,
rocky cliffs and shelves.

To fully deploy the analytic capabilities of Xplorah, high quality
geographically referenced data are a necessity. The most crucial
of all GIS data layers are time series of land-use maps. Xplorah
is currently upgraded from its 240 m to a 60 m resolution, en-
abling effective support for the development of the Puerto Rico
Land Use Plan and for addressing practical planning and zoning
problems at the level of the island (Isla) and the municipalities
(Municipio).

In order to facilitate regular updating of the land-use map fea-
turing all 21 land-use classes of Xplorah at a resolution of 60
m, while assuring a high accuracy, an automatic image process-
ing procedure is being developed. The procedure proposed in
this study uses a contextual reclassification algorithm applied to a
preliminary classification of digital aerial photographs with blue,
green, red and near-infrared bands. The proposed method is tested
for a part of the municipality of Mayagüez, located at the west
coast of Puerto Rico.

2 METHODS

2.1 The Optimised SPARK algorithm

The concept of contextual reclassifiers is based on the idea that
information captured in neighbouring cells or information about
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patterns surrounding the pixel of interest may provide useful sup-
plementary information in the classification process. A strong
relationship between the spatial structure of urban areas and its
functional characteristics have been demonstrated in previous stud-
ies (?). The Optimised SPARK (OSPARK) algorithm is based on
the Spatial Reclassification Kernel (SPARK (Barnsley and Barr,
1996)), which was extended to automatically adapt the kernel size
to the spatial variation detected around the pixel to be classified.
SPARK is a contextual reclassification method that examines the
local, spatial patterns of land cover in a square kernel or moving
window. The centre pixel of the kernel is classified according to
the arrangement of adjacent pixels. The SPARK method consists
of three phases (Barnsley and Barr, 1996):

1. Producing a land-cover map using any type of pixel-based
spectral classifier from a remotely sensed image, further re-
ferred to as the ’initial land-cover map’;

2. Defining SPARK decision rules based on local, spatial pat-
terns of land cover in typical land-use types;

3. Reclassifying the initial land-cover map into land-use types,
based on the decision rules of phase 2.

For the production of the initial land-cover map in the first phase,
several methods can be used, such as unsupervised clustering
techniques, supervised classification techniques, or sub-pixel clas-
sification methods (Van der Kwast et al., in review).

Figure 1: Simulated 3 by 3 kernels of different urban land-use
types with corresponding frequency table and adjacency event
matrix. Only the upper triangle is considered because Mij =
Mji. B = building, G = grass and T = trees

The decision rules of the second phase are inferred from template
kernels that are representative for the land-use classes to be de-
rived. Template kernels are quantified by template (Tk) matrices.
One or more Tk-matrices can be used to characterise each land-
use type allowing subtle differences in spatial arrangement of pix-
els in the initial land-cover map to be accounted for (Barnsley
and Barr, 1996). Figure 1 shows examples of template matrices.
Template matrices are so-called adjacency event matrices that are
calculated by counting the frequency of the pixel-based classes
positioned next to each other as well as diagonally within each
template kernel. Each pair of neighbouring pixels is called an ad-
jacency event. It should be noted that the two template kernels in
Figure 1 cannot be discriminated using only class frequency and
ignoring the spatial configuration.

In the third phase of the SPARK algorithm, for each pixel in the
initial land-cover map an adjacency event matrix is produced by
means of a moving window. These adjacency event matrices are
called M-matrices.

A similarity index, ∆k, is calculated to compare the M-matrices
derived from the initial land-cover map with all Tk matrices. ∆k

is calculated using the following equation (Barnsley and Barr,
1996):

∆k = 1−

√√√√0.5 ·N−2 ·
c∑

i=1

c∑
j=1

(
Mij −Tkij

)2
(1)

where Mij is the adjacency event in a c by c matrix, Tkij is a
template matrix for land-use class k, N is the total number of
adjacency events in the kernel and c is the number of classes in
the per-pixel classified input map. ∆k can range from 0 to 1. If
∆k equals 0, Mij is completely different from Tk, while a value
of 1 means that they are identical.

In the final stage, each pixel in the input land-cover map is as-
signed to the land-use class of the Tk-matrix for which it has
the highest ∆k-value, resulting in a land-use map and a similar-
ity map. The similarity map shows for each pixel the maximum
value of the similarity index ∆k. The procedure is summarized
in the shaded part of the flowchart in Figure 2.

The most important factors that determine the quality of the
SPARK classification are the representativeness of the Tk-matrices
and the choice of an optimal kernel size. The optimal kernel
size is a function of the resolution of the images and the scale
of spatial variation in the initial land-cover map (Barnsley and
Barr, 1996). Kernels that are too large in respect of the land-
use objects will increase the effect of edges, while too small
kernels possibly do not include all spatial variation. Because of
these considerations, some extensions to the original SPARK al-
gorithm have been developed resulting in the OSPARK algorithm
(Van der Kwast et al., in review).

Figure 2 shows the flowchart of the OSPARK algorithm.
OSPARK iteratively applies the SPARK algorithm for kernel sizes
with an apothem from 1 to W pixels. The term apothem is de-
fined as the distance from the centre pixel to a side of a square
kernel. After W iterations an integration operator analyses the
resulting stack of W similarity maps and assigns the class that
corresponds with the optimal ∆k-value for each pixel.

Figure 2: Flowchart of the OSPARK algorithm. The shaded part
shows the original SPARK algorithm that is iterated for a range
of kernel sizes in the OSPARK algorithm

Since larger template matrices tend to be less unique for a partic-
ular land-use type (Sluiter et al., 2004), the ∆k-value eventually
converges to 1 with increasing kernel size. For this reason, the
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maximum ∆k-value for a pixel is not the optimal value. The in-
tegration operator of the OSPARK algorithm determines the op-
timal ∆k-value for each pixel depending on two possible cases
for the evolution of ∆k with increasing kernel size. The integra-
tion operator first checks if local maxima exist. In the case local
maxima are present, the first local maximum above a user-defined
minimum ∆k-threshold value is determined and the correspond-
ing land-use class is assigned. In the case that local maxima are
absent, the curve converges to ∆k ≈ 1 and the integration op-
erator assigns the class to the pixel when the ∆k-value changes
less than 0.05 and is higher than the threshold value. The user-
defined minimum ∆k-threshold value is used to prevent classifi-
cation with a low ∆k-value. If the ∆k-value of a pixel remains
below the minimum ∆k-threshold value through all iterations, it
will be assigned a missing value. The outputs of the algorithm
consist of the derived land-use map, a map containing the sim-
ilarity value corresponding to the optimal kernel size for each
pixel.

2.2 Remote sensing data

During the months of October, November and December 2009,
thousands of multispectral images were acquired over Puerto Rico,
using the ADS40 SH52 digital image sensor of Fugro Earthdata,
Inc. Each frame covers 10K by 10K pixels in four spectral bands
(Red, Green, Blue and NIR). Flying at an altitude of 2900 m, a
ground resolution of 0.3 m was obtained. The onboard position-
ing system consisted of an Inertial Navigation System (INS) com-
bined with a Differential Geographic Positioning System (DGPS).
The INS provides accurate attitude parameters (roll, pitch, yaw),
whereas the DGPS records the aircraft’s altitude and position.
Both are needed for accurate geometric correction of the images.
Histogram matching was applied during image pre-processing in
order to ensure that all images have a comparable reflectance.

2.3 Decision tree classification

The initial land-cover map needed as input for reclassification
with the OSPARK algorithm was derived from the remote sens-
ing images by applying a Decision Tree classification to the im-
ages. The Decision Tree classifier is an ENVI R⃝ integrated unsu-
pervised classification method. It performs multi-stage classifi-
cations by using a series of binary decisions to place pixels into
classes. Each decision divides the pixels in an image into two
classes based on an expression. Subsequently, each new class
can be subdivided into two more classes based on succeeding ex-
pressions. This can be repeated as many times as needed. The
expressions are operations performed on the blue (B), green (G),
red (R) and Near Infra-Red (NIR) bands of the digicam images.
These operations were empirically defined resulting in the dis-
crimination of 25 classes for the Puerto Rico images following
the procedure described below. In order to investigate the op-
timal resolution for the OSPARK classification, the initial land-
cover map was generated at multiple resolutions between 0.3 m
and 15.0 m. An initial land-cover map with a resolution much
smaller than the average size of objects will contain too much
noise for the OSPARK classification, while a resolution larger
than the average size of objects will result in unclear spatial pat-
terns within the OSPARK moving window.

2.3.1 Detection of vegetation Vegetation is detected by us-
ing the high reflectance value in the NIR-band which is typical
to vegetation. If the pixel value in the NIR-band is greater than
in the other three bands, vegetation is assumed (Node 1 in Ta-
ble 1 and Figure 3). Subsequently, different shades of vegetation
are distinguished by using a threshold on the pixel value in the
green band (Nodes 2-2, 3-3, 4-5). Table 1 and Figure 3 show the
decision rules for vegetation classification.

 

Node 1 

Node 2-1 Node 2-2 

Node 3-3 Class 1 

Node 4-5 Class 2 

Class 4 Class 3 

No 
Yes 

Yes 

Yes 

Yes 

No 

No 

No 

Figure 3: Decision tree for detection of vegetation

Nr. Class Node Rule
- Vegetation 1 (NIR > B) &

(NIR > G) &
(NIR > R)

1 Bright vegetation 2-2 G > 125
2 Medium vegetation 3-3 G > 85
3 Dark vegetation 4-5 G > 50
4 Shadowed vegetation 4-5 G ≤ 50

Table 1: Decision rules for classification of vegetation

2.3.2 Detection of shadow and water Low reflectance val-
ues in the R, G and B bands are typical for shadow. A threshold
is used to separate the shadow pixels (Node 2-1 in Table 2 and
Figure 4). The low reflectance values in the NIR band above wa-
ter bodies is used for the detection of water. However, some dark
substrates on land might have low reflectance values in the NIR
band as well (Node 3-1). To distinguish those from water, addi-
tional constraints were necessary. A threshold on the normalized
difference between the NIR and green reflectance value was used
to separate water from dark substrates (Node 4-2).

 

Node 2-1 

Class 5 Node 3-1 

Node 4-1 Node 4-2 

Node 5-3 Class 6 

Class 8 Class 7 

No Yes 

Yes 

Yes 

Yes 

No 

No 

No 

Figure 4: Decision tree for detection of shadow and water

Nr. Class Node Rule
5 Shadow 2-1 (B < 60) &

(G < 60) &
(R < 60)

- Water and dark substrates 3-1 NIR < 35
6 Water 4-2 (NIR - G)/

(NIR + G)
7 Class 7 5-3 (G > 60) &

(B < G)
8 Class 8 5-3 Not ((G > 60) &

(B < G))

Table 2: Decision rules for classification of shadow and water
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Unfortunately, some water and dark substrate pixels could hardly
be separated. Most of the pixels in Class 7 are water pixels but
due to spectral similarity, dark substrate pixels might be present
as well (Node 5-3). Most of the remaining pixels, present in Class
8, are dark substrate (Node 5-3). Table 2 and Figure 4 show the
decision rules for the classification of shadow and water into four
classes.

2.3.3 Detection of bright surfaces and red and orange shades
Bright colours are easily detected by checking the values in the
R, G and B bands (Node 4-1). A distinction is made between
very bright and extreme bright surfaces (Node 5-2). Table 3 and
Figure 5 show the decision rules for the classification of bright
surfaces into two classes (Class 9 and 10).

 

Node 4-1 

Node 5-2 Node 5-1 

Node 6-1 Node 6-2 

Node 7-3 Node 7-4 

Class 14 Class 13 

No Yes 

Yes 

Yes 

Yes 

No 

No 

No 

Class 10 Class 9 

Class 12 Class 11 

Yes 

Yes 

No 

No 

Figure 5: Decision tree for detection of bright surfaces and red
and orange shades

Nr. Class Node Rule
- Bright and extreme 4-1 (R > 200) &

bright surfaces (G > 200) &
(B < 200)

9 Extreme bright 5-2 B > 230
10 Bright 5-2 B ≤ 230

Table 3: Decision rules for classification of bright surfaces

The red and orange shades in the image are detected by the higher
reflectance value in the red band, taking into account a certain
threshold value in order to distinguish them from shades of grey
(Node 4-1). Next the red and orange shades are separated (Node
5-1). Subsequently, for both distinction is made between the
bright and dark shades (Node 7.3 and 7.4). Table 4 and Figure 5
show the decision rules for the classification of red and orange
shades into four classes.

Nr. Class Node Rule
- Red and orange shades 5-1 (R > G + 20) &

(R > B + 20)
- Red 6-2 R > (G + 50)
- Orange 6-2 R ≤ (G + 50)

11 Bright red 7-4 R > 120
12 Dark red 7-4 R ≤ 120
13 Bright orange 7-3 R > 120
14 Dark orange 7-3 R ≤ 120

Table 4: Decision rules for classification of red and orange shades

2.3.4 Detection of objects with shades of grey The detec-
tion of objects with shades of grey is done by a threshold on the
R, G and B bands. In case of shades of grey, all three bands
have similar reflectance values (Node 6-1). Different shades are
distinguished by a threshold value (Nodes 7-2, 8-3 and 9-5). Fig-
ure 6 and Table 5 show the decision rules for the classification of
shades of grey into four classes.

 
Node 6-1 

Node 7-2 Node 7-1 

No Yes 

Node 8-3 Class 15 

Yes No 

Node 9-5 Class 16 

Yes No 

Class 18 Class 17 

Yes No 

Figure 6: Decision tree for detection of shades of grey

Nr. Class Node Rule
- Shades of grey 6-1 (B > G - 15) &

(B < G + 15) &
(G > R - 15) &
(G < R + 15)

15 Bright grey 7-2 G > 180
16 Medium grey 8-3 G > 130
17 Dark grey 9-5 G > 90
18 Extreme dark grey 9-5 G ≤ 90

Table 5: Decision rules for classification of shades of grey

2.3.5 Detection of yellow and brown objects Yellow colours
are detected when the red and green band have similar reflectance
values and higher than the reflectance of the blue band (Node
7.1). Different shades are distinguished by a threshold value
(Node 8.2 and 9.3). Figure 7 and Table 6 show the decision rules
for the classification of yellow and brown objects.

 

Node 7-1 

Node 8-2 Node 8-1 

No Yes 

Node 9-3 Class 19 

Yes No 

Class 21 Class 20 

Yes No 

Figure 7: Decision tree for detection of yellow and brown objects

Nr. Class Node Rule
- Yellow and brown 7-1 (R < G + 50) &

(G > B + 10)
19 Bright yellow 8-2 G > 170
20 Medium yellow 9-3 G > 110
21 Brown 9-3 G ≤ 110

Table 6: Decision rules for classification of yellow and brown
objects

2.3.6 Detection of objects with remaining colours The re-
maining blue colours are detected when the reflectance value in
the blue band is higher than those for green and red. The same ac-
counts for the remaining green colours, but here the reflectance in
the green band are higher than those in the blue and red band. The
remaining purples are separated in bright and dark by a threshold
value on the blue band. Figure 8 and Table 7 show the decision
rules for the classification of the remaining objects.

 

Node 8-1 

Node 9-1 Class 22 

No Yes 

Node 10-1 Class 23 

Yes No 

Class 25 Class 24 

Yes No 

Figure 8: Decision tree for detection of the remaining colours
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Nr. Class Node Rule
22 Blue 8-1 (B > G) &

(B > R)
23 Green 9-1 (G > B) &

(G > R)
24 Bright purple 10-1 B > 110
25 Dark purple 10-1 B ≤ 110

Table 7: Decision rules for classification of remaining colours

2.4 Contextual classification

First, reference data for training and evaluation of the OSPARK
algorithm was derived from the Xplorah 2003 land-use map
(Román and Castro, 2008), which has a resolution of 15 m and a
reported overall accuracy of 97.47%. A subset of 81 ha covering
part of the municipality of Mayagüez, was used for testing the
methodology. This subset of the land-use map was carefully se-
lected in order to include the most important land-use classes in-
volved in urban dynamics, while limiting its extent for convenient
calculation times of the OSPARK algorithm. The centre coordi-
nates of the template kernels were derived by stratified random
sampling of 50 points within each class of the land-use map. Van
der Kwast et al. (in review) assume that this sampling method
results in representative template kernels describing the spatial
variability of the different classes. The same procedure was fol-
lowed to derive an independent set of pixels for evaluation of the
contextual classification.

Next, for each resolution of the initial land-cover map the
OSPARK algorithm was applied with kernel apothems varying
from 1 to 30 pixels. A ∆k-threshold value of 0.7 was used. The
resulting land-use maps were evaluated at their original resolu-
tion, i.e. the resolution of the initial land-cover map, and at 60 m
resolution by deriving statistics from error matrices.

3 RESULTS AND DISCUSSION

Figure 9 shows the cumulative distribution of cluster sizes in the
initial land-cover map. The chart is calculated from the initial
land-cover map of 0.9 m resolution and shows an inflection point
at 6.0 m. The figure shows that few objects have a size less than
6 m. Since the OSPARK classification infers land-use classes
based on the configuration of objects within a kernel, a resolu-
tion of the initial land-cover map greater than or equal to 6.0 m
seems appropriate in order to reduce the effect of noise at higher
resolutions and to speed-up the algorithm.
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Figure 9: Cumulative distribution of cluster sizes in the initial
land-cover map at a resolution of 0.90 m

Figure 9 does not allow the determination of the maximum res-
olution of the initial land-cover map. In order to investigate this

and to confirm the minimum resolution, the OSPARK algorithm
has been applied to different resolutions of the initial land-cover
map. Figure 3 shows four scenarios of the evolution of the overall
accuracy and Kappa when the resolution of the initial land-cover
map is decreased. Figure 10(a) shows the evolution of the ac-
curacy when all classes are used and evaluated at the resolution
of the initial land-cover map. Figure 10(c) shows the evolution
of the accuracy when the classification result is resampled to 60
m and evaluated with the reference map at 60 m. The objective
of this study was to develop a methodology for the automatic
mapping of land-use at a resolution of 60 m with a high accuracy,
containing all classes of the Xplorah land-use change model. Fig-
ure 10(c) shows that with the current procedure OSPARK does
not produce land-use maps with an overall accuracy higher than
50%. The highest accuracy was obtained with an initial land-
cover map with a resolution of 9.0 m. Table 8 shows the user’s
and producer’s accuracy for the individual classes. The classes
industry, low-density trade and services, water resources and util-
ities could be discriminated, while other classes were confused.
Merging some of the confused classes resulted in an overall ac-
curacy of 69% and higher class accuracies (Table 9), although
residential areas and infrastructure are still hard to classify.

Land use User Producer
Forest 0.40 0.45

Agriculture 0.41 0.57
Industry 0.79 1.00

High-density trade and services 0.50 0.25
Low-density trade and services 0.70 0.76

High-density residential 0.35 0.36
Low-density residential 0.55 0.47
Mangroves and swamps 0.37 0.78

Water resources 0.65 0.88
Public and recreation 0.53 0.57

Utilities 0.90 0.84
Infrastructure 0.35 0.39
Rangelands 0.31 0.10

Table 8: User’s and producer’s accuracy of the OSPARK classi-
fication, using all classes and a resolution of 60 m. Classes that
do not occur in the subset have been omitted. Overall accuracy:
0.52, Kappa: 0.48

Land use User Producer
Non-urban 0.77 1.00
Industrial 0.79 1.00

Trade and services 0.76 0.54
Residential 0.45 0.28

Water resources 0.68 0.88
Public and recreation 0.59 0.57

Utilities 0.90 0.84
Infrastructure 0.35 0.39

Table 9: User’s and producer’s accuracy of the OSPARK classi-
fication, using merged classes and a resolution of 60 m. Overall
accuracy: 0.69, Kappa: 0.62

An important factor for the low accuracies for the OSPARK clas-
sification using all land-use classes probably lies in the fact that
a reference land-use map of 2003 is used, while the imagery was
acquired in 2010. The stratified random sample of reference pix-
els might not be representative for the current land use. Since a
more recent land-use map is not available, manual selection of
representative reference areas might improve the OSPARK clas-
sification.

SPARK and OSPARK have been mostly applied to medium res-
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Figure 10: Overall accuracy and Kappa for four scenarios

olution (MR) remote sensing images. The advantage of applying
OSPARK to high resolution (HR) imagery, such as aerial pho-
tographs, IKONOS and QuickBird, is that elementary objects,

such as houses, can be identified in the initial land-cover map at
a lower level of spatial abstraction. Objects derived from MR
images are more generalized and abstract, thus harder to be used
by the contextual algorithm A major drawback of increasing the
resolution of the initial land-cover maps is the increase in calcu-
lation time. The structure of the OSPARK algorithm, however,
easily allows reduction of computing times by distributing the it-
eration process over multiple cores, processors or computers and
to centrally collect the results of the iterations for processing with
the integration operator (Van der Kwast et al., in review).

4 CONCLUSIONS AND FUTURE WORK

This study proposes an automatic land-use classification proce-
dure based on the contextual classification of high resolution mul-
tispectral digital airborne images of the island of Puerto Rico.
Results show that an optimal resolution for the initial land-cover
map, used as an input for the contextual classification, is approx-
imately 9.0 meters, which corresponds well with the cluster size
distribution found in the study area. The use of this optimal
resolution prevents large computing times with redundant data
at higher resolutions, while preserving the spatial organisation
of objects needed in the OSPARK classification. Results of the
OSPARK classification show that at currently the derivation of 21
land-use classes is not feasible with an overall accuracy higher
than 0.52. Merging classes results in nine important categories
that can be discriminated with an overall accuracy of 0.69. The
use of more representative reference locations that do not change
in time might improve the classification results. Further research
should confirm this. Future work should also investigate the fea-
sibility of using the OSPARK algorithm in parallel computing,
which is necessary to reduce calculation times if the proposed
procedure is applied to the entire island of Puerto Rico.
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