DECLARATIVE SENSOR INTERFACE DESCRIPTORS FOR THE SENSOR WEB

Arne Broering’ 2, Stefan Below' and Theodor Foerster'

HfGI, University of Muenster, Germany, http://swsl.uni-muenster.de, (arneb, stefan.below, theodor.foerster) @ wwu.de
21TC, University of Twente, Netherlands

KEY WORDS: Sensor, Spatial Infrastructures, Integration, Internet/Web, Interoperability, Standards

ABSTRACT:

The Sensor Web Enablement (SWE) initiative of the Open Geospatial Consortium (OGC) defines standards for Web Service interfaces
and data encodings usable as building blocks to implement a Sensor Web. These standards encapsulate sensors for web-based discovery,
tasking and access. In recent years, SWE has been applied in a multitude of projects, demonstrating its suitability in real world scenarios.
However, there is still a fundamental challenge to be tackled. While SWE enables interoperability with the upper application layer,
the connection between SWE and the underlying sensor layer and its heterogeneous protocols is not yet sufficiently described. To
close this gap, a declarative model for Sensor Interface Descriptors (SID) based on OGC’s SensorML standard is presented here. An
SID for a particular sensor enables a so called SID interpreter to translate between the communication protocol of the sensor and the
Sensor Web. We have developed a generic SID interpreter capable of connecting sensors to Sensor Observation Services and Sensor
Planning Services based on their SID. For illustration, an SID describing a radiation detector of the German Federal Office for Radiation
Protection is presented and used for integration with the SWE services. The presented approach of SIDs is the basis for realizing our
vision of sensor plug & play and will make sensors on-the-fly available on the Sensor Web.

1 INTRODUCTION

The vision of the (Geo-)Sensor Web is that access to (geo-)sensors
is as uniform and easy as access to resources on the World Wide
Web today [Nittel et al., 2008]. The goal is to enable Web-based
sharing, discovery, exchange and processing of sensor observa-
tions, as well as task planning of sensor systems [Gong et al.,
2010]. The Sensor Web Enablement (SWE) initiative of the Open
Geospatial Consortium (OGC) defines standards which can be
utilized to build such a Sensor Web [Botts et al., 2008]. SWE
standards make sensors available over the Web through standard-
ized formats and Web Service interfaces by hiding the sensor
communication details and the heterogeneous sensor protocols
from the application layer.

In recent years, the SWE standards have been applied in vari-
ous projects (e.g. [Chung et al., 2009, Jirka et al., 2009, Stasch et
al., 2008, Schimak and Havlik, 2009] showing their practicabil-
ity and suitability in real world scenarios. However, there is still
an essential challenge to be tackled. There is a gap of interop-
erability between the SWE services and the sensors [Walter and
Nash, 2009]. SWE defines service interfaces from an application-
oriented perspective. The connection between a SWE service and
a sensor is not yet sufficiently defined by the specifications.

Although, the Sensor Observation Service (SOS) (Section 2) pro-
vides operations for insertion of sensors and their data, the uti-
lization of the according operations still requires reformatting of
the native sensor protocol to the SWE protocol. How and where
this is done is not defined by the specifications. Due to band-
width and processing power limitations, a sensor itself is usually
not able to transform and upload its data to an SOS. Most ob-
vious is the interoperability gap at the Sensor Planning Service
(SPS) (Section 2) which enables an interoperable tasking of sen-
sors. It is not defined how an SPS transforms a retrieved sensor
task to a command of the sensor protocol. Today, the connec-
tion between sensors and SWE services is usually established by
manually adapting the internals of the SWE service implemen-
tation to the specific sensor interface. Such adaptations have to
be built for each pair of service implementation and sensor in-
terface which leads to extensive efforts in developing large-scale

systems [Aberer et al., 2006].

Minimizing these efforts is a further step towards an on-the-fly
integration, a plug & play of sensors with the Sensor Web. Such
functionality would significantly support for example disaster man-
agement applications where an ad-hoc densification of a sensor
network is demanded. Examples range from flooding scenar-
ios, in which the affected river courses are not densely enough
covered with water gages, to incidents in nuclear plants, which
require ad-hoc deployments of radiation detectors. Assuming a
Sensor Web is already in place and used by disaster relief organi-
zations as a coherent infrastructure to access sensors, an integra-
tion of new sensors in a most efficient way becomes necessary.

This work addresses the identified interoperability gap. We de-
velop a model for Sensor Interface Descriptors (SID) which en-
ables the declarative description of sensor interfaces, including
the definition of the communication protocol, sensor commands,
processing steps and metadata association (Section 3). The model
is designed as a profile and extension of OGC’s Sensor Model
Language standard. Based on this model, SID interpreters can
be built which are able to translate between sensor protocol and
Sensor Web protocols and hence close the described interoper-
ability gap. Such interpreters for SID instances can be built in-
dependently of particular sensor technology. They establish the
connection to a sensor and are able to communicate with it by us-
ing the sensor protocol definition of the SID. This work presents
the implementation of a generic SID interpreter (Section 4). It
transfers data, retrieved from a sensor, to a Sensor Observation
Service. Also, it transforms tasks, submitted to a Sensor Plan-
ning Service, to commands which are then forwarded to a sensor.
SID instances for particular sensor types can be reused in differ-
ent scenarios and can be shared among user communities. The
ability of an SID interpreter to connect sensors and Sensor Web
services in an ad hoc manner based on the sensor’s SID is a next
step towards realizing sensor plug & play.

2 BACKGROUND & RELATED WORK

The main Web Services of the SWE framework are the Sen-
sor Observation Service (SOS) and the Sensor Planning Service

(SPS). The SOS [Na and Priest, 2007] provides interoperable ac-
cess to real to sensor data as well as sensor metadata. To con-
trol and task sensors the SPS [Simonis, 2007] can be used. A
common application of SPS is to define simple sensor parame-
ters such as the sampling rate but also more complex tasks such
as mission planning of satellite systems. Apart from these Web
Service specifications, SWE incorporates information models for
observed sensor data, the Observations & Measurements (O&M)
[Cox, 2007] standard, as well as for the description of sensors, the
Sensor Model Language (SensorML) [Botts, 2007]. SensorML
specifies a model and encoding for sensor related processes such
as measuring or post processing procedures. Physical as well as
logical sensors are modeled as processes. The functional model
of a process can be described in detail, including its identifica-
tion, classification, inputs, outputs, parameters, and characteris-
tics such as a spatial or temporal description. Processes can be
composed by process chains. O&M defines a model and encod-
ing for observations. An observation has a result (e.g. 0,7 mSv/a)
which is an estimated value of an observed property (e.g. radia-
tion), a particular characteristic of a feature of interest (e.g. the
city of Muenster). The result value is generated by a procedure,
e.g. a sensor such as a radiation detector described in SensorML.
These four central components are linked within SWE.

Bridging the interoperability gap between the Sensor Web layer,
consisting of those SWE components, and the lower sensor layer
can be generally addressed from two directions. On the one hand,
the interoperable access on the sensor layer can be improved. On
the other hand, it can be approached from the Sensor Web layer
by introducing mechanisms to abstract from the variety of sensor
protocols.

The first direction is addressed by several standardization ap-
proaches. Most promising is the IEEE 1451 family of standards'
since it is backed by a large number of vendors. IEEE 1451 is
a universal approach to connect sensors to diverse networks and
systems. An important feature of this standards family is the def-
inition of a Transducer Electronic Data Sheet (TEDS) which is a
small memory device attached to the transducer describing for ex-
ample its identification, calibration, correction data, measurement
range, and manufacturer related information. Nevertheless, the
expressiveness of TEDS is limited and it cannot capture all meta-
data of a sensor. For example, higher level processing of sensor
data cannot be described in TEDS. This requirement is addressed
by SensorML. Therefore, [Hu et al., 2007] convert TEDS to Sen-
sorML by creating a knowledge base which maps each TEDS
property to an appropriate SensorML description. It would be
promising to extend this approach and to combine it with our
work to automatically generate SIDs for IEEE 1451 sensors so
that an SID interpreter can connect IEEE 1451 sensors on-the-fly
with SWE services.

However, in today’s real world applications not only IEEE 1451
but in fact a huge variety of sensor interfaces (standardized or pro-
prietary) are utilized. Hence, different projects are approaching
the interoperability gap from the upper Sensor Web layer. Any-
Sen [Bleier et al., 2009] is capable of reading and interpreting
data from sensor nodes by abstracting the sensor protocols and
reading the sensor description from an external file. The authors
do not detail but claim that AnySen allows the formatting of these
sensor descriptions compliant to the SensorML standard. While
AnySen supports the provision of sensor data by connecting to an
SOS, other SWE services, in particular tasking of sensors through
an SPS, are not supported. Walter & Nash [Walter and Nash,
2009] identify the interoperability gap and analyze different sys-
tem models which may lower the implementation barrier for cou-

lhttp://ieeel451.nist.gov/

T HTTP
Y
Data —
- = runs on
Acquisition “* 7777777 SID Interpreter
System - | .1
- 1
sensor protocol over T 3 uses
e.g. USB, GSM, ISDN, DSL | ¥
b
T ceoenoes sID
belongs to

Figure 1: Usage of SID in SWE deployment

pling sensor systems and SWE services. The authors suggest
lightweight SWE connectors which can be adapted to different
raw sensor formats to convert them to SWE-based data models.
They state that such SWE connectors could be implemented for
a wide range of different sensor types. They come up with de-
sign approaches, but do not detail them. The Sensor Abstraction
Layer (SAL) [Gigan and Atkinson, 2007] is most similar to the
SID concept. SAL makes use of SensorML to describe sensor
interfaces. As a library, it offers high-level functions to access
sensors by hiding their specific technological details. The ar-
chitecture follows a split design consisting of lightweight SAL
agents running on the sensor gateways to handle the communi-
cation with the hardware and SAL clients usable by application
developers to invoke specific actions on sensors managed by an
agent. Missing are mechanisms for the final connection to SWE
services and the integration of sensors with the Sensor Web.

3 SENSOR INTERFACE DESCRIPTORS

This section presents the SID model. Figure 1 shows the de-
ployment of a Sensor Web infrastructure including the usage of
SIDs. A sensor communicates with a data acquisition system in
its specific sensor protocol over a transmission technology such
as ISDN or GSM. This sensor can also act as a sensor gateway
(network sink) so that other nodes of a (possibly mobile) sensor
network communicate with it. The SID interpreter runs on the
data acquisition system and uses SID instances for the different
sensors of the sensor network to translate between the sensor spe-
cific protocol and the SWE protocols. The interpreter is responsi-
ble to register a sensor at a SWE service and to upload sensor data
to an SOS. Also, it is responsible for the opposite communication
direction and forwards tasks received by an SPS to a sensor.

A strong requirement on the design of the SID model is the strict
encapsulation of the SID within the SensorML document. The
SID part of the SensorML document is specific for a certain sen-
sor type, not a particular sensor instance. Hence, an encapsulation
allows to reuse it in the SensorML descriptions of different sen-
sors which are of the same type. The approach developed here,
encapsulates the SID within the interface element of a SensorML
document.

The interface element contains a stack of layers (Figure 2), aligned
with the Open System Interconnection (OSI) reference model

[ISO/IEC, 1996]. In contrast to the OSI model, SensorML does

not further define how to use these layers. The SID model makes

use of this layer stack and concretes its usage to describe the sen-

sor interface.

Essential for the SID model is the ability to reflect the data flow
between the components of the different layers, which is illus-

http://ieee1451.nist.gov/

ﬁ'applicaﬁnnhyerb—l CommandDefinition)<>“ commands
.1

)<>“ CommandList

_Procezz -

presentationLaye:

0.1

| sessionLayer }<>—
0.1 o=

0..‘1| 0.1

CommandParameters | [ResponselList

| PreConditions ‘ PostConditions

0.1
transportLayer _|
0.1 = =

ProcesshModel ‘

0.1

ProcessChain

DataBlockDefinition

0.1
datalinkLayer |
0.1 DatalnputStream datalnputCompenent

= 0.1
‘mterfaneueﬁniﬁnn)a—‘ physicalLayer
0.1 o

DataDutputStream |<>—(dataOutputComponent

:‘ ComponentList k}—‘ component ‘
1.2

0.1 Q\O..'i

‘ outputs ‘ ‘ connections

Figure 2: Overview of SID model included in SensorML. SID elements are colored in blue.

Sensor Web ;Observation |

SensorML Fjlemmenon

Application Layer: SID

Presentation Layer:

Layer2-5 E

v
dataOutputStream

Physical Layer
b 4

Sensor

Figure 3: Data flow between sensor and Sensor Web through the
SID.

trated in Figure 3. To define this data flow, we reuse the con-
nections element originally associated with the SensorML System
and associate it with the InterfaceDefinition (Figure 2). Describ-
ing the internal data flow in an element which is part of the SID
is necessary to ensure its encapsulation.

Next, the different aspects of the SID model are described. First,
we outline, how the basic addressing parameters of a physical
connection to the sensor are specified (Section 3.1). After es-
tablishing the physical connection, a definition of the raw sensor
protocol is needed, which is described in Section 3.2. With its
definition, the sensor protocol can be interpreted and further pro-
cessed (Section 3.3). Before retrieved, interpreted and processed
sensor data can be forwarded to Sensor Web services, certain ob-
servation metadata has to be added, which is outlined in Section
3.4. To enable tasking of sensors, the commands accepted by the
sensor interface need to be defined (Section 3.5).

3.1 Definition of Addressing Parameters

The addressing parameters (e.g. port and baud rate of a serial
connection) are the basis for establishing a physical connection
to the sensor. This physical connection is established through the
operating system which runs the SID interpreter. The addressing
parameters are stored externally in a document accompanying the
SID, since the SID can be published publicly (e.g. via a SWE
service) and the addressing parameters are security relevant.

<sml:interface name="serial_connector”

xlink :role="urn:connection: serial”>
<sml: InterfaceDefinition >

Listing 1: Definition of addressing parameters.

As shown in Listing 1, the name and role attributes of the in-
terface are used to specify identifier and type of the connection
whose details are stated in an external file. The type of connec-
tion is specified by using a Unified Resource Name (URN) which
points to globally defined semantics (e.g. urn:connection:serial’
for a serial connection).

3.2 Definition of Sensor Protocol

For the declarative definition of a sensor protocol, the exact def-
inition of the raw data streams exchanged between sensor and
data acquisition system is essential. We describe the structure
of this raw data within the lowest, the physicalLayer element.
As shown in Figure 2, new elements for the data input and data
output stream are attached to this element. The two elements
are necessary to support duplex communication with sensors. To
describe the structure of the incoming and outgoing streams the
SensorML DataBlockDefinition type is reused.

Station [1275482685|33UUU 932 592|10530Q|#

Status [1275482686|2|43]72(0|#
MO1[1275482698|147.0]150.0|23.0|16.3 | #

Listing 2: Example data stream of MWS3 sensor.

Listing 2 shows an example of a data stream output of an MWS3
station”. Such stations are used in the sensor network of the Ger-
man Federal Office for Radiation Protection. Besides a radia-
tion detector, an MWS3 station carries sensors to measure atmo-
spheric phenomena. The gateway of the MWS3 communicates
either via ISDN, GSM, or DSL to a base station. Listing 3 is an
excerpt of the MWS3 protocol definition. The DataRecord ele-
ment of the DataBlockDefinition defines the structure and mean-
ing of each token of a single data block within the data stream.
Data blocks are separated by the "#’ sign as defined in the en-
coding element. The first field within the data record specifies
to which data blocks of the data stream the structure definition
refers. In the example of Listing 3, the data record defines the
structure for those data blocks where the first token has the value
"MO1°.

?http://de.wikipedia.org/wiki/MWS3-Messwertsender

http://de.wikipedia.org/wiki/MWS3-Messwertsender

<swe:DataBlockDefinition>
<swe:components>
<swe: DataRecord>
<swe: field name="datasetID”>
<swe:Text>M0l</swe: Text>

</swe: field >
<swe: field name="time” />
<swe: field name="radiation”/>
<swe: field name="temperature”/>
<swe: field name="precipitation”™/>

</swe:DataRecord>
</swe:components>
<swe:encoding>
<swe: TextBlock
decimalSeparator="."
tokenSeparator="1"
blockSeparator="#" />
</swe:encoding>
</swe:DataBlockDefinition>

Listing 3: Excerpt of MWS3 protocol definition.

3.3 Definition of Protocol Processing

For enabling the definition of processing steps which are neces-
sary to translate between the sensor protocol and the SWE proto-
col, the dataLinkLayer, networkLayer, transportLayer, and ses-
sionLayer are utilized. To allow data processing in both direc-
tions, from sensor domain to SWE domain and the other way
round, elements for data decoding and encoding are added to each
layer (Figure 2). Instances of these elements contain either a Sen-
sorML ProcessModel or ProcessChain to define the process. A
process model can be used to describe a single non-physical pro-
cess with its inputs, outputs, parameters and its computational
method. A process chain can be used to represent a chain of mul-
tiple processes and to encapsulate them as one process.

Each layer element is optional. Which kinds of processes are
described in which layer, depends on the design of a particular
SID. An interpreter executes the processes defined in these layers
sequentially. An example for a typical usage of the layers in an
SID to process a data stream coming from a sensor and to encode
it to SWE protocols can look like this: the data link layer specifies
a process for character escaping, the network layer computes a
checksum validation, the transport layer transforms the raw data
to observations by applying an interpolation, and the session layer
computes a date conversion.

Four process types, essential for sensor communication, shall be
natively supported by an SID interpreter. These process types are
described in the next subsections. The process type which shall
be applied is referenced by its URN in the method property of the
process model. Besides the four natively supported processes,
other process methods can be incorporated by describing them
inline using Content MathML?.

3.3.1 Character Escaping Process Type In sensor commu-
nication, escape characters are used to induce an alternative in-
terpretation of a transmitted character. As seen in the example of
Listing 2, the end token of a data set within a data stream is in-
dicated by a particular control character, the '#’ sign. In the raw
sensor data, this control character is masked by an escape charac-
ter (e.g. *\’). Which characters are used for escaping is defined
by the sensor protocol. Every SID interpreter needs to support
this process type for removing and adding escape characters.

3.3.2 Checksum Validation Process Type For areliable sen-
sor communication, the computation and validation of checksums
is essential. Each SID interpreter shall offer a process type for
that purpose. The most widely used checksum method is the

Shttp://www.u3.org/TR/MathML2

Cyclic Redundancy Check (CRC). However, there is no standard
describing how to compute a CRC. Hence, the SID model sup-
ports the parameterized model for the definition of CRC algo-
rithms, the Rocksoft Model [Williams, 1993]. The parameters
of this model (e.g. polynomial, and name of the algorithm to be
used) are passed along in the parameters element of this process

type.

3.3.3 Interpolation Process Type Interpolations need to be
computed to transform raw sensor data to observations, to com-
pute calibrations, or to correct measurements. For example, an
electric current returned by a detector needs to be transformed
to an actual measurement value of a particular phenomenon (e.g.
radiation or temperature). Parameters of this process type are
multiple x,y-tuples defining a spline curve, as well as the kind of
interpolation which shall be used (e.g. cubic, or linear).

3.3.4 Date Conversion Process Type If sensors tag their data
with a timestamp, usually a conversion of the sensor time (e.g.
seconds since Unix Epoch) to another time representation (e.g.
ISO 8601) is necessary. This date conversion shall be natively
supported by every SID interpreter. An instance of this process
type is shown in Listing 4. In the parameters element of the pro-
cess type, literals are used to define the input and output time
formats (e.g. an *T” Unix timestamp in seconds, and "YYYY’ for
years). By specifying the URN urn:process:dateConversion” it
is indicated to the SID interpreter that this process method shall
be applied.

<sml:ProcessModel>

<sml:parameter name="dateSettings”>
<swe:DataRecord>
<swe: field name="inputFormat”>
<swe:Text>
<swe:value>T</swe:value>
</swe:Text>
</swe: field >
<swe: field name="outputFormat”>
<swe: Text>
<swe:value>
YYYY-MM-DD:HH:MM: SS
</swe:value>
</swe:Text>
</swe:field >
</swe:DataRecord>
</sml:parameter>

<sml: method
xlink :role="urn: process:dateConversion”/>
</sml:ProcessModel>

Listing 4: Excerpt of a date conversion process instance.

3.4 Definition of Observation Metadata

The data, resulting from the preceding processing steps (Section
3.3), has to be associated with certain metadata, which is part
of the O&M model (Section 2), before it can be forwarded to
an SOS. The measured data needs to be associated with units of
measure so that an interpretation is possible. Further, the data
needs to be linked to the elementary SWE components, the ob-
served property and the feature of interest, so that observations of
the O&M model can be built and inserted into an SOS.

The association of the data with a unit of measure is done on the
presentationLayer by means of the DataOutputStream element as
shown in Listing 5. The field ’radiation data’ represents a quantity
measured in "'mSv/a’.

<sml:presentationLayer>
<sid:DataOutputStream>

<swe: field name="sampling time”>
<swe: Time>
<swe:uom code="ISO8601"/>

http://www.w3.org/TR/MathML2

</swe:Time>
</swe: field>
<swe:field name="radiation data”>
<swe:Quantity >
<swe:uom code="mSv/a”/>
</swe:Quantity >
</swe: field >

</sid : DataOutputStream>
</sml:presentationLayer>

Listing 5: Definition of sensor data output on presentation layer.

In the output element of the SensorML document, the sensor
data is linked to the observed property and the feature of inter-
est as shown in Listing 6. The ’radiation output’ has an Observ-
ableProperty pointing to the detailed description of the observed
property given by a URN, and specifies in the metaDataProperty
element a link to the feature of interest. The output element is not
part of the SID, since it is not a sub-element of the InterfaceDefi-
nition (Figure 2). The contained information is intentionally kept
out of the SID, since the linkage of a sensor to a feature of inter-
est and a phenomenon is dependent on the particular use case, not
the interface of the sensor type. By not including this information
into the SID, a reusing of the SID in different SWE deployments
is possible.

<sml:output name="radiation output”>

<swe:ObservableProperty

definition="urn:phenomenon: radiation”>
<gml: metaDataProperty

xlink : href="http :// myServer.org/features/Muenster”/>

</swe:ObservableProperty >
</sml:output>

Listing 6: Definition of observation metadata in output element.

3.5 Definition of Sensor Commands

The application layer of the OSI model describes interfaces to
access the OSI stack. Compliant to this view, the application-
Layer is used here to define the commands accepted by the sen-
sor. These command definitions can be used by an SPS so that it
can provide information to the clients how to task the sensor. As
shown in Figure 2, the command element contains sub-elements
to describe possible sensor responses, the pre- and postconditions
for executing the command, as well as the command parameters.
Listing 7 shows an example of the parameter definition of a com-
mand which sets the sampling rate of a sensor. The command
has three parameters: the first one is fixed to the value SR’, the
second one is a text representing the sensor ID, and the third one
is the measuring interval, with a minimum value of 5 seconds.
The SID model prescribes specific URNs to define roles of pa-
rameters, for example whether its required or optional. The order
of the command parameters is the same as in the sensor protocol
to which the command is mapped by the processes defined in the
lower layers (Section 3.3).

<swe:Parameters>
<swe: DataRecord>
<swe: field name="cmd”
xlink : role="urn:command : name”>
<swe:Text>
<swe:value>SR</swe:value>
</swe:Text>
</swe: field>
<swe: field name="sensorID”
xlink :role="urn:command: parameter:required”>
<swe: Text/>
</swe: field >
<swe: field name="interval”
xlink : role="urn:command: parameter:optional”>
<swe:Quantity >
<swe:uom code="sec” />
<swe:constraint>
<swe: AllowedValues>
<swe :min>5</swe: min>
</swe:AllowedValues>

SID Interpreter

=1 508 Connector || SPS Connector
Protocol Transformer
SID Parser

Data Source Connector

Figure 4: Design of the SID Interpreter.

</swe:constraint>
</swe:Quantity >
</swe: field >

</s.we :DataRecord>
</swe:Parameters>
Listing 7: Example of a command definition to set the sampling
rate.

4 INTERPRETER IMPLEMENTATION

The implementation of our SID interpreter is based on the OSGi
framework® which is extendible by pluggable and loosely cou-
pled components (Figure 4). A central Manager component con-
trols the workflow. First, the SID Parser is used to read in the SID
document of the sensor. Depending on the specified addressing
parameters (Section 3.1), a particular Data Source Connector im-
plementation (e.g. for USB connections) is chosen to connect to
the sensor. Based on the protocol definition of the SID (Section
3.2), the Protocol Transformer communicates with the sensor in
a bi-directional way. The Process Executor is able to execute
the four native process methods (Section 3.3). Also, user-defined
MathML processes can be executed by the means of the MathML
Solver library®. The SOS Connector triggers the SOS operation
RegisterSensor to add the new sensor to the Sensor Web and ex-
ecutes the InsertObservation operation to upload sensor data as
observations (Section 3.4) to an SOS. The SPS Connector for-
wards the SensorML document and the contained SID to an SPS
which uses the sensor command descriptions (Section 3.5) to pro-
vide detailed information how to task the sensor. Sensor tasks,
submitted to the SPS, are forwarded by the SPS to the SPS Con-
nector. The tasks are transformed to the sensor protocol, and
passed through the Data Source Connector to the sensor.

5 CONCLUSIONS & FUTURE WORK

In this paper, we outline the need for mechanisms to close the
interoperability gap between sensors and the Sensor Web. We
bridge this gap by introducing a model based on the SensorML
standard which enables the declarative description of sensor in-
terfaces. Based on the SID model, interpreters can be built, which
are independent of particular sensor technology, and are able to
automatically generate communication logic to connect sensors
to the Sensor Web - a next step on our long term research agenda
of realizing sensor plug & play.

We presented our SID interpreter implementation which integrates
sensors described by an SID with a Sensor Observation Service as
well as a Sensor Planning Service. These services enable access
to measured sensor data and allow tasking of a sensor in an inter-
operable way. We illustrated the design of the developed model

4http://www.osgi.org/
Shttp://sourceforge.net/projects/mathmlsolver/

http://www.osgi.org/
http://sourceforge.net/projects/mathmlsolver/

by an example, the SID of an MWS3 radiation detector. We will
contribute our model to the current development of the SensorML
2.0 standard. The SID model, the MWS3 example, as well as our
SID interpreter implementation are published® as open source at
52° North.

SIDs are a basis for minimizing the efforts of integrating new sen-
sors with the Sensor Web. Currently, we are developing tools and
user interfaces to support the creation of SIDs. This will support
sensor network administrators to make their sensors available on
the Sensor Web. Future catalogs of SID instances will allow users
to share and reuse the interface descriptions of their sensors. A
further step towards realizing sensor plug & play for the Sen-
sor Web will be the incorporation of the SID interpreter into our
publish/subscribe architecture, the Sensor Bus [Broering et al.,
2010; forthcoming], underlying the Sensor web and enabling an
on-the-fly integration of sensors. Based on these developments,
identified semantic challenges in the context of sensor plug &
play [Broering et al., 2009] will be tackled. Further, the SID in-
terpreter will be extended to not only support the connection of
sensors to SWE services, but also to connect to other Sensor Web
implementations (e.g. Pachube’, or Sensorpedia®). Finally, the
approach will be applied in real-world scenarios to demonstrate
its benefits in sensor asset management. As the project develops,
we anticipate that both our design and our research agenda will
evolve as new issues and opportunities arise.

ACKNOWLEDGMENT

This work is financially supported by the project “Flexible and
Efficient Integration of Sensors and Sensor Web Services” funded
by the ERDF program (grant N 114/2008) of the European Union,
as well as the 52° North Sensor Web community which envi-
sions a real time integration of heterogeneous sensors into a co-
herent information infrastructure.

REFERENCES

Aberer, K., Hauswirth, M. and Salehi, A., 2006. A middleware
for fast and flexible sensor network deployment. In: Proceedings
of the 32nd international conference on Very large data bases.

Bleier, T., Bozic, B., Bumerl-Lexa, R., Da Costa, A., Costes, S.,
Iosifescu, 1., Martin, O., Frysinger, S., Havlik, D., Hilbring, D.,
Jacques, P., Klopfer, M., Kunz, S., Kutschera, P., Lidstone, M.,
Middleton, S., Roberts, Z., Sabeur, Z., Schabauer, J., Schlobinski,
S., Shu, T., Simonis, 1., Stevenot, B., Uslédnder, T., Watson, K. and
Wittamore, K., 2009. SANY - An Open Service Architecture for
Sensor Networks. SANY Consortium.

Botts, M., 2007. OGC Implementation Specification 07-000:
OpenGIS Sensor Model Language (SensorML). Open Geospa-
tial Consortium.

Botts, M., Percivall, G., Reed, C. and Davidson, J., 2008. OGC
Sensor Web Enablement: Overview and High Level Architecture.
Lecture Notes In Computer Science 4540, pp. 175-190.

Broering, A., Foerster, T., Jirka, S. and Priess, C., 2010; forth-
coming. Sensor Bus: An Intermediary Layer for Linking Geosen-
sor Networks and the Sensor Web. In: COM.Geo 2010: 1st Inter-
national Conference on Computing for Geospatial Research and
Applications, Washington DC, USA.

Shttp://52north.org/sid
"http://www.pachube.com/
8http://www.sensorpedia.org/

Broering, A., Janowicz, K., Stasch, C. and Kuhn, W., 2009. Se-
mantic Challenges for Sensor Plug and Play. In: J. Carswell,
S. Fotheringham and G. McArdle (eds), Web & Wireless Geo-
graphical Information Systems (W2GIS 2009), 7 & 8 December
2009, Maynooth, Ireland, LNCS, Springer, pp. 72-86.

Chung, L.-K., Baranski, B., Fang, Y.-M., Chang, Y.-H., Chou,
T.-Y. and Lee, B. J., 2009. A SOA based debris flow monitor-
ing system - Architecture and proof-of-concept implementation.
In: The 17th International Conference on Geoinformatics 2009,
Fairfax, USA.

Cox, S., 2007. OGC Implementation Specification 07-022r1:
Observations and Measurements - Part 1 - Observation schema.
Open Geospatial Consortium.

Gigan, G. and Atkinson, 1., 2007. Sensor Abstraction Layer:
A Unique Software Interface to Effectively Manage Sensor Net-
works. In: 3rd International Conference on Intelligent Sensors,
Sensor Networks and Information, 2007. ISSNIP 2007, pp. 479—
484.

Gong, J., Wu, H., Gao, W., Yue, P. and Zhu, X., 2010. Geospatial
Service Web. In: D. Li, J. Shan and J. Gong (eds), Geospatial
Technology for Earth Observation, Springer, pp. 355-379.

Hu, P, Robinson, R. and Indulska, J., 2007. Sensor Standards:
Overview and Experiences. In: Proceedings of the 3rd Interna-
tional Conference on Intelligent Sensors, Sensor Networks and
Information Processing ISSNIP’07, Melbourne, Australia.

ISO/IEC, 1996. ISO/IEC 7498-1: Information technology —
Open Systems Interconnection — Basic Reference Model: The
Basic Model. ISO.

Jirka, S., Broering, A. and Stasch, C., 2009. Applying OGC Sen-
sor Web Enablement to Risk Monitoring and Disaster Manage-
ment. In: GSDI 11 World Conference, Rotterdam, Netherlands.

Na, A. and Priest, M., 2007. OGC Implementation Specification
06-009r6: OpenGIS Sensor Observation Service (SOS). Open
Geospatial Consortium.

Nittel, S., Labrinidis, A. and Stefanidis, A., 2008. Introduction
to advances in geosensor networks. Lecture Notes in Computer
Science 4540, pp. 1-6.

Schimak, G. and Havlik, D., 2009. Sensors Anywhere - Sen-
sor Web Enablement in Risk Management Applications. ERCIM
News 2009 - The Sensor Web (76), pp. 40 — 41.

Simonis, 1., 2007. OGC Implementation Specification 07-014r3:
OpenGIS Sensor Planning Service. Open Geospatial Consortium.

Stasch, C., Walkowski, A. C. and Jirka, S., 2008. A Geosen-
sor Network Architecture for Disaster Management based on
Open Standards. In: M. Ehlers, K. Behncke, F. W. Gerstengabe,
F. Hillen, L. Koppers, L. Stroink and J. Wichter (eds), Digi-
tal Earth Summit on Geoinformatics 2008: Tools for Climate
Change Research., pp. 54-59.

Walter, K. and Nash, E., 2009. Coupling Wireless Sensor Net-
works and the Sensor Observation Service — Bridging the Inter-
operability Gap. In: 12th AGILE International Conference on
Geographic Information Science 2009, Hannover, Germany.

Williams, R., 1993. A Painless Guide to CRC Error Detection
Algorithms. Technical report, Rocksoft Ltd., Hazelwood Park,
Australia.

http://52north.org/sid
http://www.pachube.com/
http://www.sensorpedia.org/

	1 Introduction
	2 Background & Related Work
	3 Sensor Interface Descriptors
	3.1 Definition of Addressing Parameters
	3.2 Definition of Sensor Protocol
	3.3 Definition of Protocol Processing
	3.3.1 Character Escaping Process Type
	3.3.2 Checksum Validation Process Type
	3.3.3 Interpolation Process Type
	3.3.4 Date Conversion Process Type

	3.4 Definition of Observation Metadata
	3.5 Definition of Sensor Commands

	4 Interpreter Implementation
	5 Conclusions & Future Work

