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ABSTRACT: 
  
3D network analysis for indoor provides strong decision support for users in searching optimal routes on applications such as 
emergency services, transportation, security and visitor guiding. Genetic algorithm is used to solve non-linear problems with 
complicated constraints. Therefore, the implementation of genetic algorithm into route finding algorithms is needed. This paper 
explains the demand using genetic algorithm approach on dynamic network routing problems especially for 3D navigation. Abilities 
of genetic algorithm is investigated as a search strategy and necessitates of genetic algorithm on use for 3D dynamic network routing 
is presented. 
 
 

1. INTRODUCTION 

Emergency services, transportation, security, visitor guiding are 
some of common applications of 3D network analysis 
applications for indoor. Especially, the problem of evacuating 
the buildings through the shortest path with safety, has become 
more important than ever in a case of extraordinary 
circumstances (i.e. disastrous accidents, massive terrorist 
attacks) happening in complex and tall buildings of today‟s 

world. Conditions that may occur in emergency is not fixed, but 
rather is a variable structure. During the evacuation of the 
building in emergency, such cases like damaged areas, gas 
leaks, power outages etc. are effective beside travel distances on 
determining the evacuation route dynamically. 
 
When we consider online navigation assisted evacuation 
systems it may need to solve complex topologies, network 
analyses, 3D modelling and so on. Currently most of the 
building plans are represented in 2D with common attributes 
attached. Therefore, most of the available navigation systems 
use primarily 2D plans for visualization and communication 
(Meijers et al, 2005). Since navigation systems concentrate on 
visualization and data management, there is a need for 3D 
routing from the research idea. 
 
A few researches on navigation in 3D have been initiated 
recently. Research of 3D pedestrian navigation model (Lee, 
2005; Kwan et al, 2005) shows the intention of using 3D 
technology for indoor emergency response in a 3D building 
environment. 
  
In 2006, Ivin et al. had discussed the anticipated and initial 
requirements for making 3D navigation in 3D-GIS environment 
possible (Ivin et al, 2006). 
 
In 2007, Ivin et al. tried to model dynamic weight of routes 
(road networks) and implemented an incremental single sink 
shortest path (SSSP) algorithm that is used for finding shortest 
path in dynamic routes which can be extended use for 3D 
navigation in 3D-GIS (Ivin et al, 2007).  
 
In 2008, Ivin et al. suggested a new spatial analysis function in 
3D-GIS; the 3D network analysis for calculating shortest path 

routes in 3D network data model which supports dynamic 
changes information on the 3D data (Ivin et al, 2008).  
 
There also had been some approaches based on genetic 
algorithms for using on dynamic routing. In 2002, Kanoh et al. 
described a practical dynamic route selection method based on 
genetic algorithm. Their experiments with the system in a 
dynamic environment built from a real road map showed that 
the GA-based method is superior to the Dijkstra algorithm for 
use in practical car navigation devices (Kanoh et al, 2002) 
 
In 2007, Liang et al. proposed an algorithm for the shortest path 
problem in dynamic networks by using genetic algorithm. Their 
genetic algorithm's dynamic adaptation is based on random A* 
algorithm. The results of the experiments demonstrated the 
utility genetic algorithm on a very large scale dynamic 
optimization problem (Liang et al, 2007). 
 
In 2009, Kumar et al. addressed the problem of selecting route 
to a given destination on an actual map under a static 
environment and proposed a genetic algorithm based solution 
for improving the performance of single pair path algorithms  
such as A* and Dijkstra (Kumar et al, 2009). 
 
In this study, our demand for using genetic algorithm approach 
on dynamic network routing problems especially for 3D 
navigation will be explained briefly. In this initial study, we 
work on improving our previously proposed genetic algorithm 
presented in section 3 which is suitable for networks with static 
constraints for enhancing the adaptability of the algorithm 
under dynamic constraints.  
 
 

2. GENETIC ALGORITHM 

Genetic algorithm (GA) is a heuristic technique developed by 
John Holland  in 1975 based on genetic and natural selection 
principles. In 1989, Goldberg proved that GA is one of the 
powerful search methods in both theory and practice. GA starts 
with generating an initial population by random selection of the 
individuals named chromosomes that each encodes the solution 
of the problem (Xu et al, 2008). Each chromosome that encodes 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXVIII-4/W15

5th International 3D GeoInfo Conference, November 3-4, 2010, Berlin, Germany 87



 
 

a candidate solution of the problem is made with a combination 
of significant genes (Whitley, 1994). 
 
GA founded based on two fundamental evolutionary concepts: 

1. A Darwinian notion of fitness, which describes an 
individual‟s ability to survive 
2. Genetic operators, which determine the next 
generation‟s genetic makeup based upon the current 
generation (De Jong, 1988). 
 

The crossover operator generates new individuals called 
offspring, by recombining the genetic material of two 
individuals, deemed the parents. Individuals with higher fitness 
scores are selected with greater probability to be parents and 
„„pass on‟‟ their genes to the next generation. The mutation 
operator randomly alters one or more genes in an individual. 
Mutations add genetic diversity to the population. Through 
mutation, GAs can search previously unexplored sections of the 
solution space. Mutations consequently assure that the entire 
search space is connected (Cedric et al, 2003).  
 
The first step starts with obtaining the values that fitness 
function returns for each chromosome and selecting the best 
chromosomes of initial population, which will form the 
individuals of the next generation. The parents selected for 
regeneration are replaced by crossover operation and changed 
by mutation operation to produce child chromosomes. The 
chromosomes that are not passed through crossover or mutation 
and newly generated child chromosomes form a new population 
(Whitley, 1994). The generation of new populations repeats till 
defined number of times in advance or is being continued until 
not having better chromosomes (Figure 1). 
 

GENERATE INITIAL 
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(REPRODUCTION)
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Figure 1. Steps of the Genetic Algorithm 
 

As a high efficient search strategy for global optimization, GA 
demonstrates favorable performance on solving the 
combinatorial optimization problems. With comparing to 
traditional search algorithms, GA is able to automatically 
acquire and accumulate the necessary knowledge about the 
search space during its search process, and self-adaptively 
control the entire search process through random optimization 
technique. Therefore, it is more likely to obtain the global 
optimal solution without encountering the trouble of 
combinatorial explosion caused by disregarding the inherent 
knowledge within the search space (Kumar et al, 2009). 

 
 

3. PREVIOUS WORK BASED ON GENETIC 

ALGORITHM FOR ROUTING PATH 

For encoding the problem, chromosomes with constant length 
have been used. The length of the chromosome is the number of 
the nodes on the network. The genes of a chromosome represent 
nodes included in a path between a designated pair of source 
and destination nodes.  

 
To produce the initial population DFS (Depth First Search), 
algorithm is reorganized to make random selection of the nodes 
from source to destination and the same approach is also used 
in mutation phase to produce alternative paths from mutation 
point to destination. 

 
3.1  Defining the Routing Problem 

It is possible to describe underlying topology of the network 
with directed graph G=(N,A) where N is the set of the nodes, of 
cardinality n, and A is the set of the arcs, of cardinality m. There 
is a cost Cij for each (i,j)  A. These costs are defined in a cost 
matrix C=[Cij] where Cij  denotes a cost of  moving on a path 
(i,j). Source and destination nodes are respectively shown as B 
and V. The connection information of the nodes with each other 
is described in an adjacency matrix Iij shown below (Ahn et al, 
2002):  

Iij={ 1, if the link from node i to node j exist in adjacency list

0, otherwise.

 
Using the above definitions, routing problem can be formulated 
as a combinatorial optimization problem minimizing the 
objective function below as follows (Ahn et al, 2002): 

 
 
minimize         (1) 

 
 

subject to   =     (2) 

 
 

and             (3) 

 
 3.2 Genetic Representation 

In the chromosome structure of proposed GA, node numbers of 
the route from source to destination are stored as pozitive 
integer numbers. Each locus of the chromosome represents an 
order of a node in a routing path. The chromosome length is 
static. The total number of nodes N is the length of each 
chromosome in the network. The node numbers that represent 
the routing path from source (B) to destination (V) are encoded 
in the chromosome. If the node number of the solution is 
smaller than the total node number N, unused genes of the 
chromosome is assigned by zero value. The chromosome 
encoding of the proposed GA is shown in Figure 2. 

 

{ 1, if i=B

-1, if i=V

0, otherwise.

{ =0, if i=V

<=1, if i≠V
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Figure 2. Chromosome encoding of a routing path 

 
3.3 Fitness Function 

The fitness function is the object to be optimized. The fitness 
function must accurately measure the quality of the 
chromosome in the population and must have computational 
efficiency; therefore, the fitness function has a critical 
importance. The fitness function described  is as follows (Ahn 
et al, 2002): 
 
 

       (1) 
 
 

where fi represents the fitness value of the i th chromosome, Ii is 
the length of the i th chromosome, gi(j) represents the gene 
(node) of the j th locus in the i th chromosome, and C is the link 
cost between nodes. 
 
3.4 Selection (Reproduction) of a New Generation 

The selection (reproduction) operator is intended to improve the 
average quality of the population by giving the high-quality 
chromosomes a better chance to be copied into the next 
generation. In this study, roulette wheel selection method, 
which is a proportionate selection method that picks out 
chromosomes based on their fitness values relative to the fitness 
of the other chromosomes in the population, was performed. 
 
3.5 Crossover 

In this study a new gene search method named "first-matched 
gene" is presented in which the first genes matched on two 
chromosomes as crossover points were selected. Difference of 
the crossover phase used in this study from classical crossover 
is that crossover points do not have to be in the same locus of 
chromosomes. In the end of the crossover operation, two child 
chromosomes is obtained. If these child chromosomes are 
infeasible, a repair function for dealing with the infeasible 
chromosomes is performed. 
Steps of the crossover phase are shown in Figure 3. 
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Figure 3. Crossover phase 

 
3.6 Mutation 

Mutation operation maintains the genetic diversity of the 
population and changes the genes of the selected chromosomes 
and keeps away from local optima. A random path is generated 
using reorganized DFS algorithm from the mutation node to the 
destination node which is also used for creating initial 
population. This random generated path is exchanged with the 
genes starting from mutation point. The mutated chromosome 
may be feasible. In this case, a repair function for dealing with 
these infeasible chromosomes is performed. 
Steps of the mutation phase are shown in Figure 4. 
 

8 11 17 20 21 0 0 0 0 0 0 0 0 0 0…………...……
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Chromosome

Mutation point : 4
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Figure 4. Mutation phase 

 
3.7 Steps of the Genetic Algorithm and Termination 

To terminate the genetic algorithm, the fitness value of the best 
chromosome on each generation is checked. If the fitness value 
of the best chromosome obtained does not change for 10 
generations, the algorithm is stopped. The pseudo code of the 
algorithm is as follows: 

Repeat as population size 

{ 

Step-1 : Generate a random number between 0 and 1. 

Step-2 : If the random number is smaller than crossover 

rate go to Step-3, otherwise go to  next cycle of the loop. 

Step-3 : Select two chromosomes randomly from popula-

tion. 

Step-4 : Search for the matching gene starting from the 

gene of second locus of the first chromosome. Select the locus 

numbers of the chromosomes in which the first matched  genes 

included as crossover points.  

Step-5 : Starting from the crossover point, exchange the 

genes between the chromosomes.  

Step-6 : If the newly generated chromosomes have 

loops(feasible), remove the loops. 

Step-7 : Move the possible zero gene values which may 

occur after removing loops to the highest locus numbers of the 

chromosomes. 

Step-8 : Pass the newly generated chromosomes to the 

population 

} 

 
3.8 Experimental Results 

The genetic algorithm was tested on a static 2D network with 
different sizes of 10, 50, 250 and 1000 nodes. 

 
As given in Table 1, even the number of nodes grows to 1000, 
the average generation to find the optimum path is not much 
then 36.4 in worst case and by increasing the population size it 
is seen that the algorithm finds solutions in less generations. 
When the number of nodes grows by 10 times from 10 to 1000, 
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the time needed for finding the solution grows only by nearly 2 
times. 
 

 Number of Nodes 

10 50 250 1000 

P
o

p
u

la
ti

o
n

 S
iz

e 30 17,05 19,43 33,09 36,4 
50 14,16 19,41 30,57 33,2 
100 12,45 16,13 27,53 28,2 
200 12,01 13,22 25,24 27,6 
400 12 12,21 21,37 23,43 
800 12 12,01 18,14 20,12 

 
Table 1. Average generations to find the optimum path 

 
Average fitness values of the proposed genetic algorithm that 
converges the exact solution found by Dijkstra algorithm is 
shown in Figure 5. 
 

 
 

Figure 5. Convergence property of the proposed genetic 
algorithm and Dijkstra algorithm 

 
Table 2 shows the average difference of the exact routes and 
approximate routes found by the proposed genetic algorithm. 
 

 Number of Nodes 

10 50 250 1000 

P
o

p
u

la
ti

o
n

 S
iz

e
 30 % 0,6 % 20,7 % 140,1 % 159,3 

50 % 0 % 9,1 % 79,8 % 87,3 
100 % 0 % 3,6 % 57,1 % 71,2 
200 % 0 % 0,3 % 34,7 % 52,8 
400 % 0 % 0 % 20,2 % 33,1 
800 % 0 % 0 % 4 % 12,4 

 
Table 2. Average difference of the exact routes and approximate 

routes in % 
 
According to the results given in Table 2, approximate solutions 
found by the proposed genetic algorithm are very close to exact 
solutions with the node number 10 and 50. On a graph with 10 
nodes, exact solutions obtained when the population size is 50 
or greater. When the node number grows to 50, the exact 
solutions obtained with population starting from 400. By 
increasing the population size, it is seen that the algorithm gets 
closer to exact solutions. When the node number is 1000, 
average difference of the exact and the approximate routes is 
cut from 159.3% to 12.4% with the increase of population size 
from 30 to 800. 
 
 

4. GENETIC ALGORITHM BASED ROUTING ON 3D 

DYNAMIC NETWORKS 

Network analyses processes for indoors require 3D models of 
the buildings. The initial model is called “Building Model 
(BM)” which provides 3D visualization of the building. 3D BM 
is stored only for visualization and representation purposes, 
since it does not contain any topologic information. The main 
objective of BM is enabling user to see the geometry of the 
buildings on the screen (Figure 6a).  
 
3D Network model is called “Network Model (NM)” which 
represents the network in the building based on a graph 
representation. NM contains the paths between the entities in a 
building. Each entity is defined as a node, and the links between 
the nodes are also stored in this model. Therefore, NM is a 
topological model, since it contains connectivity information 
(Figure 6b). Besides, it contains geometric information such as 
coordinates of the nodes and the link lengths for providing 
visualization and the cost (the shortest/optimum path) 
computation. The model, which is represented both 
geometrically and topologically, is called “Geometric Network 
Model” by Lee (2001) (Figure 6c).  
 

 
 

(a) 
 

 
 

(b) 
 

 
 

(c) 
 

Figure 6. (a) 3D Building Model (b) 3D Topologic Model (No 
geometry) (c) Network Model (Topology + Geometry) 

 
We are currently studying on a GA based routing model for 3D 
dynamic networks. 3D Network model that is intended to be 
used in routing will be generated using MUSCLE Model 
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(Multidirectional Scanning for Line Extraction) developed by 
Karas (2007). This method can be applied on images of floor 
plans that can be represented as an image on GUI (Figure 7a). 
Models are generated automatically by analyzing and 
processing those images.  
 
The method, actually, depends on generating middle points of 
the lines. The algorithm of the method implements the line 
thinning and the simple neighbourhood methods to perform 
generation. BM and NM are generated and stored in a 
geodatabase after a series of processes including generating and 
vectorizing the lines and optimisation. 3D BM and 3D NM 
generated by MUSCLE method is shown in Figure 7b and 
Figure 7c.  

 
(a) 

 

 
(b) 

 

 
(c) 

 
Figure 7. (a) Floor plan of building (b) 3D Building Model (c) 

3D Network Model 
 

The GA model that we want to propose will be implemented on 
an automatically extracted 3D network model of a building 
(Figure 8a). GA based model will satisfy the need of dynamic 
routing purposes and network analysis. (Figure 8b). Our aim is 
to utilize the adaptation ability of GA to the changing situations 
and improve the performance of shortest path algorithms such 
as A* and Dijkstra. 
 

 
(a) 

 

 
(b) 

 
Figure 8. (a) 3D Visualization of Building and Network Model 
(b) 3D Visualization of Optimum Path Between Two Entities  

 
GA is used to solve combinatorial optimization problems and 
non-linear problems with complicated constraints or non-
differentiable objective functions. It necessitates the application 
of GA into GIS route finding algorithms (Kumar et al, 2009). 
We want to improve the performance of single pair path 
algorithms such as A* and Dijkstra by adapting the GA on 
dynamic networks. That is why we want to use GA on 3D 
dynamic network analysis. 
 
 

5. CONCLUSIONS 

Searching optimal path is an important advanced analysis 
function in GIS. Unlike traditional search algorithms, GA is 
able to automatically obtain and gather knowledge about the 
search space during its process. Therefore, integration of GA 
into shortest path algorithms may improve the quality of 
solutions on dynamic routing. Dynamic routing problems in 
network analysis may be solved using genetic algorithm 
through efficient chromosome encoding and genetic operators. 
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