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ABSTRACT:  
 
A new algorithm for reconstructing contour map from raster DEM data is presented. It runs completely within the programmable 3D 
visualization pipeline in real-time. During the rendering, we first make an elevation gradient map out of original terrain vertex data. 
Then figure out the final contour lines with image-space processing, and blend the values on the original scene to obtain the final 
scene with contour map. We implemented this method in our global 3D-digitalearth platform, with interactive frame-rates and high 
image quality. 
 
 

1. INTRODUCTION 

Contour maps are important in many fields of application. 
Today’s 3D virtual-earth systems use raster DEM data as a main 
terrain data source. Superimposing massive related data such as 
contour maps as vector or image layers are space and time 
consuming, requiring much storage, memory and band-width 
resources which are crucial to other system functionalities. It 
also becomes incapable when dynamic DEM data is introduced. 
So figuring out contour maps from the basic DEM data is 
considerable. Classic contour line algorithms are mostly based 
on CPU, taking too long time to run in real-time. In this paper 
we demonstrate a new algorithm completely based on modern 
graphics processing unit (GPU) and programmable pipelines. It 
generates and displays contour map at the same time on the fly.  
 
First we prepare required data for the graphics card which will 
do all the computing (in fact you will find that no more work 
than just handle in a few parameters essential to contour maps 
will be done).Then the details of two main rendering passes: a 
intermediate pass to produce a gradient map, and the final full-
screen edge-detecting pass to get the contour map and blend it 
onto the original terrain scene, including the GPU-program 
pseudo-code. Finally the performance and quality issues are 
discussed. 

 
2. PRE-REQUESTED DATA AND PARAMETERS 

DEM data is required. Both regular and irregular height map 
data can be used. In our case, the NASA .bil format height data 
are used as the source. According to projection and other 
translations, a regular triangle vertex data for each terrain tile 
with a spherical reference surface was produced. Each vertex 
contains a 3D-vector as its world position. Of course this leads 
to a floating point artifacts and some tricking correction was 
made. It is a routine process for terrain rendering and more 
details can be found on the the virtual terrain project 
(http://www.vterrain.org). Many terrain LOD techniques can be 
used, such as ROAM (Duchaineau M. et all, 1997), geo-
Mipmapping (Willem H. 2000), and Geo-Clipmaps (Arul and 
Hoppe, 2005), which are all compatible with our contour map 
algorithm. 

 
For contour lines, we have a few parameters. The Contour 
interval stands for the elevation interval between adjacent 

contour lines; Base elevation stands for the basic elevation for 
contour lines, usually be zero; And the Contour Line Color, 
which is set by users. These are set to the pipeline through 
constant registers. 

 
3. FIRST RENDERING PASS: THE GRADIENT MAP 

In this pass, we take the vertex position as main input as well as 
part of the contour line parameters. The GPU-program pseudo-
code is listed in Appendix A. 
 
We first transform the vertex from local space to world space 
with the local-to-world matrix, and then transform the world 
coordinate into post-perspective space with the view-projection 
matrix. The length of its absolute world-position was calculated 
and subtracted by the WORLD_RADIUS constant, which was 
introduced when setting up the terrain vertices, so we get the 
elevation of the vertex. The process is much alike an inverse 
process of terrain vertex data construction, and can be described 
as follows: 
 

E = length(V) – R                       (1) 
 
 
where E = Elevation of vertex. 

V = Vertex coord in world space, a 3D Vector. 
R = Equatorial World Radius. 
length() is a intrinsic function of gpu programs 
that returns the length of a vector. 

 
We store this value into a TEXCOORD component of the 
vertex-program output, so that it will be interpolated linearly by 
the rasterizer automatically, and we’ll get the correct elevation 
for each pixel in the pixel program. 

 
In the pixel program, we divide the elevation value of each 
pixel by the contour interval, so that we get a gradient value 
which increases by one linearly for each interval. Then we get 
the floor of the value, so that it increases by one at the very 
point where the contour lines exist (Equation 2 and Figure 1).  

grad = floor(E / I)                                  (2) 
 
 
where  grad = gradient value. 
 I = Contour Interval. 



 
 
 

 

 
Figure 1. Assuming contour interval as 100, the floored 
gradient will be like this. 
 
 

 
Figure 2. The visualized gradient buffer and its corresponding 
final contour map 
 
This value is output as one component of the pixel-program’s 
output color, into a floating point buffer (render-target texture 
in Direct3D or FBO in OpenGL) (Figure 2). The first pass is 
then completed. 

 

4. SECOND PASS: EDGE-DETECTING AND 
BLENDING 

The second pass is an image space procedure. It uses the 
floating point render-target buffer containing the gradient 
values as texture, to render a full-screen quad. The idea of full-
screen pass is very common in today’s 3D programs for special 
effects such as blooming (Greg James et all. 2004) and HDR 
lighting, and is relatively simple. For each pixel to draw, we 
sample the gradient-map texture with coordinate corresponding 
to the pixel itself and the pixels around it (Figure 3). Then 
compare those gradient values, if the current gradient differs 
from a neighbouring one, it indicates that there’s contour line 
across between the two pixels, and we add a weight value for 
the current pixel according to the distance between the two 
pixels (Oles. 2005). At last, the sum weight is used as the alpha 
value of the output color, whose RGB channels are written with 
the line color which was set as contour line parameters. The 
pixel is written onto the original scene with alpha-blending, so 
that pixels without contour lines become transparent. The 
pseudo-code of the pixel program is shown in Appendix B. 

 

 
Figure 3. (Left) The sampled pixels, see Appendix B for 
calculation of G(n) values. Notice that G0~G3 are with the 
same weight value and G4~G7 are with another one. (Right) the 
comparing of pixel’s gradient values. The four black lines show 
difference in gradient value of sampled pixels. 

 
5. RESULTS AND DISCUSSION 

We ran our 3D digital-earth system on some PCs with DEM 
and satellite image data downloaded from a remote map server 
dynamically, and got the results (Appendix C) in interactive 
frame-rates, which are measured with Fraps 2.9.6. The results 
on different hardware platforms are listed in Table 1. 
 
Platform No.1 No.2 No.3 
Contour 
map off 

1071 fps 341 fps 189 fps 

Contour 
map on 

542 fps 190 fps 88 fps 

Detailed 
configura

tion 

Intel Core2 Q6600 
2.4G 

NVIDIA GTX280 
1GB 

3.25GB RAM 

Intel Core2 
E4600 2.4G 

NVIDIA GeForce 
8600 GT 256 MB 

2GB RAM 

Intel Core2 
E8200 2.66G 
ATI HD2400 
XT 512MB 
2GB RAM 

Table 1. Frame-rates on different platforms. 
From the table we can conclude that the most important issue 
that influences the frame-rates is the GPU capability, since the 
algorithm is CPU and RAM free. The frame-rates are stable, as 
the calculation procedure does not change with contour line 
parameters, so we get almost the same frame rate for a 200-
interval contour map and a dense 50-interval contour map.  



 
 
 

 
Since the terrain was cut by the virtual plane of each elevation 
grade, the resulting contour lines are guaranteed to be 
topologically correct, no manual corrections are needed. 
 
There are some improvements that can be taken. First one is the 
geometry-edge artifacts, which occurs when geometry edges are 
present in the scene. Since the gradient value between two 
fragments of geometry can be different, it will be considered as 
neighbouring gradient edge by the edge-detector and a contour 
line weight will be added unexpectedly (Figure 4). To correct 
this issue, we can render in the first pass a second value besides 
gradient value, the distance between the viewer to the pixel, or 
the Depth for short, into another color channel of the buffer. 
Then in the second pass, we sample the Depth value as well as 
the gradient value. If the differences of the Depth value between 
two neighbouring pixels are larger than a barrier, it is 
considered as geometry-edge rather than gradient-edge, so the 
weight is ignored. 

 
Figure 4. The geometry-edge artifacts. Notice the edge of near 

mountains. 
 
 
Second, the first pass can be integrated into the normal 
rendering pass, with the help of MRTs (Multi-Render Targets). 
So that we can save half of the draw calls, which will obviously 
increase the frame-rate. 
 
At last, contour line tags and labels can be added by reading the 
gradient data back from the buffer. By API features such as 
IDirect3DSurface9::LockRectangle() in Direct3D, we can easily 
get the gradient data, then calculate the contour value with the 
inverse process of the first pass. And show them on the map. 
 
This method is easily implemented on most of consumers’ 
graphics hardware, which support DirectX 9 or OpenGL 2.0 
with shader model 2.0 or higher. It can be applied on to various 
terrain platforms, including both spherical digital-earth and 
localized non-spherical scenes, even the 2D maps (for which a 
single second pass is enough). Also, the generated contour map 
can be saved to hard disk for future usage, with desired plotting 
scale. 
This method also enables a full dynamic ability to the terrain 
system. Once the DEM data is changed, the new contour maps 
will be displayed on the final image immediately, without any 
kind of data pre-processing. 
 

6. CONCLUSION 

In this paper we presented an algorithm for reconstructing 
contour map from raster DEM data for digital-earth and other 
terrain platforms. With the power of programmable pipelines, 
we make the elevation gradient map out of original terrain 
vertex data, and the final contour lines with image-space 
processing. The method was implemented and tested on 
different PC platforms and proved to be efficient with real-time 
frame-rates and high image quality. It can be easily modified 
and extended for better image quality and broader applications. 
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APPENDIX A. FIRST PASS GPU PROGRAMS 

Vertex Program: 
 
Constants: 

float  WORLD_RADIUS; 
matrix  matrixWorld; 
matrix  matrixViewProjection; 
 

foreach  Vertex  do 
{ 

float4  vertexWorldPosition = multiply ( Vertex.Position, matrixWorld ) 
Output .Position as  POSITION = multiply ( vertexWorldPosition, matrixViewProjection ); 
Output .Elevation as  TEXCOORD = length ( vertexWorldPosition ) – WORLD_RADIUS; 
return  Output ; 

} 
 
 
Pixel Program: 
 
Constants: 

float  ContourInterval;  
float  BaseElevation; 
 

foreach  Pixel  do 
{ 

float  grad = ( Pixel .Elevation – BaseElevation) / ContourInterval; 
float  gradAsInteger = floor (grad); 
return  Color , gradAsInteger as  the Red component ; 

} 



 
 
 

APPENDIX B. SECOND PASS PIXEL PROGRAM. 

 
Pixel Program: 
 
Constants: 

float2  DeltaUV;  
float3  LineColor; 
float  ColorBarrier = 0.5f; 
float  weight1 = some weight; 
float  weight2 = weight1 / 2; 
Texture  gradientMap; 

 
foreach  Pixel  do 
{ 

float  GOrigin = sample ( gradientMap, Pixel .Texcoord); 
float  G[8]; 
 
G[0] = sample ( gradientMap, Pixel .Texcoord + float2 (0, DeltaUV.y) ); 
G[1] = sample ( gradientMap, Pixel .Texcoord + float2 (DeltaUV.x, 0) ); 
G[2] = sample ( gradientMap, Pixel .Texcoord + float2 (0, -DeltaUV.y) ); 
G[3] = sample ( gradientMap, Pixel .Texcoord + float2 (-DeltaUV.x, 0) );  

     
G[4] = sample ( gradientMap, Pixel .Texcoord + DeltaUV ); 
G[5] = sample ( gradientMap, Pixel .Texcoord – DeltaUV ); 
G[6] = sample ( gradientMap, Pixel .Texcoord + float2 (DeltaUV.x, -DeltaUV.y) ); 
G[7] = sample ( gradientMap, Pixel .Texcoord - float2 (DeltaUV.x, -DeltaUV.y) ); 

     
float  alpha = 0; 
foreach  g in  G[0] to  G[3] do 
{ 

if ( abs (GOrigin – g) > ColorBarrier) 
{ 

alpha += weight1; 
} 

} 
foreach  g in  G[4] to  G[7] do 
{ 

if ( abs (GOrigin – g) > ColorBarrier) 
{ 

alpha += weight2; 
} 

} 
return  Color , LineColor as  RGB, alpha as  A; 

}  



 
 
 

APPENDIX C. IMAGE RESULTS. 

 
 

 
(1) contour interval = 200 

 

 
(2) contour interval = 100 

 

 
(3) Contour interval = 50 


