Real-time Contour Map Reconstruction with 3D Terrain on Modern Graphics Hardware

Chen Zhuo*, Zhao Yanqing, Yang Chongjun

State Key Laboratory of Remote Sensing Sciencetly@ponsored by the Institute of Remote Sensingliéations of Chinese
Academy of Sciences and Beijing Normal Universi§0101, China

KEY WORDS: Contour Map, Contour Lines, 3D terrain, GPU, Digéatth

ABSTRACT:

A new algorithm for reconstructing contour map froaster DEM data is presented. It runs completélyimthe programmable 3D
visualization pipeline in real-time. During the daming, we first make an elevation gradient mapadwriginal terrain vertex data.
Then figure out the final contour lines with imaggace processing, and blend the values on thanatigtene to obtain the final
scene with contour map. We implemented this methaair global 3D-digitalearth platform, with intetéve frame-rates and high

image quality.

1. INTRODUCTION

Contour maps are important in many fields of appilica
Today'’s 3D virtual-earth systems use raster DEMy@sta main
terrain data source. Superimposing massive retdéa such as
contour maps as vector or image layers are spadetiare
consuming, requiring much storage, memory and heidth
resources which are crucial to other system funefities. It
also becomes incapable when dynamic DEM datarsdoted.
So figuring out contour maps from the basic DEMada
considerable. Classic contour line algorithms arestimdased
on CPU, taking too long time to run in real-time.this paper
we demonstrate a new algorithm completely basedhodern
graphics processing unit (GPU) and programmablelipigs. It
generates and displays contour map at the sameotirtiee fly.

First we prepare required data for the graphicd edrich will
do all the computing (in fact you will find that moore work
than just handle in a few parameters essentiabtdoar maps
will be done).Then the details of two main rendgrpasses: a
intermediate pass to produce a gradient map, andrtal full-
screen edge-detecting pass to get the contour ndhbland it
onto the original terrain scene, including the Gptdgram
pseudo-code. Finally the performance and qualisyds are
discussed.

2. PRE-REQUESTED DATA AND PARAMETERS

DEM data is required. Both regular and irregularghtimap
data can be used. In our case, the NASAformat height data
are used as the source. According to projection atfner
translations, a regular triangle vertex data factheterrain tile
with a spherical reference surface was producedh Eartex
contains a 3D-vector as its world position. Of aeuthis leads
to a floating point artifacts and some tricking reation was
made. It is a routine process for terrain rendeimg more
details can be found on the the virtual terrain jgmb

(http://lwww.vterrain.oryy Many terrain LOD techniques can be
used, such as ROAM (Duchaineau M. et all, 1997),- geo

Mipmapping (Willem H. 2000), and Geo-Clipmaps (Aand
Hoppe, 2005), which are all compatible with our toam map
algorithm.

For contour lines, we have a few parameters. ThetdDon
interval stands for the elevation interval betwesdjacent

contour lines; Base elevation stands for the bdsicagon for
contour lines, usually be zero; And the Contour L®Delor,
which is set by users. These are set to the pipetinough
constant registers.

3. FIRST RENDERING PASS: THE GRADIENT MAP

In this pass, we take the vertex position as mgiut as well as
part of the contour line parameters. The GPU-pmoagoaeudo-
code is listed in Appendix A.

We first transform the vertex from local space torld space
with the local-to-world matrix, and then transfotire world
coordinate into post-perspective space with thevygeojection
matrix. The length of its absolute world-positioasicalculated
and subtracted by the WORLD_RADIUS constant, whicls wa
introduced when setting up the terrain verticeswgoget the
elevation of the vertex. The process is much adikeinverse
process of terrain vertex data construction, amdbeadescribed
as follows:

E =length(V) — R 1)

E = Elevation of vertex.

V = Vertex coord in world space, a 3D Vector.
R = Equatorial World Radius.

length() is a intrinsic function of gpu programs
that returns the length of a vector.

where

We store this value into a TEXCOORD component of the
vertex-program output, so that it will be intergelhlinearly by
the rasterizer automatically, and we’ll get thereor elevation
for each pixel in the pixel program.

In the pixel program, we divide the elevation valieeach
pixel by the contour interval, so that we get adgat value
which increases by one linearly for each interfden we get
the floor of the value, so that it increases by ah¢he very
point where the contour lines exist (Equation 2 Bigtire 1).

grad = floorg /1))

where grad = gradient value.

| = Contour Interval.

Elev = 400, grad = 4

Elev = 300, grad = 3

Elev = 200, grad = 2

Elev = 100, grad = 1

Elev=0,grad = 0

/ N

Figure 1. Assuming contour interval as 100, theoriéu
gradient will be like this.

Figure 2. The'\'/lsual
final contour map

This value is output as one component of the gixegram’s
output color, into a floating point buffer (rendarget texture
in Direct3D or FBO in OpenGL) (Figure 2). The fisass is
then completed.

4. SECOND PASS: EDGE-DETECTING AND
BLENDING

The second pass is an image space procedure. dt thee
floating point render-target buffer containing tlyeadient

values as texture, to render a full-screen quad.idiea of full-

screen pass is very common in today’s 3D programsgecial

effects such as blooming (Greg James et all. 2604) HDR

lighting, and is relatively simple. For each pixel draw, we

sample the gradient-map texture with coordinateesmponding
to the pixel itself and the pixels around it (Figus). Then
compare those gradient values, if the current gradiliffers

from a neighbouring one, it indicates that therstour line

across between the two pixels, and we add a weigloe for

the current pixel according to the distance betwten two

pixels (Oles. 2005). At last, the sum weight isclias the alpha
value of the output color, whose RGB channels argemrivith

the line color which was set as contour line patamse The
pixel is written onto the original scene with alghlanding, so
that pixels without contour lines become transparéne

pseudo-code of the pixel program is shown in AppeBd

G5 G2 G6

G3 Gl

G7 GO G4

Figure 3. (Left) The sampled pixels, see AppendixfdB
calculation of G(n) values. Notice that GO~G3 arthwhe
same weight value and G4~G7 are with another drighf) the
comparing of pixel's gradient values. The four kléines show
difference in gradient value of sampled pixels.

5. RESULTSAND DISCUSSION

We ran our 3D digital-earth system on some PCs DM

and satellite image data downloaded from a rematp server
dynamically, and got the results (Appendix C) inemactive
frame-rates, which are measured with Fraps 2.%. résults
on different hardware platforms are listed in Tahle

Platform No.1 No.2 No.3
Contour
map off 1071 fps 341 fps 189 fps
Contour 542 fps 190 fps 88 fps
map on
. Intel Core2 Q6600 Intel Core2 Intel Core2
Detailed 2.4G E4600 2.4G E8200 2.66G
configura | NVIDIA GTX280 | NVIDIA GeForce | ATI HD2400
tion 1GB 8600 GT 256 MB| XT 512MB
3.25GB RAM 2GB RAM 2GB RAM

Table 1. Frame-rates on different platforms.
From the table we can conclude that the most iraporissue
that influences the frame-rates is the GPU capgbsince the
algorithm is CPU and RAM free. The frame-rates aablst as
the calculation procedure does not change with aontine
parameters, so we get almost the same frame rate R90-
interval contour map and a dense 50-interval cantaap.

Since the terrain was cut by the virtual plane afheelevation
grade, the resulting contour lines are guaranteedbé
topologically correct, no manual corrections aredwesl.

There are some improvements that can be taken.dfiesis the
geometry-edge artifacts, which occurs when geonestges are
present in the scene. Since the gradient value eggtviwo
fragments of geometry can be different, it will d@nsidered as
neighbouring gradient edge by the edge-detectoraacgntour
line weight will be added unexpectedly (Figure #. correct
this issue, we can render in the first pass a skvalue besides
gradient value, the distance between the viewd¢heaaopixel, or
the Depth for short, into another color channetha buffer.
Then in the second pass, we sample the Depth ealweell as
the gradient value. If the differences of the Deyhue between
two neighbouring pixels are larger than a barrigr,is
considered as geometry-edge rather than gradigigt-e the
weight is ignored.
1n

Figure 4. The geometry-edge artifacts. Notice tigeeof near
mountains.

Second, the first pass can be integrated into tbemal
rendering pass, with the help of MRTs (Multi-Rendergets).
So that we can save half of the draw calls, whidhakviously
increase the frame-rate.

At last, contour line tags and labels can be adgecading the
gradient data back from the buffer. By API featusesh as
IDirect3DSurface9::LockRectangle() in Direct3D, wvanaasily
get the gradient data, then calculate the contalurevwith the
inverse process of the first pass. And show therthermmap.

This method is easily implemented on most of coresm
graphics hardware, which support DirectX 9 or OplerZz0

with shader model 2.0 or higher. It can be apptiedo various
terrain platforms, including both spherical digiegrth and
localized non-spherical scenes, even the 2D mapsmtich a
single second pass is enough). Also, the genecateur map
can be saved to hard disk for future usage, witlire@ plotting
scale.

This method also enables a full dynamic abilitythe terrain
system. Once the DEM data is changed, the new aomtaps
will be displayed on the final image immediatelyitheut any
kind of data pre-processing.

6. CONCLUSION

In this paper we presented an algorithm for recaoothg
contour map from raster DEM data for digital-eaathd other
terrain platforms. With the power of programmablpetines,
we make the elevation gradient map out of origiteatain
vertex data, and the final contour lines with imagace

processing. The method was implemented and tested o

different PC platforms and proved to be efficienthwieal-time
frame-rates and high image quality. It can be gasibdified
and extended for better image quality and broappliGations.

REFERENCE

Arul and Hoppe.Terrain rendering using gpu-based geometry
clipmaps. GPU Gems 2. 2005,
http://developer.nvidia.com/object/gpu_gems_2_habind.

Duchaineau, M., Wolinski, M., Sigeti, D., Miller, MAldrich,
C., and Mineev-Weinstein, M. ROAMing Terrain: Real¢im
Optimally Adapting Meshes.
http://www.lInl.gov/graphics/ROAM

Greg James. and John O’Rorkigeal-Time Glow. GPU Gems.
2004.

Oles Shishkovtsov.Deferred shading in ST.AL.K.E.R. GPU
Gems2. 2005.

Willem H. de Boer, Fast Terrain Rendering Using Getoicwd
MipMapping, E-mersion Project, October 2000,
http://www.connectii.net/emersion

ACKNOWLEDGEMENTS

Thanks to xtaci for the discussion on GPU programgnand a
lot of fundamental work on the terrain engine anaprserver,
and HuangShan (Kingsoft co. Ltd) for providing uany useful
books and links. Thanks to Wang Gang (GeoBeans td).far

providing map services. This work is also partlpported by
the MOST Program Grant
2008BAH23B04..

2009AA127215 and Grant

APPENDIX A. FIRST PASS GPU PROGRAMS

Vertex Program

Const ant s:
float WORLD_RADIUS;
matrix matrixWorld;
matrix matrixViewProjection;

foreach Vertex do
float4 vertexWorldPosition = multiply (Vertex.Position, matrixWorld)
Output .Position as POSITION = multiply (vertexWorldPosition, matrixViewProjection);

Output .Elevation as TEXCOORB length (vertexWorldPosition) — WORLD_RADIUS;
return Output ;

Pi xel Program
Const ant s:
float Contourinterval,
float BaseElevation;

foreach Pixel do

{
float grad=(Pixel .Elevation — BaseElevation) / Contourlnterval;
float gradAsinteger = floor (grad);
return Color , gradAsinteger as the Red component ;

APPENDIX B. SECOND PASS PIXEL PROGRAM.

Pi xel Program

Const ant s:
float2 DeltaUV;
float3 LineColor;
float ColorBarrier = 0.5f;
float weightl = some weight;
float weight2 = weightl/ 2;
Texture gradientMap;

foreach Pixel do

{
float GOrigin = sample (gradientMap, Pixel .Texcoord);
float G[8];
G[0] = sample (gradientMap, Pixel .Texcoord + float2 (0O, DeltaUV.y));
G[1]= sample (gradientMap, Pixel .Texcoord + float2 (DeltaUV.x, 0));
G[2] = sample (gradientMap, Pixel .Texcoord + float2 (O, -DeltaUV.y));
G[3]= sample (gradientMap, Pixel .Texcoord + float2 (-DeltaUV.x, 0));
G[4]= sample (gradientMap, Pixel .Texcoord + DeltaUV);
G[5] = sample (gradientMap, Pixel .Texcoord — DeltaUV);
G[6] = sample (gradientMap, Pixel .Texcoord + float2 (DeltaUV.x, -DeltaUV.y));
G[7]= sample (gradientMap, Pixel .Texcoord - float2 (DeltaUV.x, -DeltaUV.y));

float alpha =0;
foreach g in G[0] to G[3] do

if (abs(GOrigin — g) > ColorBarrier)
alpha += weight1;

}
foreach g in G[4] to G[7] do

if (abs(GOrigin — g) > ColorBarrier)

alpha += weight2;
}

return Color , LineColor as RGB alpha

as A

APPENDIX C.IMAGE RESULTS.

(1)contour interval

=100

(2)contour interval

=50

(3) Contour interval

