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ABSTRACT:

The objective of this research is to perform auticreghange detection within urban areas using teuftporal spaceborne SAR data
in Shanghai. Two scenes of ENVISAT ASAR C-VV imagese acquired in September, 2008 and one scenBRSfESAR C-VV
image was acquired in September, 1999. A genethNersion of Kittler lllingworth minimum-error tesholding algorithm, that
takes into account the non-Gaussianity of SAR images tested to automatically classify the SAR ratiage into two classes,
change and no change. Two types of comparisoratipsrwere performed. First, the conventionabratiage was calculated in a
way that only increases in backscatter coefficierg detected. Second, a modified ratio operatdr tdiees into accounts both
positive and negative changes was also examinaibusprobability density functions such as, Logmal, Generalized Gaussian,
Nakagami ratio, and Weibull ratio were tested taleidhe distribution of the change and no changssels. An iterative refinement
of the Log normal model is also applied to imprdkie resolution of the change map. The preliminasults showed that this
unsupervised change detection algorithm is vemycéffe in detecting temporal changes in urban ausagy SAR images. The best
change detection result was obtained using Log abmodel with modified ratio operator at 81.5%, @his over 10% high than
that of the other three models tested. The infiraings indicated that change detection accuramyes depending on how the

assumed conditional class density function fitsitiseograms of change and no change classes.

1. INTRODUCTION

Change detection techniques can be divided intocategories,
supervised and unsupervised. Post-classificationpapison is
the most commonly used supervised change detetetitmique.
This method has two main advantages: i) providiramfto

change information and ii) all using multi-sourceulti-

resolution data. The major disadvantage of thishogtis the
high error probability due to the propagation ofliuidual

classification error.

Unsupervised change detections, on the other head, be
performed with no prior knowledge of the study afBlae main
drawbacks of this technique are i) providing no ndea type
information, and ii) requiring data from the samevery similar
sensors at anniversary or near-anniversary dates.

Unsupervised change detection analysis normallglies two
steps. First the multitemporal co-registered imagesused to
generate a change variable image that accentustssity in
changed areas. Several operators have been tested) ahem
is the image difference (ID) operator and its estem change
vector analysis (CVA), which has been used extehsivethe
context of optical data. Recently in (Inglada & Mer¢c2007),
Kullback-Leibler divergence/distance has also bseggested
as a change indicator that measures distance hetivee
probability density functions estimated locally. Retjng SAR
data, the existence of multiplicative speckle nomskes the use
of ID inappropriate instead image rationing is prable for
generating change variable image, since at leastrefically it
has the important property of eliminating specktésa. The
second step is the automatic thresholding of tleegh variable
image. Several thresholding algorithms were progose
including Kittler-lllingworth minimum error threskding

algorithm, Otsu’s algorithm, and Wang’s algorithivte{gani &
Moser, 2002). The most commonly used algorithm he t
Kittler-lllingworth  minimum error thresholding algthm
(Kittler & lllingworth, 1986).

Multitemporal SAR images have been increasingly used
change detection studies due to SAR’s independent of
atmospheric conditions and solar illumination atsl tunique
information content. For examples, Ban & Hu (2007)
investigated multitemporal RADARSAT-1 SAR for urbanda
cover mapping and change detection in the Greabteonio
Area using a supervised method. Bezal., (2005), performed
unsupervised change detection by generalizing efittl
lllingworth minimum error thresholding algorithm tccount
for the non Gaussian distribution of SAR images. Bgjoal,
(2003) investigated four different type of changariables
computed from multitemporal SAR images for the psgpof
change detection.

With the launch of ESA's ENVISAT ASAR, Canada’s
RADARSAT-2 SAR, JAXA's ALOS, PalSAR and DLR’s
Terra SAR-X, multitemporal SAR data are routinelaitable
worldwide, thus provide an excellent opportunity fthange
detection studies for many fast growing cities eegions in the
world such as Shanghai, where frequent cloud-caxmdr smog
make the acquisition of multi-temporal optical dakfficult.
Therefore, the objective of this research is toesiigate
multitemporal, single-frequency, single-polarizatiENVISAT
ASAR image and ERS-2 SAR image for change detection in
Shanghai using unsupervised change detection Higmi In
this study, the conventional ratio operator as aelh modified
version of this operator will be used and compared.



2. STUDY AREA AND DATA DESCRIPTION

Shanghai is located in the Yangtze River Delta, éasChina.
This flat and fertile plain is a highly productiagricultural area
as well as an area upon which urban growth hasllyamken
place. Shanghai has the largest population (18882persons
in 2007) among all Chinese cities, and the figurfeliscasted to
25 million by 2020. Shanghai's significant econoexpansion
and corresponding high rates of urbanization hawadht rapid
changes to this megacity's urban spatial strucame greatly
increased the amount of stress, in the form of evasid
pollutants, on the ecosystem (Zhang & Ban, 2009).

According to Bujoret al, (2003), the ratio operator is suitable
when it comes to detecting sharp changes such @se th
associated with urban areas. Adopting single tlodsipproach
(Moser & Serpico, 2006), equation (2) implies tbaty pixels
went through intensity increase over time will betedted.
Those with change characterized by intensity deerdaowever,
will not be detected by the intended algorithm. Tiaio
operator in its current form is compatible with therpose of
this study, as we are mainly interested in newtlhwglareas that
increase intensity in SAR image due to multi conredlection
of SAR signal (Lillesandt al, 2007).

A modified version of the ratio operator is alscedidn this

Two scenes of ENVISAT ASAR C-VV images were acquiredstudy. This operator takes into account the refatietween the

on 03/09/2008 and 19/09/2008 in order to cover §hanarea.

amplitude in first and second date images and mesla ratio

One scene of ERS-2 SAR image acquired on 07/09/1899, that is always greater than or equal to one as shoy8). This

near-anniversary date, was selected from the adhifor
change detection.

3. METHODOLOGY

3.1 ImagePre-processing
3.1.1 Orthorectification of SAR data:

A geocoded Landsat image was used as the refensage to

operator turns out to be very effective in identify changed
areas using minimum error thresholding algorithm.

For each pixek! X}
i xJ X! ®
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register all the SAR images to WGS 84 datum with UTMThis operator transfer changed pixels with intgndiécrease to

projection. To remove relief displacement, all SARages were
orthorectified using a satellite orbital model amn&RTM DEM
with 90m resolution.

3.1.2 Specklefiltering:

The existence of the multiplicative speckle nois&AR images,
affects the ability of the algorithm to separatamfe and no
change classes. To maximize the discrimination lméifya
between change and no change classes a pre-prarsssp is
required to remove this noise in SAR images. Enténiae
filter with window size of 7x7 was used to remote tspackle
noise. Experiment results show that two iteratiohghis filter
will produce the best result in terms of the achi#e accuracy.

3.2 Unsupervised change detection

3.21 Problem formulation:
Let us assume that we have two co-registered mmigoral
SAR amplitude images acquired at timpand § respectively:

X1={xf,i 1-n,j:1-m}

1)

X, :{xg,i 1-n,j:1-m}

Our purpose is to automatically find areas thatehekianged
over time by comparing these two images on a piyepixel
basis. For SAR images, the ratio operator is nogmaded to
generate the change image variable since it withinhte the
speckle noise assuming that this noise is multfiie and
reproduced in repeat-pass images. This operatodedivin a
pixel by pixel basis image Yby image X as given in (2).

X )

25|

Where Rz{rij == :Fnj :}m}

the other side of the histogram as changed pixels t

intensity increase. The effect is similar to takithg absolute
value of the differenced images. This operator tas

important merits over the conventional ratio oparafFirst it

increases the prior probability of change classatiging areas
where the amplitude or intensity has decreaseds Wl also

increase the size of the change class sample, arsguently,
improve the histogram-based estimation of its ciomkl

density function.

3.22 Minimum error thresholding algorithm
Unsupervised change detection can be viewed asnarybi
classification problem with only two possible st nature
(change and no change). If the prior probabilitiesd
probability density functions of change and no gwaglasses
are known in advance, then Bayesian decision ruiebeaused
to threshold the change variable into two possiltdsses in a
way that minimizes the probability of classificatierror (Duda
et al, 2001). However, in unsupervised change detedtien
above mentioned information is neither known non d&
directly estimated as no training data exists.

Kittler & lllingworth, (1986) proposed an algorithnthat
simultaneously estimates the unknown probabilitied locates
an optimum threshold that can be used to classify each pixel
in the change image into one of two possible classeshown
in (4) below.

Ifr,<r

Then;r - No Change Cle )

Else ;r - Change Class

The statistical properties of the change image geee by
applying the ratio operator given in (2) or (3),ncée
summarized by constructing a normalized histogran) h
consisting of L quantization level. This histograsna good
approximation of the probability density of theioaitnage p(r).



According to total probability theorem this probéidensity
p(r) is the result of the combination of two diffet populations
(change and no change) as shown in (5).

p(r) = Ppy(r) + P,p,(r) (5)

Where R and B are the unknown prior probabilities of no
change and change classes respectively, gnd p(r) are their
unknown conditional density functions.

Given an arbitrary selected threshold from all possible
threshold values (T range from 1 to L) that dividéee
histogram into two classes it is possible to useheaf these
histogram sections to estimate the unknown proibiaisil First
the prior probabilities can be estimated simplynfrahe
normalized histogram using (6).

Pl:ih(r) and P, = ih(]

r=n

(6)

=

Histogram fitting techniques can then be used tomese the
unknown conditional density functions parametersuasng
that their form is known. As for each possible ealof the
threshold § (T range from 1 to L) there exists a new estinmatio
of the unknown probabilities, Kittler & Illingworth(1986),
suggest selecting the threshold that minimizes dhigerion
function given in (7).

‘](rT) :_z

i=1,2

{F{(rT).In Pi(rT)+Zh(r).In P (r/rT)} (7)

Where [i: 1, 2] refer to the no change and charlgsses. The
threshold that minimizes the criterion functiontli® one that
minimizes the probability of classification errofhe F
appeared in the conditional density function andorpr
probability is used to emphasize that these arnenatdd for
specific threshold valug-r

In the original minimum error thresholding algorith both
classes are assumed to have a Gaussian distrib&oorSAR
amplitude or intensity images this assumption mmér holds.
Considering the fact that the accuracy of the mettaebends
on how accurate the statistical model fits the [d&aser &
Serpico, (2006) suggested three probability deniihctions
that can be used to model the distributions of hange and
change classes. In (Bagti al., 2005), a generalized version of
the Gaussian model is used to model the logarittinthe
intensity ratio image. These models and their pataris
estimation techniques are going to be describethén next
section.

3.23 Statistical models

3.2.3.1 Log normal distribution: If a random variable is log
normally distributed, then it is logarithm is noidigadistributed

(Lindgren, 1968). Similar to Gaussian distributibiis model is
defined using two parameters as in (8).

2y 1 _(Inr_¢i)2
p(r/¢i1< )_r{imex{ 252 ] (8)

Where [ii 1, 2] refer to no change and change ekss
respectively,; and éiz are the first and second order log
cumulants defined in (9) for the class’s conditiatensity and r
is the random variable.

Zh(r)lnr

$=F—— P "
Zh(f)ﬂn r-¢,1°

";iz = i P

The log normal distribution has the important prpef fitting
asymmetrical histogram, which makes it more flexitih
modelling the distribution of change and no charigsses.

3.23.2 Weibull ratio modd: assuming each of the
multitemporal SAR amplitude images to have a Weibull
distribution with the same shape parameter, Moseegpico,
(2006) developed an expression for the probabiignsity
function of the SAR amplitude ratio image (10) tligpends
onto two parameters.

-t
X Y= A" ——— 10
p(r/,7| ,/]I) ,71/1I (/]im + 1 )2 (10)

Wheremn; and’; are the distribution parameters and the ratio r
should be greater than 0. The unknown model’s petens are
estimated using the method of log cumulants whalhte the
unknowns to the first and second order log cumaslastin (11).
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Whereg; andéi2 are the first and second order log cumulants as
defined in (9), and¥ (,) is the digamma function.

Although this development ignores the mathematoalelation
between multitemporal amplitude images, this mquelred to
be useful in describing the class’s conditionalsitgrfunction.

3.2.3.3 Nakagami ratio model: similar to Weibull ratio model,
this model assumes that, each of the SAR amplitodegés is
Nakagami distributed with the same equivalent nunolbéooks.
Image correlation is ignored for simplicity. Theopability
density function of this model is given in (12).

_or(L) yhrtt

i /L"i T2 2y 2L 12
p(r/L, 1) PL) () (12)




Where L, y; are the distribution parameters ands Gamma
function. The estimation of the model’s parameiefgerformed
by solving equations (13) which relate the unknowvadel's
parameters to the first and second order log cumsliigiven in
equation (9).

Iny , W(A,.L)
) =71 , & = Y17 13
¢, > é > (13)
3.2.34 Generalized Gaussian model:  This model is a

generalization of the normal distribution model,thwione
additional parameter that describes the shape.ifvathie shape
parameter, generalized Gaussian model can represéarge
family of symmetrical distributions among which athe
Gaussian, Laplacian and uniform distributions. Higua(14)
shows the probability density function of the getieed
Gaussian model.

p(r/ 4,07 ,a)=a exp[ - 6| r- 4] f' | (14)

:bii , |b-%_

Where @
or(h) g
ai

Where ; and o; are the conventional mean and standard
deviation, andy; is the shape parameter. The estimation of the

first two parameters is straight forward, while tisbape
parameter can be estimated by the method desdnb@harifi
& Leon-Garcia., 1995).

In this work, this model is not going to be usedhwogarithm
of the ratio of the intensity images as suggeste®éwi et al.,
(2005), but rather with the ratio of the amplitudeges and the
modified ratio image. In fact, taking the logaritrohthe ratio
image does not only scale the data, but also chiémgaatistical
distributional properties (Inglada & Mercier, 2007)

3.3 Lognormal improved solution

When dealing with histogram based estimation ofuhlenown
probability density functions, it is essential tonsider two
important issues. First the resolution and accurcthe final
change map will depend on the histogram’s bins. sizee
higher the number of bins the smaller is their siaed the
higher the accuracy of the final change map. Orother hand,
high number of bins means that a lot of them wél émpty,
which will degrade the accuracy of the density fiorc
estimation.

To overcome these problems, we suggest using aativie
solution to improve the final change map accurathis

solution is based on the fact that using the comexdel, there
is a unique natural threshold that divides the gkawariable
into two groups. The first solution is obtained hpplying
fitting techniques adopted in minimum error thrdding

algorithm to the ratio image histogram. This santiwill

produce two groups of pixels attributed to changel ao
change classes. Due to the relatively coarse hetadg bin size,
these two classes are not pure and each of thetaigsmpixels
that should be classified on the other class if toerect
threshold was selected. Let us consider the chamge no

change pixels resulted from the histogram basesbifieation a
good but not a perfect training sample for eactssclahese
samples can be used to estimate the conditionaitgidanction
parameters for each class in addition to theirrgiobabilities.

Based on Bayesian decision theory (Detlal, 2001), the best
threshold is the one that satisfies equation (16gre, the
classes are assumed to be log normally distribwitd known
parameters estimated from the training samples.

Plpl(r* /¢1:<(§) = Pzpz(r* 19, 22) (16)

The only unknown in (16) is the ratio valuehat represents the
best threshold between change and no change. Riuggi
equation (8) into (16) and taking the logarithmboth sides, we
end up with the second order polynomial shown imagign (17)
after some mathematical simplification.

a[ln r ]2 +b[|n r } +c=0 17)
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The solution T of equation (17) provides a better threshold to
produce accurate binary change map. This new chandeno
change classes can then be used to estimate new pri
probabilities and conditional density functions dochte a new
threshold. The iterative solution continues untié tthreshold
converges to a constant value. The last obtaineestild
represents the natural separation between two grotipixels
that represent change and no change. It is impoftanthis
approach to converge that the statistical moded vspresents a
perfect fit of the class’s distribution, otherwibe solution may
not converge. Similar expression can also be deeeldfor
Weibull ratio, Nakagami ratio and generalized Gaurssnodels.

This model presented above is especially useful nwiie

numbers of pixels involved in the analysis are t@dj since in
this case the histogram will not be accurate ircdieimg the

statistical properties of the classes. It is ammapt to approach
the solution obtained by manual try and error s$&lacof the

optimum threshold.

3.4  Accuracy assessment

To assess the accuracy, two Landsat images acquidchost
similar dates to SAR images, were used. The setedfahe
ground truth data was done by visual inspectiothefLandsat
images together with the SAR images.

Three different types of samples were selectedafmuracy
assessment. The first is a sample of areas thatadi¢hange.
The second and third group of samples was wherbaage
characterized by backscatter increase and decresgectively
occurred. The selected sample covers small arez@mparison



to the whole image areas. Therefore, the accurasgsament
result should be understood in a relative sense.

4. RESULTSAND ANALYSIS
4.1 Conventional ratio operator

The detected changed areas are shown in yellowign
overlaid in a false colour composite (Red: DateZe@r Datel,
Blue: Date2) for the generalized Gaussian,

Nakagami ratio and Weibull ratio models respectivélsing
the conventional ratio operator the algorithm wadsde ato
identify many changed areas where the backscattfficient
has increased.

Figure 1. Detected changed areas for the first sdata
(conventional ratio) in yellow, overlaid in a falseolour
composite (Red: Date2, Green: Datel, Blue: Date2) (.
Generalized Gaussian. (b) Log normal. (c) NakadRatio. (d)
Weibull ratio model.

The first graph in Fig. 2 shows a section of thgoramage
histogram corresponding to the no change class.syhenetry
and sharp peak of the distribution are evidentudlisnspection
of Fig. 1 shows that the results under differentdels are
almost the same with only slight differences. Thitso
confirmed by the fact that under all models excipt the
Weibull ratio, the thresholds and change percensigavn in
the first two rows of Table 1, are almost the sarbis
similarity is justifiable since all statistical meld have the
property of fitting sharp, symmetrical distributorDespite this
similarity, visual inspection of the change map auhieved
accuracies indicate that the detection resultsstililenot very
good.

The analysis of the accuracy assessment resulfBalie 2
reveals more detailed information. The first rowtims table
shows the overall detection accuracy including sredere

log nbrma, © o

change is characterized by backscatter coefficlentease. The
accuracy in this raw is low since the algorithm sei$ detect
areas with intensity decrease owing to the way hiclv the

ratio image was constructed.

\
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Figure 2. (a) Histogram of the ratio image. (b)tbiigam of the
modified ratio image.

Models GG Model LN Model NR Model | WR Model

Threshold
(Ratio Operator)
Detected Change %
(Ratio Operator)
Threshold
(Modified Ratio)
Detected Change %
(Modified Ratio)

1.628 1.604 1.604 1.723

1.35% 1.48% 1.48% 0.99%

1.269 1.395 1.382 1.467

10.54% 4.62% 4.45% 2.70%

Table 1. Percentage of detected change and selértsholds
for all models using the ratio and modified ratfeoator.

Focusing in detection accuracy in areas with irtgriscrease
shown in the fourth raw, the algorithm achieved tighest
accuracy under log normal and Nakagami ratio moaéiereas
its performance with the other two models was $lygtower.

The false alarm rates are small and have the saine for the
first three models, while for Weibull distributidhe false alarm
rate was smaller, which is caused by the lower diete
accuracy.

NR Model
66.90

WR Model
63.73

LN Model
66.90

GG Model
66.10

Model

Detection Accuracy %

False Alarm % 0.40 0.40 0.40 0.24

33.90
88.90

33.10
89.99

33.10
89.99

36.27
85.72

Missed Change %

\ntensity Increase Detection %
7

0.00 0.00 0.00 0.00

Intensity Decrease Detection %

Table 2. Accuracy achieved using ratio operator

The missed change rates are very high under aletaatiie to
two possible reasons. First based on the struafitbe ratio

operator, the algorithm did not locate any areath witensity

decrease, which is expected. The second reasothdohigh

missed change rates is the fact that the size ansequently,
the prior probability of areas with intensity inase are small in
comparison to that of no change class. As explainddluda et
al, (2001), the classification will strongly be edfed by big
differences in prior probabilities of classes. Thimall size of
the change class may also affect the accurate astimof its

conditional density function and as matter of fae accurate
determination of the threshold.

4.2 Modified ratio operator

Using the modified ratio operator the performande thee
algorithm improved significantly. Fig. 3 shows tletected



changed areas (using modified ratio operator) iloweoverlaid
in a false colour composite (Red: Date2, Green: DaBiue:
Date2) for generalized Gaussian, log normal, Nakagatio
and Weibull ratio models respectively. Visually quaring Fig.
3 with Fig. 1 it is clear that with this operattwetperformance
improved significantly and the algorithm identifiedore areas
as change than under the conventional ratio operdtois
conclusion is also reflected in accuracy assessresott shown
in Table 3.

(d

Figure 3. Detected changed areas for the firstseat@Modified
ratio) in yellow, overlaid in a false colour comjies(Red:
Date2, Green: Datel, Blue: Date2). (a) Generalizadgs&ian. (b)
Log normal. (c) Nakagami Ratio. (d) Weibull ratio ceb.

Using log normal model to describe class’s distidny Fig. 4
show side by side the change detection result fmrion of the
second dataset using the ratio image (a), and raddiftio
image (b). To the right of the image is Pudong rimaéional
airport where a lot of new asphaltic manoeuvringaarhave
been constructed. Under the ratio image, the dfgormissed
detects all these new areas. However using thefimddiatio
image all new manoeuvring areas were correctlytified.

A good improvement in the detection accuracy oegliunder
all models (Table 3). This improvement occurreddose the
modified operator increases the prior probabilitythee change
class compared with the conventional operator. #aitilly

this increase in size of the change class adds divegsity to

its sample and enhances the estimation of its tiondl density
function and consequently, improves the detectamu@cy.

The fourth raw in Table 3 shows the improvementtlie
detection in areas where the intensity has inctkagevisual
comparison between Fig. 1 and Fig. 3 indicates tihat
improvement in detection accuracy is even betten tthe one
reflected in Table 3. The slight increase in fadé®m rate can
easily be attributed to increase in detection amurFor the log

normal model the missed change rate reduced signifi
compared with the first result using the converdlonatio
operator. While under other models the high misdshge rate
stay almost the same.

The second graph of Fig. 2 focuses in the no chatags part
of the histogram of the modified ratio image. Thiss’s
histogram is asymmetric as a result of the way riualified
ratio image is calculated. Definitely symmetricatdbutions as
the generalized Gaussian model are not going tothiis
histogram. This is confirmed by the high false mlaate, high
missed change rate, visual inspection and the sxebg
identified percentage of change under this modeivshin the
fourth row of Table 1.

The log normal and Nakagami ratio distributions tresability

to fit asymmetrical data. The detection accuracyiniensity
increased areas and the false alarm rates for tbesmodel are
the same. However, log normal model outperformed th
Nakagami ratio model as it achieved a consideraiohaller
missed change rate. The Weibull ratio performascddgo poor
as it underdetermined changed areas.

Figure 4. Detected changed areas for a portiorhefsecond
dataset in yellow, overlaid in a false colour cosipo (Red:
Date2, Green: Datel, Blue: Date2). (a) Ratio image lamg
normal model. (b) Modified ratio image and log natmmodel.

Considering the modified ratio operator the algonittwas
supposed to be able to discover changed areasintéhsity
decrease too. Nevertheless, this was not the sabe aetection
accuracy is zero under all models except for thge Hormal
model which gives a detection accuracy mountedoug7%.
The main reason for this frustrating result is i@ intensity of
change as reflected in the change image is veryifoareas
with backscatter coefficient decrease comparedhad in areas
with backscatter coefficient increase.

Model GG Model
71.28
4.02
28.72
95.87

0.00

LN Model
81.49
1.05
18.51
93.50
46.67

NR Model
69.77
1.05
30.23
93.84
0.00

WR Model
68.91
0.80
31.09
92.69
0.00

Detection Accuracy %

False Alarm %

Missed Change %

Intensity Increase Detection %

Intensity Decrease Detection %

Table 3. Accuracy achieved using modified ratiorefu

Although the detection of changed areas where tibensity
decreased has failed, the algorithm accuracy frmther areas
has increased significantly. This improvement i@tordance
with the intention of this paper that focuses ow meban areas.



4.3 Lognormal improved solution

Using the correct statistical model for change aondchange
classes, there is a natural unique threshold #yzdrates these
two classes. Since it proves to be the best inritésg their
statistical properties, the log normal was chosenntodel
change and no change classes for the iterativéi@olusing the
modified ratio image.

The first and third graphs in Fig. 5 show the Wéoia in false

alarm rate versus iterations for the first and sdcdatasets
respectively. The false alarm rate stays constanthée first

dataset due to the bigger image size and consdgudne

accurate histogram representation. For the secomales size
dataset the histogram is not as representativie teifirst one.
Therefore, the false alarm reduced dramaticallytemsjzing the
improvement in the separation between the changke rem
change classes as we iterate.

Graph (b) and (d) in Fig. 5 show the variation leé threshold
value versus iterations for the first and secondasids
respectively. The graphs show how the thresholdchdyi
converges to constant values after little iteratiorhis constant
value is the natural threshold between the twosela®f interest.
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Figure 5, (a) Variation in false alarm and (b) \d#on in
threshold for the first data set. And the sameatim for the
second data set in (c) and (d).

Unfortunately, this approach does not converge uradber
statistical models confirming the suitability ofetHognormal
model in this particular case study over other n&de

5. CONCLUSION

In this paper, the effectiveness of the minimumorerr
thresholding algorithm in identifying changes waslaated.
The preliminary results showed that change detectsing Log
normal model with modified ratio operator achievibé best
accuracy (81.5%) and the areas characterized blgstaiter
coefficient increase, i.e., from non-builtup to lhup areas, can

be detected with 93.5%. Further, the modified rapproach
significantly improved the detection accuracy inteimsity
increase areas and to some extent in those witnsity
decrease.

There are two important issues to be consideredalpelying
unsupervised change detection using minimum error
thresholding algorithm. First the statistical madé& be used
should be able to accurately describe the statlgi@perties of
the class’s distribution. In this work, four diféert statistical
models have been tested. Among them the log ngrroakd to
be the best. This does not mean that log normalpeitform
well in other similar change detection studiesfdnt, results
reported from similar studies showed that all thsove-
mentioned models could produce very good resulss Targe
number of proposed models indicates the need ofobaly
model that can fit different type of data with difént statistical
properties. Another possibility to improve the dn is to use
two different models for the change and no chanigeses
instead of using the same single model for botimein.

The second issue is the operator used to compage th
multitemporal image and generate the change imadés
research showed that the modified ratio operatgmifscantly
improved the accuracy of the change detection. Hakbke that
takes into account the local context combined wlith global
threshold determination of this algorithm could fpem even
better.

An improved solution that overcomes the limitatioofs the
histogram-based selection of an optimum threshsldalso
introduced in this paper. This approach requirespiobability
model to be perfect in representing the distributiof the
classes. The quick convergence rate of the thréskmla
constant value, confirms the existence of a unisgjgaration
value that divides the change image into two chsse
Experiment results showed that this approach wagemo
effective with smaller size images and consequesihaller
sample size where the histogram is not so accunate
representing the statistical properties of thesglas
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