

Real-time Contour Map Reconstruction with 3D Terrain on Modern Graphics Hardware

Chen Zhuo*, Zhao Yanqing, Yang Chongjun

State Key Laboratory of Remote Sensing Science, Jointly Sponsored by the Institute of Remote Sensing Applications of Chinese
Academy of Sciences and Beijing Normal University, 100101, China

KEY WORDS: Contour Map, Contour Lines, 3D terrain, GPU, Digital earth

ABSTRACT:

A new algorithm for reconstructing contour map from raster DEM data is presented. It runs completely within the programmable 3D
visualization pipeline in real-time. During the rendering, we first make an elevation gradient map out of original terrain vertex data.
Then figure out the final contour lines with image-space processing, and blend the values on the original scene to obtain the final
scene with contour map. We implemented this method in our global 3D-digitalearth platform, with interactive frame-rates and high
image quality.

1. INTRODUCTION

Contour maps are important in many fields of application.
Today’s 3D virtual-earth systems use raster DEM data as a main
terrain data source. Superimposing massive related data such as
contour maps as vector or image layers are space and time
consuming, requiring much storage, memory and band-width
resources which are crucial to other system functionalities. It
also becomes incapable when dynamic DEM data is introduced.
So figuring out contour maps from the basic DEM data is
considerable. Classic contour line algorithms are mostly based
on CPU, taking too long time to run in real-time. In this paper
we demonstrate a new algorithm completely based on modern
graphics processing unit (GPU) and programmable pipelines. It
generates and displays contour map at the same time on the fly.

First we prepare required data for the graphics card which will
do all the computing (in fact you will find that no more work
than just handle in a few parameters essential to contour maps
will be done).Then the details of two main rendering passes: a
intermediate pass to produce a gradient map, and the final full-
screen edge-detecting pass to get the contour map and blend it
onto the original terrain scene, including the GPU-program
pseudo-code. Finally the performance and quality issues are
discussed.

2. PRE-REQUESTED DATA AND PARAMETERS

DEM data is required. Both regular and irregular height map
data can be used. In our case, the NASA .bil format height data
are used as the source. According to projection and other
translations, a regular triangle vertex data for each terrain tile
with a spherical reference surface was produced. Each vertex
contains a 3D-vector as its world position. Of course this leads
to a floating point artifacts and some tricking correction was
made. It is a routine process for terrain rendering and more
details can be found on the the virtual terrain project
(http://www.vterrain.org). Many terrain LOD techniques can be
used, such as ROAM (Duchaineau M. et all, 1997), geo-
Mipmapping (Willem H. 2000), and Geo-Clipmaps (Arul and
Hoppe, 2005), which are all compatible with our contour map
algorithm.

For contour lines, we have a few parameters. The Contour
interval stands for the elevation interval between adjacent

contour lines; Base elevation stands for the basic elevation for
contour lines, usually be zero; And the Contour Line Color,
which is set by users. These are set to the pipeline through
constant registers.

3. FIRST RENDERING PASS: THE GRADIENT MAP

In this pass, we take the vertex position as main input as well as
part of the contour line parameters. The GPU-program pseudo-
code is listed in Appendix A.

We first transform the vertex from local space to world space
with the local-to-world matrix, and then transform the world
coordinate into post-perspective space with the view-projection
matrix. The length of its absolute world-position was calculated
and subtracted by the WORLD_RADIUS constant, which was
introduced when setting up the terrain vertices, so we get the
elevation of the vertex. The process is much alike an inverse
process of terrain vertex data construction, and can be described
as follows:

E = length(V) – R (1)

where E = Elevation of vertex.

V = Vertex coord in world space, a 3D Vector.
R = Equatorial World Radius.
length() is a intrinsic function of gpu programs
that returns the length of a vector.

We store this value into a TEXCOORD component of the
vertex-program output, so that it will be interpolated linearly by
the rasterizer automatically, and we’ll get the correct elevation
for each pixel in the pixel program.

In the pixel program, we divide the elevation value of each
pixel by the contour interval, so that we get a gradient value
which increases by one linearly for each interval. Then we get
the floor of the value, so that it increases by one at the very
point where the contour lines exist (Equation 2 and Figure 1).

grad = floor(E / I) (2)

where grad = gradient value.
 I = Contour Interval.

Figure 1. Assuming contour interval as 100, the floored
gradient will be like this.

Figure 2. The visualized gradient buffer and its corresponding
final contour map

This value is output as one component of the pixel-program’s
output color, into a floating point buffer (render-target texture
in Direct3D or FBO in OpenGL) (Figure 2). The first pass is
then completed.

4. SECOND PASS: EDGE-DETECTING AND
BLENDING

The second pass is an image space procedure. It uses the
floating point render-target buffer containing the gradient
values as texture, to render a full-screen quad. The idea of full-
screen pass is very common in today’s 3D programs for special
effects such as blooming (Greg James et all. 2004) and HDR
lighting, and is relatively simple. For each pixel to draw, we
sample the gradient-map texture with coordinate corresponding
to the pixel itself and the pixels around it (Figure 3). Then
compare those gradient values, if the current gradient differs
from a neighbouring one, it indicates that there’s contour line
across between the two pixels, and we add a weight value for
the current pixel according to the distance between the two
pixels (Oles. 2005). At last, the sum weight is used as the alpha
value of the output color, whose RGB channels are written with
the line color which was set as contour line parameters. The
pixel is written onto the original scene with alpha-blending, so
that pixels without contour lines become transparent. The
pseudo-code of the pixel program is shown in Appendix B.

Figure 3. (Left) The sampled pixels, see Appendix B for
calculation of G(n) values. Notice that G0~G3 are with the
same weight value and G4~G7 are with another one. (Right) the
comparing of pixel’s gradient values. The four black lines show
difference in gradient value of sampled pixels.

5. RESULTS AND DISCUSSION

We ran our 3D digital-earth system on some PCs with DEM
and satellite image data downloaded from a remote map server
dynamically, and got the results (Appendix C) in interactive
frame-rates, which are measured with Fraps 2.9.6. The results
on different hardware platforms are listed in Table 1.

Platform No.1 No.2 No.3
Contour
map off

1071 fps 341 fps 189 fps

Contour
map on

542 fps 190 fps 88 fps

Detailed
configura

tion

Intel Core2 Q6600
2.4G

NVIDIA GTX280
1GB

3.25GB RAM

Intel Core2
E4600 2.4G

NVIDIA GeForce
8600 GT 256 MB

2GB RAM

Intel Core2
E8200 2.66G
ATI HD2400
XT 512MB
2GB RAM

Table 1. Frame-rates on different platforms.
From the table we can conclude that the most important issue
that influences the frame-rates is the GPU capability, since the
algorithm is CPU and RAM free. The frame-rates are stable, as
the calculation procedure does not change with contour line
parameters, so we get almost the same frame rate for a 200-
interval contour map and a dense 50-interval contour map.

Since the terrain was cut by the virtual plane of each elevation
grade, the resulting contour lines are guaranteed to be
topologically correct, no manual corrections are needed.

There are some improvements that can be taken. First one is the
geometry-edge artifacts, which occurs when geometry edges are
present in the scene. Since the gradient value between two
fragments of geometry can be different, it will be considered as
neighbouring gradient edge by the edge-detector and a contour
line weight will be added unexpectedly (Figure 4). To correct
this issue, we can render in the first pass a second value besides
gradient value, the distance between the viewer to the pixel, or
the Depth for short, into another color channel of the buffer.
Then in the second pass, we sample the Depth value as well as
the gradient value. If the differences of the Depth value between
two neighbouring pixels are larger than a barrier, it is
considered as geometry-edge rather than gradient-edge, so the
weight is ignored.

Figure 4. The geometry-edge artifacts. Notice the edge of near

mountains.

Second, the first pass can be integrated into the normal
rendering pass, with the help of MRTs (Multi-Render Targets).
So that we can save half of the draw calls, which will obviously
increase the frame-rate.

At last, contour line tags and labels can be added by reading the
gradient data back from the buffer. By API features such as
IDirect3DSurface9::LockRectangle() in Direct3D, we can easily
get the gradient data, then calculate the contour value with the
inverse process of the first pass. And show them on the map.

This method is easily implemented on most of consumers’
graphics hardware, which support DirectX 9 or OpenGL 2.0
with shader model 2.0 or higher. It can be applied on to various
terrain platforms, including both spherical digital-earth and
localized non-spherical scenes, even the 2D maps (for which a
single second pass is enough). Also, the generated contour map
can be saved to hard disk for future usage, with desired plotting
scale.
This method also enables a full dynamic ability to the terrain
system. Once the DEM data is changed, the new contour maps
will be displayed on the final image immediately, without any
kind of data pre-processing.

6. CONCLUSION

In this paper we presented an algorithm for reconstructing
contour map from raster DEM data for digital-earth and other
terrain platforms. With the power of programmable pipelines,
we make the elevation gradient map out of original terrain
vertex data, and the final contour lines with image-space
processing. The method was implemented and tested on
different PC platforms and proved to be efficient with real-time
frame-rates and high image quality. It can be easily modified
and extended for better image quality and broader applications.

REFERENCE

Arul and Hoppe., Terrain rendering using gpu-based geometry
clipmaps. GPU Gems 2. 2005,
http://developer.nvidia.com/object/gpu_gems_2_home.html

Duchaineau, M., Wolinski, M., Sigeti, D., Miller, M., Aldrich,
C., and Mineev-Weinstein, M. ROAMing Terrain: Real-time
Optimally Adapting Meshes.
http://www.llnl.gov/graphics/ROAM

Greg James. and John O’Rorke., Real-Time Glow. GPU Gems.
2004.

Oles Shishkovtsov., Deferred shading in S.T.A.L.K.E.R. GPU
Gems2. 2005.

Willem H. de Boer, Fast Terrain Rendering Using Geometrical
MipMapping, E-mersion Project, October 2000,
http://www.connectii.net/emersion.

ACKNOWLEDGEMENTS

Thanks to xtaci for the discussion on GPU programming and a
lot of fundamental work on the terrain engine and map server,
and HuangShan (Kingsoft co. Ltd) for providing us many useful
books and links. Thanks to Wang Gang (GeoBeans co. Ltd) for
providing map services. This work is also partly supported by
the MOST Program Grant 2009AA12Z215 and Grant
2008BAH23B04..

APPENDIX A. FIRST PASS GPU PROGRAMS

Vertex Program:

Constants:

float WORLD_RADIUS;
matrix matrixWorld;
matrix matrixViewProjection;

foreach Vertex do
{

float4 vertexWorldPosition = multiply (Vertex.Position, matrixWorld)
Output .Position as POSITION = multiply (vertexWorldPosition, matrixViewProjection);
Output .Elevation as TEXCOORD = length (vertexWorldPosition) – WORLD_RADIUS;
return Output ;

}

Pixel Program:

Constants:

float ContourInterval;
float BaseElevation;

foreach Pixel do
{

float grad = (Pixel .Elevation – BaseElevation) / ContourInterval;
float gradAsInteger = floor (grad);
return Color , gradAsInteger as the Red component ;

}

APPENDIX B. SECOND PASS PIXEL PROGRAM.

Pixel Program:

Constants:

float2 DeltaUV;
float3 LineColor;
float ColorBarrier = 0.5f;
float weight1 = some weight;
float weight2 = weight1 / 2;
Texture gradientMap;

foreach Pixel do
{

float GOrigin = sample (gradientMap, Pixel .Texcoord);
float G[8];

G[0] = sample (gradientMap, Pixel .Texcoord + float2 (0, DeltaUV.y));
G[1] = sample (gradientMap, Pixel .Texcoord + float2 (DeltaUV.x, 0));
G[2] = sample (gradientMap, Pixel .Texcoord + float2 (0, -DeltaUV.y));
G[3] = sample (gradientMap, Pixel .Texcoord + float2 (-DeltaUV.x, 0));

G[4] = sample (gradientMap, Pixel .Texcoord + DeltaUV);
G[5] = sample (gradientMap, Pixel .Texcoord – DeltaUV);
G[6] = sample (gradientMap, Pixel .Texcoord + float2 (DeltaUV.x, -DeltaUV.y));
G[7] = sample (gradientMap, Pixel .Texcoord - float2 (DeltaUV.x, -DeltaUV.y));

float alpha = 0;
foreach g in G[0] to G[3] do
{

if (abs (GOrigin – g) > ColorBarrier)
{

alpha += weight1;
}

}
foreach g in G[4] to G[7] do
{

if (abs (GOrigin – g) > ColorBarrier)
{

alpha += weight2;
}

}
return Color , LineColor as RGB, alpha as A;

}

APPENDIX C. IMAGE RESULTS.

(1) contour interval = 200

(2) contour interval = 100

(3) Contour interval = 50

