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ABSTRACT: 
 
The objective of this research is to perform automatic change detection within urban areas using multitemporal spaceborne SAR data 
in Shanghai. Two scenes of ENVISAT ASAR C-VV images were acquired in September, 2008 and one scene of ERS-2 SAR C-VV 
image was acquired in September, 1999.  A generalized version of Kittler Illingworth minimum-error thresholding algorithm, that 
takes into account the non-Gaussianity of SAR images, was tested to automatically classify the SAR ratio image into two classes, 
change and no change.  Two types of comparison operators were performed.  First, the conventional ratio image was calculated in a 
way that only increases in backscatter coefficient are detected. Second, a modified ratio operator that takes into accounts both 
positive and negative changes was also examined. Various probability density functions such as, Log normal, Generalized Gaussian, 
Nakagami ratio, and Weibull ratio were tested to model the distribution of the change and no change classes.  An iterative refinement 
of the Log normal model is also applied to improve the resolution of the change map. The preliminary results showed that this 
unsupervised change detection algorithm is very effective in detecting temporal changes in urban areas using SAR images. The best 
change detection result was obtained using Log normal model with modified ratio operator at 81.5%, which is over 10% high than 
that of the other three models tested.  The initial findings indicated that change detection accuracy varies depending on how the 
assumed conditional class density function fits the histograms of change and no change classes. 
 
 

1. INTRODUCTION 

Change detection techniques can be divided into two categories, 
supervised and unsupervised. Post-classification comparison is 
the most commonly used supervised change detection technique. 
This method has two main advantages: i) providing from/to 
change information and ii) all using multi-source, multi-
resolution data. The major disadvantage of this method is the 
high error probability due to the propagation of individual 
classification error.  
 
Unsupervised change detections, on the other hand, can be 
performed with no prior knowledge of the study area. The main 
drawbacks of this technique are i) providing no change type 
information, and ii) requiring data from the same or very similar 
sensors at anniversary or near-anniversary dates.  
 
Unsupervised change detection analysis normally involves two 
steps. First the multitemporal co-registered images are used to 
generate a change variable image that accentuates intensity in 
changed areas. Several operators have been tested among them 
is the image difference (ID) operator and its extension change 
vector analysis (CVA), which has been used extensively in the 
context of optical data. Recently in (Inglada & Mercier, 2007), 
Kullback-Leibler divergence/distance has also been suggested 
as a change indicator that measures distance between two 
probability density functions estimated locally. Regarding SAR 
data, the existence of multiplicative speckle noise makes the use 
of ID inappropriate instead image rationing is preferable for 
generating change variable image, since at least theoretically it 
has the important property of eliminating speckle noise. The 
second step is the automatic thresholding of the change variable 
image. Several thresholding algorithms were proposed 
including Kittler-Illingworth minimum error thresholding 

algorithm, Otsu’s algorithm, and Wang’s algorithm (Melgani & 
Moser, 2002). The most commonly used algorithm is the 
Kittler-Illingworth minimum error thresholding algorithm 
(Kittler & Illingworth, 1986). 
 
Multitemporal SAR images have been increasingly used in 
change detection studies due to SAR’s independent of 
atmospheric conditions and solar illumination and its unique 
information content. For examples, Ban & Hu (2007) 
investigated multitemporal RADARSAT-1 SAR for urban land-
cover mapping and change detection in the Greater Toronto 
Area using a supervised method. Bazi et al., (2005), performed 
unsupervised change detection by generalizing Kittler-
Illingworth minimum error thresholding algorithm to account 
for the non Gaussian distribution of SAR images. Bujor et al, 
(2003) investigated four different type of change variables 
computed from multitemporal SAR images for the purpose of 
change detection.   
 
With the launch of ESA’s ENVISAT ASAR, Canada’s 
RADARSAT-2 SAR, JAXA’s ALOS, PalSAR and DLR’s 
Terra SAR-X, multitemporal SAR data are routinely available 
worldwide, thus provide an excellent opportunity for change 
detection studies for many fast growing cities and regions in the 
world such as Shanghai, where frequent cloud-cover and smog 
make the acquisition of multi-temporal optical data difficult.  
Therefore, the objective of this research is to investigate 
multitemporal, single-frequency, single-polarization ENVISAT 
ASAR image and ERS-2 SAR image for change detection in 
Shanghai using unsupervised change detection algorithms. In 
this study, the conventional ratio operator as well as a modified 
version of this operator will be used and compared.   



 

2. STUDY AREA AND DATA DESCRIPTION 

Shanghai is located in the Yangtze River Delta, Eastern China. 
This flat and fertile plain is a highly productive agricultural area 
as well as an area upon which urban growth has rapidly taken 
place. Shanghai has the largest population (18,542,200 persons 
in 2007) among all Chinese cities, and the figure is forecasted to 
25 million by 2020. Shanghai's significant economic expansion 
and corresponding high rates of urbanization have brought rapid 
changes to this megacity's urban spatial structure and greatly 
increased the amount of stress, in the form of waste and 
pollutants, on the ecosystem (Zhang & Ban, 2009). 
 
Two scenes of ENVISAT ASAR C-VV images were acquired 
on 03/09/2008 and 19/09/2008 in order to cover Shanghai area. 
One scene of ERS-2 SAR image acquired on 07/09/1999, a 
near-anniversary date, was selected from the archived for 
change detection.   
 
 

3. METHODOLOGY 

3.1 Image Pre-processing 

3.1.1 Orthorectification of SAR data:  
A geocoded Landsat image was used as the reference image to 
register all the SAR images to WGS 84 datum with UTM 
projection. To remove relief displacement, all SAR images were 
orthorectified using a satellite orbital model and a SRTM DEM 
with 90m resolution. 
 
3.1.2 Speckle filtering:  
The existence of the multiplicative speckle noise in SAR images, 
affects the ability of the algorithm to separate change and no 
change classes. To maximize the discrimination capability 
between change and no change classes a pre-processing step is 
required to remove this noise in SAR images. Enhanced Lee 
filter with window size of 7x7 was used to remove the spackle 
noise. Experiment results show that two iterations of this filter 
will produce the best result in terms of the achievable accuracy.  
 
3.2 Unsupervised change detection 

3.2.1 Problem formulation:  
Let us assume that we have two co-registered multitemporal 
SAR amplitude images acquired at time t1 and t2 respectively:  
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Our purpose is to automatically find areas that have changed 
over time by comparing these two images on a pixel by pixel 
basis. For SAR images, the ratio operator is normally used to 
generate the change image variable since it will eliminate the 
speckle noise assuming that this noise is multiplicative and 
reproduced in repeat-pass images. This operator divides in a 
pixel by pixel basis image X2 by image X1 as given in (2). 
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According to Bujor et al, (2003), the ratio operator is suitable 
when it comes to detecting sharp changes such as those 
associated with urban areas. Adopting single threshold approach 
(Moser & Serpico, 2006), equation (2) implies that only pixels 
went through intensity increase over time will be detected. 
Those with change characterized by intensity decrease, however, 
will not be detected by the intended algorithm. The ratio 
operator in its current form is compatible with the purpose of 
this study, as we are mainly interested in new built up areas that 
increase intensity in SAR image due to multi corner reflection 
of SAR signal (Lillesand et al, 2007). 
 
A modified version of the ratio operator is also used in this 
study. This operator takes into account the relation between the 
amplitude in first and second date images and produces a ratio 
that is always greater than or equal to one as shown in (3). This 
operator turns out to be very effective in identifying changed 
areas using minimum error thresholding algorithm.  
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This operator transfer changed pixels with intensity decrease to 
the other side of the histogram as changed pixels due to 
intensity increase. The effect is similar to taking the absolute 
value of the differenced images. This operator has two 
important merits over the conventional ratio operator. First it 
increases the prior probability of change class by adding areas 
where the amplitude or intensity has decreased. This will also 
increase the size of the change class sample, and consequently, 
improve the histogram-based estimation of its conditional 
density function. 
 
3.2.2 Minimum error thresholding algorithm 
Unsupervised change detection can be viewed as a binary 
classification problem with only two possible states of nature 
(change and no change). If the prior probabilities and 
probability density functions of change and no change classes 
are known in advance, then Bayesian decision rule can be used 
to threshold the change variable into two possible classes in a 
way that minimizes the probability of classification error (Duda 
et al, 2001). However, in unsupervised change detection the 
above mentioned information is neither known nor can be 
directly estimated as no training data exists.  
 
Kittler & Illingworth, (1986) proposed an algorithm that 
simultaneously estimates the unknown probabilities and locates 
an optimum threshold r* that can be used to classify each pixel 
in the change image into one of two possible classes as shown 
in (4) below. 
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The statistical properties of the change image generated by 
applying the ratio operator given in (2) or (3), can be 
summarized by constructing a normalized histogram h(r) 
consisting of L quantization level. This histogram is a good 
approximation of the probability density of the ratio image p(r). 



 

According to total probability theorem this probability density 
p(r) is the result of the combination of two different populations 
(change and no change) as shown in (5). 
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Where P1 and P2 are the unknown prior probabilities of no 
change and change classes respectively, and p1(r), p2(r) are their 
unknown conditional density functions. 
    
Given an arbitrary selected threshold rT from all possible 
threshold values (T range from 1 to L) that divides the 
histogram into two classes it is possible to use each of these 
histogram sections to estimate the unknown probabilities. First 
the prior probabilities can be estimated simply from the 
normalized histogram using (6). 
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Histogram fitting techniques can then be used to estimate the 
unknown conditional density functions parameters assuming 
that their form is known. As for each possible value of the 
threshold rT (T range from 1 to L) there exists a new estimation 
of the unknown probabilities, Kittler & Illingworth, (1986), 
suggest selecting the threshold that minimizes the criterion 
function given in (7). 
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Where [i: 1, 2] refer to the no change and change classes. The 
threshold that minimizes the criterion function is the one that 
minimizes the probability of classification error. The rT 
appeared in the conditional density function and prior 
probability is used to emphasize that these are estimated for 
specific threshold value rT. 
 
In the original minimum error thresholding algorithm, both 
classes are assumed to have a Gaussian distribution. For SAR 
amplitude or intensity images this assumption no longer holds. 
Considering the fact that the accuracy of the methods depends 
on how accurate the statistical model fits the data, Moser & 
Serpico, (2006) suggested three probability density functions 
that can be used to model the distributions of no change and 
change classes. In (Bazi et al., 2005), a generalized version of 
the Gaussian model is used to model the logarithm of the 
intensity ratio image. These models and their parameter’s 
estimation techniques are going to be described in the next 
section. 
 
3.2.3 Statistical models 

3.2.3.1 Log normal distribution:  If a random variable is log 
normally distributed, then it is logarithm is normally distributed 
(Lindgren, 1968). Similar to Gaussian distribution this model is 
defined using two parameters as in (8). 
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Where [i: 1, 2] refer to no change and change classes 
respectively, φi and ξi

2 are the first and second order log 
cumulants defined in (9) for the class’s conditional density and r 
is the random variable. 
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The log normal distribution has the important property of fitting 
asymmetrical histogram, which makes it more flexible in 
modelling the distribution of change and no change classes. 

3.2.3.2 Weibull ratio model: assuming each of the 
multitemporal SAR amplitude images to have a Weibull 
distribution with the same shape parameter, Moser & Serpico, 
(2006) developed an expression for the probability density 
function of the SAR amplitude ratio image (10) that depends 
onto two parameters.  
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Where ηi and λi are the distribution parameters and the ratio r 
should be greater than 0. The unknown model’s parameters are 
estimated using the method of log cumulants which relate the 
unknowns to the first and second order log cumulants as in (11). 
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Where φi and ξi

2 are the first and second order log cumulants as 
defined in (9), and Ψ (,) is the digamma function.  
 
Although this development ignores the mathematical correlation 
between multitemporal amplitude images, this model proved to 
be useful in describing the class’s conditional density function. 

3.2.3.3 Nakagami ratio model: similar to Weibull ratio model, 
this model assumes that, each of the SAR amplitude images is 
Nakagami distributed with the same equivalent number of looks. 
Image correlation is ignored for simplicity. The probability 
density function of this model is given in (12). 
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Where Li, γi are the distribution parameters and Γ is Gamma 
function. The estimation of the model’s parameters is performed 
by solving equations (13) which relate the unknown model’s 
parameters to the first and second order log cumulants given in 
equation (9). 
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3.2.3.4 Generalized Gaussian model:  This model is a 
generalization of the normal distribution model, with one 
additional parameter that describes the shape. Varying the shape 
parameter, generalized Gaussian model can represent a large 
family of symmetrical distributions among which are the 
Gaussian, Laplacian and uniform distributions. Equation (14) 
shows the probability density function of the generalized 
Gaussian model. 
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Where µi and σi are the conventional mean and standard 
deviation, and αi is the shape parameter. The estimation of the 
first two parameters is straight forward, while the shape 
parameter can be estimated by the method described in (Sharifi 
& Leon-Garcia., 1995).  
 
In this work, this model is not going to be used with logarithm 
of the ratio of the intensity images as suggested by Bazi et al., 
(2005), but rather with the ratio of the amplitude images and the 
modified ratio image. In fact, taking the logarithm of the ratio 
image does not only scale the data, but also change its statistical 
distributional properties (Inglada & Mercier, 2007). 
  
3.3 Log normal improved solution 

When dealing with histogram based estimation of the unknown 
probability density functions, it is essential to consider two 
important issues. First the resolution and accuracy of the final 
change map will depend on the histogram’s bins size. The 
higher the number of bins the smaller is their sizes and the 
higher the accuracy of the final change map. On the other hand, 
high number of bins means that a lot of them will be empty, 
which will degrade the accuracy of the density function 
estimation. 
 
To overcome these problems, we suggest using an iterative 
solution to improve the final change map accuracy. This 
solution is based on the fact that using the correct model, there 
is a unique natural threshold that divides the change variable 
into two groups. The first solution is obtained by applying 
fitting techniques adopted in minimum error thresholding 
algorithm to the ratio image histogram. This solution will 
produce two groups of pixels attributed to change and no 
change classes. Due to the relatively coarse histogram’s bin size, 
these two classes are not pure and each of them contains pixels 
that should be classified on the other class if the correct 
threshold was selected. Let us consider the change and no 

change pixels resulted from the histogram based classification a 
good but not a perfect training sample for each class. These 
samples can be used to estimate the conditional density function 
parameters for each class in addition to their prior probabilities.  
 
Based on Bayesian decision theory (Duda et al, 2001), the best 
threshold is the one that satisfies equation (16) where, the 
classes are assumed to be log normally distributed with known 
parameters estimated from the training samples.  
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The only unknown in (16) is the ratio value r* that represents the 
best threshold between change and no change. Plugging 
equation (8) into (16) and taking the logarithm of both sides, we 
end up with the second order polynomial shown in equation (17) 
after some mathematical simplification. 
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The solution r* of equation (17) provides a better threshold to 
produce accurate binary change map. This new change and no 
change classes can then be used to estimate new prior 
probabilities and conditional density functions and locate a new 
threshold. The iterative solution continues until the threshold 
converges to a constant value. The last obtained threshold 
represents the natural separation between two groups of pixels 
that represent change and no change. It is important for this 
approach to converge that the statistical model used represents a 
perfect fit of the class’s distribution, otherwise the solution may 
not converge. Similar expression can also be developed for 
Weibull ratio, Nakagami ratio and generalized Gaussian models.  
 
This model presented above is especially useful when the 
numbers of pixels involved in the analysis are limited, since in 
this case the histogram will not be accurate in describing the 
statistical properties of the classes. It is an attempt to approach 
the solution obtained by manual try and error selection of the 
optimum threshold. 
 
3.4   Accuracy assessment 

To assess the accuracy, two Landsat images acquired in almost 
similar dates to SAR images, were used. The selection of the 
ground truth data was done by visual inspection of the Landsat 
images together with the SAR images.  
 
Three different types of samples were selected for accuracy 
assessment. The first is a sample of areas that did not change. 
The second and third group of samples was where a change 
characterized by backscatter increase and decrease respectively 
occurred. The selected sample covers small areas in comparison 



 

to the whole image areas. Therefore, the accuracy assessment 
result should be understood in a relative sense. 
 
  

4. RESULTS AND ANALYSIS 

4.1 Conventional ratio operator 

The detected changed areas are shown in yellow in Fig. 1 
overlaid in a false colour composite (Red: Date2, Green: Date1, 
Blue: Date2) for the generalized Gaussian, log normal, 
Nakagami ratio and Weibull ratio models respectively. Using 
the conventional ratio operator the algorithm was able to 
identify many changed areas where the backscatter coefficient 
has increased.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       (a)                                           (b) 
 
 
 
 
 
 
 
 
 
 
 
 
                     (c)                                           (d) 
 
Figure 1. Detected changed areas for the first dataset 
(conventional ratio) in yellow, overlaid in a false colour 
composite (Red: Date2, Green: Date1, Blue: Date2) (a) 
Generalized Gaussian. (b) Log normal. (c) Nakagami Ratio. (d) 
Weibull ratio model.  
 
The first graph in Fig. 2 shows a section of the ratio image 
histogram corresponding to the no change class. The symmetry 
and sharp peak of the distribution are evident. Visual inspection 
of Fig. 1 shows that the results under different models are 
almost the same with only slight differences. This also 
confirmed by the fact that under all models except for the 
Weibull ratio, the thresholds and change percentage shown in 
the first two rows of Table 1, are almost the same. This 
similarity is justifiable since all statistical models have the 
property of fitting sharp, symmetrical distributions. Despite this 
similarity, visual inspection of the change map and achieved 
accuracies indicate that the detection results are still not very 
good. 
 
The analysis of the accuracy assessment results in Table 2 
reveals more detailed information. The first row in this table 
shows the overall detection accuracy including areas where 

change is characterized by backscatter coefficient decrease. The 
accuracy in this raw is low since the algorithm missed detect 
areas with intensity decrease owing to the way in which the 
ratio image was constructed.  
 
 
 
 
 
 
€ 
 
 
 
 
Figure 2. (a) Histogram of the ratio image. (b) Histogram of the 
modified ratio image. 
 
 

Models GG Model LN Model NR Model WR Model

Threshold                        
(Ratio Operator)

1.628 1.604 1.604 1.723

Detected Change %          
(Ratio Operator)

1.35% 1.48% 1.48% 0.99%

Threshold                  
(Modified Ratio)

1.269 1.395 1.382 1.467

Detected Change % 
(Modified Ratio)

10.54% 4.62% 4.45% 2.70%
 

 
Table 1. Percentage of detected change and selected thresholds 
for all models using the ratio and modified ratio operator. 
 
Focusing in detection accuracy in areas with intensity increase 
shown in the fourth raw, the algorithm achieved the highest 
accuracy under log normal and Nakagami ratio models, whereas 
its performance with the other two models was slightly lower. 
The false alarm rates are small and have the same value for the 
first three models, while for Weibull distribution the false alarm 
rate was smaller, which is caused by the lower detection 
accuracy.  
 
 

 

Model GG Model LN Model NR Model WR Model

Detection Accuracy % 66.10 66.90 66.90 63.73

False Alarm % 0.40 0.40 0.40 0.24

Missed Change % 33.90 33.10 33.10 36.27

Intensity Increase Detection % 88.90 89.99 89.99 85.72

Intensity Decrease Detection % 0.00 0.00 0.00 0.00  
 

Table 2. Accuracy achieved using ratio operator 
 
The missed change rates are very high under all models due to 
two possible reasons. First based on the structure of the ratio 
operator, the algorithm did not locate any areas with intensity 
decrease, which is expected. The second reason for the high 
missed change rates is the fact that the size and consequently, 
the prior probability of areas with intensity increase are small in 
comparison to that of no change class. As explained in Duda et 
al, (2001), the classification will strongly be affected by big 
differences in prior probabilities of classes. This small size of 
the change class may also affect the accurate estimation of its 
conditional density function and as matter of fact the accurate 
determination of the threshold.  
 
4.2 Modified ratio operator 

Using the modified ratio operator the performance of the 
algorithm improved significantly. Fig. 3 shows the detected 



 

changed areas (using modified ratio operator) in yellow overlaid 
in a false colour composite (Red: Date2, Green: Date1, Blue: 
Date2) for generalized Gaussian, log normal, Nakagami ratio 
and Weibull ratio models respectively. Visually comparing Fig. 
3 with Fig. 1 it is clear that with this operator the performance 
improved significantly and the algorithm identified more areas 
as change than under the conventional ratio operator. This 
conclusion is also reflected in accuracy assessment result shown 
in Table 3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       (a)                                           (b) 
 
 
 
 
 
 
 
 
 
 
 
                      
                     (c)                                           (d) 
 
Figure 3. Detected changed areas for the first dataset (Modified 
ratio) in yellow, overlaid in a false colour composite (Red: 
Date2, Green: Date1, Blue: Date2). (a) Generalized Gaussian. (b) 
Log normal. (c) Nakagami Ratio. (d) Weibull ratio model.  
 
 
Using log normal model to describe class’s distribution, Fig. 4 
show side by side the change detection result for a portion of the 
second dataset using the ratio image (a), and modified ratio 
image (b). To the right of the image is Pudong international 
airport where a lot of new asphaltic manoeuvring areas have 
been constructed.  Under the ratio image, the algorithm missed 
detects all these new areas. However using the modified ratio 
image all new manoeuvring areas were correctly identified. 
 
A good improvement in the detection accuracy occurred under 
all models (Table 3). This improvement occurred because the 
modified operator increases the prior probability of the change 
class compared with the conventional operator. Additionally 
this increase in size of the change class adds more diversity to 
its sample and enhances the estimation of its conditional density 
function and consequently, improves the detection accuracy.  
 
The fourth raw in Table 3 shows the improvement in the 
detection in areas where the intensity has increased. A visual 
comparison between Fig. 1 and Fig. 3 indicates that the 
improvement in detection accuracy is even better than the one 
reflected in Table 3. The slight increase in false alarm rate can 
easily be attributed to increase in detection accuracy. For the log 

normal model the missed change rate reduced significantly 
compared with the first result using the conventional ratio 
operator. While under other models the high missed change rate 
stay almost the same.  
 
The second graph of Fig. 2 focuses in the no change class part 
of the histogram of the modified ratio image. This class’s 
histogram is asymmetric as a result of the way the modified 
ratio image is calculated. Definitely symmetrical distributions as 
the generalized Gaussian model are not going to fit this 
histogram. This is confirmed by the high false alarm rate, high 
missed change rate, visual inspection and the excessively 
identified percentage of change under this model shown in the 
fourth row of Table 1.  
 
The log normal and Nakagami ratio distributions has the ability 
to fit asymmetrical data. The detection accuracy in intensity 
increased areas and the false alarm rates for these tow model are 
the same. However, log normal model outperformed the 
Nakagami ratio model as it achieved a considerably smaller 
missed change rate. The Weibull ratio performance is also poor 
as it underdetermined changed areas. 
 
 

      
             (a)                                             (b) 
 
Figure 4. Detected changed areas for a portion of the second 
dataset in yellow, overlaid in a false colour composite (Red: 
Date2, Green: Date1, Blue: Date2). (a) Ratio image and Log 
normal model. (b) Modified ratio image and log normal model. 
 
Considering the modified ratio operator the algorithm was 
supposed to be able to discover changed areas with intensity 
decrease too. Nevertheless, this was not the case as the detection 
accuracy is zero under all models except for the log normal 
model which gives a detection accuracy mounted up to 47%.  
The main reason for this frustrating result is that, the intensity of 
change as reflected in the change image is very low in areas 
with backscatter coefficient decrease compared to that in areas 
with backscatter coefficient increase.  
 
 

Model GG Model LN Model NR Model WR Model

Detection Accuracy % 71.28 81.49 69.77 68.91

False Alarm % 4.02 1.05 1.05 0.80

Missed Change % 28.72 18.51 30.23 31.09

Intensity Increase Detection % 95.87 93.50 93.84 92.69

Intensity Decrease Detection % 0.00 46.67 0.00 0.00  
 

Table 3. Accuracy achieved using modified ratio operator 
 
Although the detection of changed areas where the intensity 
decreased has failed, the algorithm accuracy for the other areas 
has increased significantly. This improvement is in accordance 
with the intention of this paper that focuses on new urban areas.  



 

4.3 Log normal improved solution 

Using the correct statistical model for change and no change 
classes, there is a natural unique threshold that separates these 
two classes. Since it proves to be the best in describing their 
statistical properties, the log normal was chosen to model 
change and no change classes for the iterative solution using the 
modified ratio image.  
 
The first and third graphs in Fig. 5 show the variation in false 
alarm rate versus iterations for the first and second datasets 
respectively. The false alarm rate stays constant in the first 
dataset due to the bigger image size and consequently, the 
accurate histogram representation. For the second smaller size 
dataset the histogram is not as representative as in the first one. 
Therefore, the false alarm reduced dramatically emphasizing the 
improvement in the separation between the change and no 
change classes as we iterate.  
 
Graph (b) and (d) in Fig. 5 show the variation of the threshold 
value versus iterations for the first and second datasets 
respectively. The graphs show how the threshold quickly 
converges to constant values after little iterations. This constant 
value is the natural threshold between the two classes of interest.  
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Figure 5, (a) Variation in false alarm and (b) Variation in 
threshold for the first data set. And the same variation for the 
second data set in (c) and (d).  
 
Unfortunately, this approach does not converge under other 
statistical models confirming the suitability of the lognormal 
model in this particular case study over other models.  
 
 

5. CONCLUSION 

In this paper, the effectiveness of the minimum error 
thresholding algorithm in identifying changes was evaluated. 
The preliminary results showed that change detection using Log 
normal model with modified ratio operator achieved the best 
accuracy (81.5%) and the areas characterized by backscatter 
coefficient increase, i.e., from non-builtup to builtup areas, can 

be detected with 93.5%. Further, the modified ratio approach 
significantly improved the detection accuracy in intensity 
increase areas and to some extent in those with intensity 
decrease. 
 
There are two important issues to be considered when applying 
unsupervised change detection using minimum error 
thresholding algorithm. First the statistical models to be used 
should be able to accurately describe the statistical properties of 
the class’s distribution. In this work, four different statistical 
models have been tested. Among them the log normal proved to 
be the best. This does not mean that log normal will perform 
well in other similar change detection studies. In fact, results 
reported from similar studies showed that all the above-
mentioned models could produce very good results. This large 
number of proposed models indicates the need of a global 
model that can fit different type of data with different statistical 
properties. Another possibility to improve the solution is to use 
two different models for the change and no change classes 
instead of using the same single model for both of them. 
 
The second issue is the operator used to compare the 
multitemporal image and generate the change image. This 
research showed that the modified ratio operator significantly 
improved the accuracy of the change detection. A variable that 
takes into account the local context combined with the global 
threshold determination of this algorithm could perform even 
better.  
 
An improved solution that overcomes the limitations of the 
histogram-based selection of an optimum threshold is also 
introduced in this paper. This approach requires the probability 
model to be perfect in representing the distribution of the 
classes. The quick convergence rate of the threshold to a 
constant value, confirms the existence of a unique separation 
value that divides the change image into two classes. 
Experiment results showed that this approach was more 
effective with smaller size images and consequently smaller 
sample size where the histogram is not so accurate in 
representing the statistical properties of the classes.  

 

REFERENCES  

Ban, Y. and H. Hu, 2007. Multitemporal RADARSAT-1 Fine-
Beam SAR Data for Land-Cover Mapping and Change 
Detection.  Proceedings, Urban Remote Sensing Joint Event. 
Paris, France. 

Bazi, Y., Bruzzone, L., and Melgani, F., 2005. An unsupervised 
approach based on the generalized Gaussian model to automatic 
change detection in multitemporal SAR images.  IEEE Trans on 
Geoscience and Remote Sensing, 43(4), pp. 874-887 

Bujor, F., Nicolas, J-M., Trouve, E., and Rudant, J-P., 2003. 
Application of Log-cumulants to change detection in multi-
temporal SAR images.  IEEE Trans on Geoscience and Remote 
Sensing, 2, pp. 1386-1388. 

Duda, R., Hart, P., and Stork, D. 2001. Pattern classification. 
John Wiley & Sons, Inc, China machine press. 

Inglada, J. and Mercier, G., 2007. A new statistical similarity 
measure for change detection in multitemporal SAR images and 
its extension to multiscale change analysis.  IEEE Trans on 
Geoscience and Remote Sensing, 45(5), pp. 1432-1445. 



 

Kittler, J., and Illingworth J., 1986. Minimum error thresholding.  
Pattern recognition, 19(1), pp. 41-47. 

Lillesand, T., Kiefer, R., and Chipman, J., 2007. Remote 
Sensing and Image Interpretation. John Wiley & Sons, Inc, 
USA. 

Lindgren, B. W., 1968. Statistical theory.  Collier-Macmillan, 
London. 

Melgani, F. and Moser, G., 2002. Unsupervised change-
detection methods for remote-sensing images.  Optical 
engineering, 41(12), pp. 3288-3297. 

Moser, G. and Serpico Sebastiano, B., 2006. Generalized 
Minimum-Error Thresholding for Unsupervised Change 
Detection from SAR Amplitude Imagery.  IEEE Trans on 
Geoscience and Remote Sensing, 44(10), pp. 2972-2982. 

Sharifi, K. and Leon-Garcia, A., 1995. Estimation of shape 
parameter for generalized Gaussian distribution in subband 
decomposition of video.  IEEE Trans on circuit and systems for 
video technology, 5(1), pp. 52-56. 

Zhang, Q., Y. Ban., Y. Hu and J. Liu. 2009. The Trajectories of 
Urban Land and Industrial Land in Shanghai over the Past 30 
Years.  Proceedings, Urban Remote Sensing Joint Event.  
Shanghai, China. 

 


