
ISPRS Archive Vol. XXXVIII, Part 4-8-2-W9, "Core Spatial Databases - Updating, Maintenance and Services – from Theory to 
Practice", Haifa, Israel, 2010  

A Deterministic Cellular Automata Model for Simulating Rural Land Use Dynamics: A Case Study of Lake Chad Basin 

 
A. P.  Ozah a, *,  F. A. Adesina b, A.  Dami b,    

a Regional Centre for Training in Aerospace Surveys (RECTAS), PMB 5545, Off Road 1, 
OAU Campus, Ile-Ife, NIGERIA - azukaozah@yahoo.com 
b Department of Geography, Obafemi Awolowo University,  

Ile-Ife, NIGERIA –  (tonidamy@yahoo.com, faadesin@yahoo.com) 
 

Commission VIII, WG VIII/1 and WG VIII/8 
 
KEY WORDS:  cellular automata, grid cell, transition model, land-use, potential model, markov chains, transition rule   
       
 
ABSTRACT 
 
Cellular automata (CA) models (deterministic, stochastic or hybrid)  have recently garnered tremendous popularity as spatial 
simulation techniques in a wide range of urban modelling domains and, as such, the vistas of research in this direction are rapidly 
expanding. Over the past few years, CA models have found application in  spatial simulation involving a plethora of themes, 
including  population dynamics, polycentricity, urban land-use evolution, gentrification, urban sprawl and a host of others. Compared 
to conventional mathematical tools of spatial simulation such as differential equations, partial differential equations and empirical 
equations, CA models are relatively simple yet produce results that are stunningly meaningful and useful to support decision making 
in a planning context. Operating in synergy with other  planning models and such other cutting-edge technologies as Geographic 
Information Systems (GIS) and digital image processing, CA can  help to portray the dynamics and patterns of growth in a given 
spatial context. We present a synergistic approach featuring an integration of  a deterministic CA model with  Markov chains 
transition model to determine the patterns and dynamics of land-use change in a rural setting. The site chosen for this study is the 
Lake Chad Basin, an endorheic basin supporting a population of over twenty million people living in four African countries (Chad, 
Cameroon, Niger and Nigeria) where the people are among Africa's most chronically vulnerable to food insecurity due to the drastic 
impact of natural and anthropogenic agents of ecological transformation  in the basin. Using remotely sensed images obtained at 
three different dates with at least ten years separating any two dates (1975, 1987 and 1999) together with other supporting attribute 
data, simulation runs were executed to construct two different future scenarios (2011 and 2023) of rural land-use dynamics. In the 
simulation analysis, Water, Wetland, Openland and Forest land-use classes were predicted to register net losses  while the Road, 
Settlement and Farm land-use classes were predicted to register net gains in both 2011 and 2023 predicted  land-use scenarios. Based 
on the simulation results, the Lake Chad ecosystem was noted to undergo extensive land-use/land-cover transformation in the future. 
This study demonstrates that the proposed methodological approach of integrated rural land-use scenario building and analysis 
relying on the CA-based land-use simulation model  possesses an encouraging and exciting  prognosis as a technique to support rural 
land-use planning and policy for sustainable development.  
 

                                                                 
*  Corresponding author. 

1. INTRODUCTION 

The issues of  land management and land-use change (rural or 
urban) dominate the development agenda of all countries of the 
world and, over the years, have remained  highly political and 
contentious. This is expected in the context in which optimal 
land-use planning is perceived as an indispensable factor for 
ensuring food security, environmental sustainability and 
economic development.  One of the recent studies on the impact 
of increased pressure on land and the effects of land-use and 
land management practices on the dynamic character of rural 
ecosystems show that a strong correlation exists between 
balanced, sustainable land development and, human, food and 
environmental security (Houet, T,. et al, 2006). Other recent 
studies on land management indicate that, in many parts of the 
world, the rural landscape is experiencing rapid land-use/land-
cover (LULC) changes (Kamusoko, C. et al, 2008). It is not 
surprising therefore that the issue of rural land use change 
occupies the front-burner of the development initiatives of 
responsible governments the world over. The desire of planning 
authorities and municipal governments is to articulate policies 
and programmes capable of maintaining a balanced ecosystem 
or to mitigate or prevent, on a sustainable basis, the  devastating 
consequences  of severe land-use change when they occur. 
Achieving this goal requires that such authorities must adopt 
responsible, holistic and sustainable development strategies 
which must axiomatically be carried out using spatial decision 
support tools and methodologies. 
 

The spatio-temporal dynamics of  rural ecosystems is an 
invariably complex phenomenon that involves a complex nexus 
of interacting forces of causal agents. It has been demonstrated 
that, in order to disentangle the complex suite of socio-economic 
and bio-physical forces that influence the rate, spatial pattern 
and distribution of land use change and to estimate the impacts 
of such changes, spatially-explicit land use models are 
indispensable (Costanza, R. et al, 1998). As reproducible tools, 
such spatial simulation models have the potential to expand the 
planner’s knowledge domain and to support the exploration of 
future land use changes under different scenario conditions, thus  
supplementing his existing mental capabilities to analyze land 
use change and to make more informed decisions.  Such tools 
can help to predict ecological responses to changing landscape 
heterogeneity and to gain insights into the variability of 
landscape patterns and processes over time.  
 
The research on dynamic landscape  modelling using spatial 
simulation models is quite extensive and varied (Batty and Xie, 
1994). These models have been successfully applied in such 
domains as land-use allocation and land-use planning.  The most 
recent of  these spatial simulation models are based on simulated 
annealing, genetic algorithms, cellular automata (CA), or agent 
based models.  Until this recent development, spatial simulation 
models were exclusively  based on techniques such as 
differential equations, partial differential equations and  
empirical equations. CA models (deterministic, stochastic or 
hybrid)  have recently garnered tremendous popularity as a 
spatial simulation technique in a wide range of urban and rural 
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land use simulation and  modelling domains and, as such, the 
vistas of research in this direction are rapidly expanding. Over 
the past few years, CA models have found application in  spatial 
simulation involving a plethora of themes, including  population 
dynamics, polycentricity, urban land-use evolution, 
gentrification, urban sprawl and a host of others. Compared to 
conventional mathematical tools of spatial simulation such as 
differential equations, partial differential equations and 
empirical equations, CA models are relatively simple yet 
produce results that are quite meaningful and useful to support 
decision making in a planning context. Although Geographical 
Information Systems (GIS) are powerful tools to collect, store, 
manage and analyze spatial data, current GISs have shown 
considerable weakness and limitation in spatial decision making 
which are due, in great part, to their lack of sophisticated 
analytical and spatial modeling tools (Malczewski, 1999; Park et 
al, 1997). Many studies have shown that the integration of 
Geographic Information Systems (GIS), cellular automata (CA) 
models, land use allocation models (such as multi-criteria 
evaluation) and statistical simulation models (such as Markov 
chains) provides a powerful environment to simulate and predict 
dynamic phenomena such as urban and rural spatial growth 
(Clarke et al, 1997;  Fengyun, M., et al, 2005).  
 
In this study, we present a methodological framework that 
leverages the suitability-based cellular automata land-use 
simulation model.  The proposed approach involves loose-
coupling Geographical Information Systems with Markov 
chains, Multi-criteria Evaluation and Cellular Automata models 
to model and simulate the rural land-use dynamics using spatial 
and thematic data sets covering a section of the Lake Chad 
Basin, an endorheic basin supporting a population of over 
twenty million people living in four African countries (Chad, 
Cameroon, Niger and Nigeria) where the people are among 
Africa's most chronically vulnerable to food insecurity due to the 
devastating impact of natural and anthropogenic drivers of 
ecological transformation in the basin. Our proposed 
methodology features a workflow-centric,  three-step process 
starting from change quantification (transition model using 
Markov Chains) through change location (potential model using 
MCE) to change differentiation (cellular automata).  A time-
series of multi-scale, multi-resolution and multi-temporal 
historical satellite imagery and other existing 1:50,000 
topographic maps of the study site served as input spatial data 
sets to determine and delineate the landscape features and the 
land-use/land-cover trends over the period from 1975 through 
1987 to 1999. Bio-physical data (digital elevation model and 
precipitation data) and accessibility data (distance to roads, 
distance to water and distance to settlements)  served as input 
suitability spatial factors that were compiled, analyzed and 
assessed to quantify spatial dependencies using raster-based map 
algebra and spatial statistical techniques.  
 
1.1 Markov Chain Model 

A Markov chain model is defined by  a set of states and a set of 
transitions with associated probabilities where the transitions 
emanating from a given state define a distribution over the 
possible next states. The controlling factor in a Markov chain is 
the transition probability, a conditional probability for the 
system to undergo transition to a new state, given the current 
state of the system. One special class of Markov chains that 
finds wide application in practical simulation problems is the 
homogeneous Markov chain. A problem can be considered a 
homogeneous Markov chain if it has the following properties 
(Anthony, T. L., 2000):  

 For each time period, every object  in the system is in 
exactly one of the defined states.  

 The objects move from one state to the next according 
to the transition probabilities which depend only on 
the current state (previous history is not taken into 
account).  

 The transition probabilities do not change over time. 
A homogeneous Markov chain can be represented 
mathematically as follows (Equations 1 and 2).   
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where    n         =  number of time steps; 
             m        =  number of states; 
            tQ       =  vector of initial states at an initial time, t; 

            1+tQ    =  vector of states at the next time,  t+1;  
            P        =   transition probabilities matrix. 
A common practical application of the Markovian simulation 
model is the prediction of a future land-use scenario given a past 
history of land-use situations. In this analytical situation, the 
states are represented by the land-use classes (eg., the classes in 
a classified satellite image). An example of a Markov transition 
probability is the probability of  one land-use class at an initial 
time, t changing to another (or remaining in the same) class at a 
later time, t+1. The crossing of two raster-structured maps 
representing the terrain situation at two different times  is a 
contingency table (class occupation statistics) of the classes from 
the two maps. The table is known as the transition cells matrix 
and can be used to compute the transition probabilities matrix by 
dividing every entry in a row (class at an initial time) by the 
total number of cells in that row. 
 
1.2 Multi-criteria Evaluation 

Land-use change is often modelled as a function of a selection of 
socio-economic and bio-physical variables that act as the 
“driving forces” or factors of land-use change. Driving forces 
are generally categorized into three main groups: socio-
economic drivers (e.g. population pressure, income levels and 
agricultural production) bio-physical drivers (e.g. climatic 
factors such as rainfall, temperature, humidity and topographic 
variables such as altitude, slope and aspect) and proximate or 
accessibility  factors (e.g. distance to road, distance to settlement 
and distance to water).  
 
Multi-criteria decision-making (MCDM) or Multi-criteria 
Evaluation (MCE) problems involve a set of alternatives that are 
evaluated on the basis of a set of evaluation criteria (Jacob, N et 
al., 2008). Using MCE, different factors or change drivers can be 
combined using appropriate weights assigned to the factors. The 
result of such a combination is a numerical value map 
representing the land “transition suitability” or “transition 
potential”, values (scores) that describe the potential of cells to 
undergo transition from a current state (e.g. “forest”) to a new 
state (e.g. “built-up”). A number of methods have been proposed 
for weighting the factors. Examples include direct weighting, 
rank-order weighting and Analytical Hierarchy Process (AHP). 
Of these approaches, AHP has been identified as a weighting 
strategy that can overcome the problem of weighting bias which 
are obvious short-comings of  the direct and rank-order methods 
(Deekshatulu et. al. 1999). AHP can be used to determine the 
relative importance of a set of activities or criteria through a 
pair-wise comparison of the various factors. The first step of the 
AHP is to form a hierarchy of objectives, criteria and all other 
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elements involved in the problem. Once the hierarchical 
structure has been formed, comparison matrices are developed as 
results of evaluations made by the decision-makers on the 
intensity of difference in importance, expressed as a rank 
number on a given numerical scale for each level in the 
hierarchy. This forms the basis of the final computation of the 
factor weights. An elaborate description of the MCE process by 
AHP can be found in Jacob N., et al.(2008). In a typical practical 
application, the factors (input) into the process are spatial factors 
or factor maps (eg. aspect map, slope map, distance map, 
population surface map, etc), spatial constraints (e.g. a binary 
map of the exclusion zones such as maps of underground 
treatment plants, water canal, landfill sites, etc) and non-spatial 
constraints. Some MCE modelling methods require that the 
factors be standardized prior to the computation of the final 
transition suitability (potential) map (ILWIS, 2007).  
 
1.3 Cellular Automata 

Cellular Automata (CA) are dynamic models that can be 
employed to simulate the evolution or dynamics of a wide 
variety of natural and human systems. They are processing 
algorithms that were originally conceived by Ulam and Von 
Neumann in the 1940s to study the behavior of complex  systems 
(von Neumann, 1966). CA models present a powerful  
simulation environment represented by a grid of space (raster), in 
which a set of transition rules determine the site attribute of each 
given cell taking into account the attributes of cells in its 
vicinities. These models have been very successful in view of 
their operationality, simplicity and ability to embody both logic 
and mathematics-based transition rules, thus enabling  complex 
global patterns to emerge directly from the application of simple  
local rules. A cellular automaton system consists of a regular 
grid of cells, each of which can be in one of a finite number of k 
possible states, updated synchronously in discrete time steps 
according to a local, identical interaction (transition) rule. The 
state of a cell is determined by the previous states of a 
surrounding neighborhood of cells. The types of spatial problems 
that can be approached using CA models include spatially 
complex systems (e.g., landscape processes), discrete entity 
modeling in space and time (e.g., ecological systems, population 
dynamics) and  emergent phenomena (e.g., evolution, 
earthquakes).  From the application perspective, CA are dynamic 
models that inherently integrates spatial and temporal 
dimension. 
 
CA is composed of a quadruple of elements as defined in the 
following equation (White and Engelen, 2000). 
               { }RNSXCA ,,,=                                                (3) 

where       CA  =  cellular automaton; 
                 X    =  CA cell space; 
                 S     =  CA states; 
                 N    =  CA cell neighbourhood; 
                 R    =  CA transition rule; 
 

Cell space: The cell space is composed of individual cells. 
Although these cells may be in any geometric shape, most CA 
adopts regular grids to represent such space, which makes CA 
very similar to the cellular structure of  raster GIS. 
Cell states: The states of each cell may represent any spatial 
variable, e.g., the various land-use types. The state transition of a 
CA is defined by the following relation: 
 

))),(),((( ,,,,1 jitjitjitjit RNSfS =+                                        (4) 

where  jit S ,1+   = new (next) state of a cell, jiC ,  at time t+1; 

               jit S ,  = initial state of a cell, jiC ,  at time t; 

              jit N ,  = neighbourhood of a cell, jiC ,  at time t; 

              jit R ,  = transition rule applied to cell, jiC ,  at time t. 
Transition rules:  Transition rules guide and control the 
dynamic evolution of CA. In classical CA, transition rules are 
deterministic and unchanged during evolution. In several recent 
studies, however, they are modified into stochastic and fuzzy 
logic controlled methods (Wu, 1998). 
Neighbourhood: This is defined by the local neighbours of a 
cell. In a two-dimensional cellular automata model there are two 
common types of neighbourhood: the Von Neumann 
neighbourhood with four neighbouring cells and the Moore 
neighbourhood with eight neighbours (see Figure 1 below).  
 
 
 
 
 
                 
                       (a)          (b) 

Figure 1.  3 x 3 Neighbourhood Kernels showing:  
          (a) Moore neighbourhood and 
          (b) Von Neumann neighbourhood   

 
The future state of a cell in a CA is dependent on its current state, 
neighborhood states, and transition rules which are setup and 
fine-tuned using transition suitability or potential scores of 
individual cells. Iterative local interaction between cells within 
the neighborhood finally produce the global pattern.  
 

2. STUDY SITE 

The site for this study is a section of the Lake Chad Basin, an 
endorheic basin  located approximately between latitudes 12oN 
and 14o 30’ N and Longitudes 13o E and 15o 30’ E. The basin is 
shared by four West African countries namely, Chad, Cameron, 
Nigeria and Niger and supports a population of over twenty 
million people. The Lake basin comprises five bio-climatic 
zones, namely, Saharan, sahelo-saharan, sahelo-sudanian, 
dudano-sahelian and sudano-guinea ecological zones. The south-
west humid Atlantic (monsoon) and the north-east Egyptian hot 
and dry (harmattan) currents influence the climate and 
consequently the ecological zonation of the basin. The sudano-
guinean climate in the south for example has annual rainfall of 
over 950 mm, a rainy season of six to seven months (May - 
November) with an average annual temperature at Sarh of 28oC 
(absolute minimum 10oC, absolute maximum 450) and annual 
Piche-recorded evaporation of 2027mm in 1961 
(Thambyahphillay, G. G. R., 1987). The topography of the lake 
basin can be described as  generally flat with a few shallow 
depressions and a few widely scattered elevated spots. In terms 
of hydrogeology, the basin lies in a tectonic zone with an 
extensive sedimentary basin where depositional events, resulting 
in the formation of four aquifers, had taken place in tertiary and 
quaternary times (LCBC, 2007). The soil characteristics of the 
Chad basin region are Ferruginous Tropical and undifferentiated 
semi-arid brown soils. These cover about two-fifths of the basin 
while the remaining 60 percent is covered by a zonal vertisols, 
regosols and mixtures of alluvial and vertisols characterized by a 
high shrink-swell potential. The Nigerian section of the basin 
has been rated as soil having  about 90 percent  potentiality of 
medium to high fertility. The predominant vegetation of the 
basin is comprised of the woodland and  pseudo-steppe types 
populated with trees and shrubs. Figure 2 shows a map of the 
study site depicting  a section of Lake Chad Basin chosen for 
this study. 
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    Figure 2. Map of the study site showing a section of Lake   
    Chad Basin (Source: http://www.answers.com) 
 

3. DATA,  MATERIALS AND METHODS 

3.1 Data Sources 

The simulation of rural land-use dynamics undertaken in this 
study for the chosen site was intended to statistically and 
spatially associate future land-use scenarios with historical 
growth patterns in the study area by employing the site attributes 
(bio-physical data) covering the area. Consequently, the 
following spatial data types  were acquired: a set of satellite 
image data acquired at three different dates; topographic maps; 
digital elevation data; and climatic data. A set of three Landsat 
image scenes acquired at three different dates (1975, 1987 and 
1999) were downloaded  from the Global Land Cover Facility 
(GLCF) digital image archive at http://www.glcf.com. The 1975 
Landsat TM image was obtained in the mosaicked format with a 
spatial resolution of 30m. The 1987 Landsat TM had a spatial 
resolution of 30m while the 1999 Landsat ETM+  image  had a 
spatial resolution of 28.5m.  Scanned copies of  the 1:50,000 
topographic maps covering the study site were obtained from the 
Office of the Surveyor-General of the Federation (OSGOF) of 
Nigeria. An appropriate image tile of the Advanced Spaceborne 
Thermal Emission and Reflection  Radiometer (ASTER)  
GDEM  was downloaded from global data server at 
http://www.gdem.aster.ersdac.or.jp. Similarly, a tile of CGIAR-
CRU rainfall data covering the study site was downloaded from 
the CGIAR-CRU Global Climate Database at 
http://cru.csi.cgiar.org.  Table 3 lists the source data sets with 
their scale/resolution properties and dates of acquisition while 
Figure 3 shows the Landsat images as obtained. 
 
1 
                                                                 
1Office of the Surveyor-General of the Federation, Nigeria. 
2 Global Land Cover Facility (www.glcf.com). 
3Advanced Spaceborne Thermal Emission and Reflection     
 Radiometer  (http://www.gdem.aster.ersdac.or.jp) 
4Consultative Group for International Agriculture Research - Consortium for 
Spatial Information:  Global Climate Database (http://cru.csi.cgiar.org).  
 
 

 
Data Source Scale/Resolution Date 
Landsat TM GLCF1 30m 1975 
Landsat TM GLCF1 30m 1987 
Landsat ETM+ GLCF1 28.5m 1999 
Topographical  map OSGOF2 1:50,000 1965 
ASTER GDEM ASTER3 30m 2009 
CGIAR-CRU Rainfall CGIAR-CRU4 0.5° 1999 
Table 3. Spatial data sets employed in the study 
 

  1975 Landsat image 
 

1987 Landsat image 
 

1999 Landsat image 
Figure 3. Source Landsat images of 1975, 1987 and 1999. 
 
3.2 Materials 

Although several off-the-shelf GIS and digital image processing 
software packages exist and have been successfully used by 
several researchers to implement CA-based spatial simulations 
(see Houet, T,. et al, 2006), such tools were not available to us 
during the course of this study. However, an open-source digital 
image processing and GIS package, Integrated Land and Water 
Information System (ILWIS, 2007) was found adequate for the  
execution of most of the data processing, conversion, integration 
and presentation tasks. Special tasks and functionalities required 
for the simulation but are not supported in the ILWIS software 
were implemented using in-house programs developed in Visual 
Basic 6.0 environment. 
 
3.3 Methodology 

Data preparation, conversion and processing: Our proposed 
framework for simulating rural land-use dynamics requires five 
input maps as summarised in Table 4 below. 
 
Input map Description 
 
Initial configuration 

Map showing the initial (seed) scenario for 
the simulation. 

Transition suitability map Map showing transition  potential values 
for each land-use  class. 

Suitability threshold map Attribute map depicting suitability cut-off 
values for each land-use class.  

 
Predominant count map 

Map depicting the count of the 
predominant class within the 
neighbourhood of each cell of the original 
(initial configuration) map. 

 
Predominant class map 

Map showing the class with the 
predominant count within the 
neighbourhood of each cell of the original 
(initial configuration) map. 

Table 4. Input maps for CA-based simulation 
 
The first step in our methodological approach was the pre-
processing of input maps and tables for the simulation. All the 
required data sets were first imported into the ILWIS 
environment and converted into ILWIS format. The CGIAR-
CRU Rainfall data (point raster format) was then interpolated 
using the Inverse Distance Weighted (IDW) method and re-
sampled to obtain  a 30-m resolution surface map. All the three 
satellite images, including the scanned topo maps, the ASTER-
GDEM and the CGIAR-CRU rainfall surface map were then 
geo-referenced to the UTM (Zone 33) projection on WGS84 
Ellipsoid using ground control (tie-points) read off from the topo 
maps. The required slope and aspect maps were then derived 
from the ASTER-GDEM (altitude) map using raster map 
calculation. The 1975 (mosaicked) source image was observed 
to show marked differences in spectral characteristics due 
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probably to disparities in image acquisition conditions. Since 
this could lead to erroneous classification results, this image was 
first unglued to obtain its component parts. In the study area, 
seven land-use classes (Road, Settlement, Water, Wetland, 
Openland, Farm and Forest) were identified and considered as 
candidate “states” for the simulation. However, all the source 
images were classified into only five land-use classes (Water, 
Wetland, Openland, Farm and Forest). The Road and Settlement 
classes were omitted from the classification since they showed 
very similar spectral characteristics with the Openland class. The 
separate components of the 1975 image were first classified in 
the ILWIS environment using the maximum likelihood classifier 
and finally glued back together to obtain a seamless image. The 
same digital classification parameters were then applied to 
classify the 1987 and the 1999 images.  To include the Road and 
Settlement classes, the two  feature types were extracted from 
the topo maps by on-screen digitizing and overlaid on each of 
the three original images. The corresponding polygons 
(Settlement class) and segments (Road class) were then updated 
to reflect the situation at each period. Each of the Road and 
Settlement layers so delineated  were then rasterized and merged 
into the corresponding classified image using raster map 
calculation function available in ILWIS. Finally, a spatial 
constraint map layer was created by digitizing the Water Canal 
features from the topo maps. Similarly, three accessibility maps 
(distance to road, distance to settlement and distance to water) 
were generated from the road, settlement and water layers using 
the distance calculation function in ILWIS. An extract of the 
defined study area was thereafter made from each of the 
resulting images and stored for further analysis. The final 1975, 
1987 and 1999 classified images are shown in Figure 4 below: 
 

 
(a) 

 
(b) (c)  

Figure 4: Classified images of : (a) 1975; (b) 1987 and (c) 1999  
 
In this study, we adopted the classified 1999 image (latest 
image) as the initial (seed) configuration for the CA simulation. 
Based on this classified image, the neighbourhood predominant 
count map and the neighbourhood predominant class maps were 
generated by applying the neighbourhood map calculation 
functionalities supported in the ILWIS software based on the 
Moore neighbourhood (Figure 1(a)).  To obtain the transition 
cells matrices, two successive classified images were crossed, 
giving the class occupation statistics of the two image pairs. The 
1975-1987  and 1987-1999 transition cells matrices so obtained 
were then employed to compute the corresponding transition 
probabilities matrices as described in Section 1.1 of the paper. 
Using the method described in Berchtold A. (1998), a 
homogeneous transition matrix representing the general trend of 
land-use evolution over the period between 1975 and 1999 was 
computed based on the two separate transition matrices. The 
homogeneous transition matrix and the class populations (initial 
states vector) from the seed image constituted input variables for 
the computation of the transition model. 
 
The transition (quantification of land-use changes) model for the 
simulation was then executed to obtain simulated rates of change 
corresponding to proposed future scenarios (2011 and 2023). 
Adopting the latest period (1999) as the initial (seed) period, the 
homogeneous Markov chain model (Equation 2, Section 1.1) 
was  applied (substituting the homogeneous transition matrix for 
P and the 1999 class population values for Q) to compute 
simulated transition rates (cells) for 2011 (n=1 or first time step) 
and 2023  (n=2 or second time step). The results obtained from 

this operation are as summarized in Tables 7 (a), (b) and (c) 
below. From Tables 7(b) and (c), the suitability threshold map 
was generated by interpolating the values in these tables 
(column F) from the cumulative histograms of the individual 
classes for the two scenarios (Table 6). This operation was 
performed using an in-house program developed in Visual Basic 
6.0.  A composite suitability threshold map was finally 
generated by assigning  the computed threshold values to each of 
the land-use classes.    
 
The next step in the simulation process was the computation of 
the potential model (using MCE) to generate the transition 
suitability (potential) maps.  In this study, seven spatial factors 
(altitude, slope, rainfall, distance to road, distance to settlement 
and distance to water) and one spatial constraint (water canal) 
were considered to affect the suitability of cells for conversion 
into other land-use classes. Socio-economic factors such as 
population density and agricultural productivity were not 
available during the course of this study. For each of the 
available factors, a factor map was prepared. This process was 
effected in ILWIS by first creating a factor group for each land-
use class and then populating the group with the maps 
corresponding to each of the factors. This was followed by a 
process of standardization of each map considering the overall 
goal of the evaluation in relation to the contribution of each 
factor towards the goal. The factors per group were then 
weighted using the Analytical Hierarchy Process (AHP) by pair-
wise comparison of factors (see Saaty, 1980 for details). This 
resulted in specific weights assigned to each factor (see Table 5). 
The AHP was assessed using the inconsistency ratios and the 
computed weights were accepted and used in the computation of 
a composite index map (suitability map) for each factor. Thus 
seven different suitability maps corresponding to the seven 
different land-use classes were obtained from the MCE-AHP 
process.  To obtain a single suitability map, all the seven 
suitability maps were combined using the map calculation 
functionality in ILWIS. The final transition suitability map was 
then generated using cell-by-cell multiplication of the composite 
suitability map and the binary constraint map. This operation 
assigned a suitability value of  zero (unsuitable) to all cells 
corresponding to the water canal feature.  
 

Land-use Classes Factor 
C1 C2 C3 C4 C5 C6 C7 

F1 0.140 0.036 0.045 0.116 0.053 0.032 0.047 
F2 0.071 0.073 0.070 0.089 0.053 0.049 0.053 
F3 0.071 0.085 0.029 0.054 0.053 0.028 0.026 
F4 0.045 0.025 0.315 0.325 0.333 0.335 0.431 
F5 0.316 0.278 0.096 0.046 0.109 0.154 0.115 
F6. 0.231 0.158 0.131 0.044 0.109 0.116 0.192 
F7 0.127 0.346 0.315 0.325 0.291 0.287 0.134 
TW 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
IR 0.099 0.089 0.090 0.049 0.059 0.099 0.090 

Table 5. Multi-Criteria Evaluation factor weights for different Land-
use classes computed  based on Analytical Hierarchy Process (AHP) 
(Classes: C1=Road, C2=Settlement, C3=Water, C4=Wetland, C5=Openland, 
C6=Farm, C7=Forest; Factors: F1= Altitude, F2=Slope, F3=Aspect, F4=Rainfall, 
F5=Distance to road, F6=Distance to settlement, F7=Distance to water; TW=Total 
Weight; IR=Inconsistency Ratio) 
 
 

LU Class Suitability Threshold (2001)  Suitability Threshold (2023)  
Road 0.916626547 0.912322272 
Settlement 0.962713488 0.956168315 
Water 0.757331349 0.746932254 
Wetland 0.73871287 0.67372059 
Openland 0.815529404 0.788445542 
Farm 0.787391162 0.777337315 
Forest 0.737500963 0.730205614 

Table 6. Predicted transition suitability threshold values  for 1999-
2011 and 1999-2023 simulations 
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Class populations 

LU Classes 1999 2011 2023 
Road 40596 45216 50465 
Settlement 1661531 2186508 2706862 
Water 984230 900545 825165 
Wetland 2977357 1900899 2018867 
Openland 7191009 6584558 6541046 
Farm 4202185 6196237 6138675 
Forest 5339142 4582088 4114970 

(a) 
Class A B C D E F G 
C1 40596 5401 781 4620.1 13.3 1.9 11.4 
C2 1661538 599371 74394 5 2 4 9 7 6 . 4 36.1 4.5 31.6 
C3 984234 189062 272747 -83685.2 19.2 27.7 -8.5 
C4 2977370 1551940 2628398 -1076458.1 52.1 88.3 -36.2 
C5 7191041 1056422 1662872 -606450.8 14.7 23.1 -8.4 
C6 4202204 4606912 2612860 1994052.0  109.6 62.2 47.5 
C7 5339166 2424867 3181922 -757054.4 45.4 59.6 -14.2 

(b) 
Class A B C D E F G 
C1 40596 11415 1546 9868.9 28.1 3.8 24.3 
C2 1661538 1187798 142467 1045331.2 71.5 8.6 62.9 
C3 984234 307434 466499 -159065.3 31.2 47.4 -16.2 
C4 2977370 1587111 2545601  -958490.2 53.3 85.5 -32.2 
C5 7191041 2040933 2690895  -649962.5 28.4 37.4 -9.0 
C6 4202204 4783369 2846879  1936490.2 113.8 67.7 46.1 
C7 5339166 2445938 3670110  -1224172.3  45.8 68.7 -22.9 

(c) 
Table 7. Simulation statistics:  
 (a) Class populations  for seed and simulated configurations 
 (b) 1999-2011 and (c) 1999-2023 
(A=number of  cells in the seed map, B=gain in cells between initial and simulated 
maps, C= loss in cells between initial and simulated maps, D= net gain in cells 
between initial and simulated maps, E= % gain in cells between initial and 
simulated maps, F=% loss in cells between  initial and simulated maps, G= % net 
gain in cells between initial and simulated maps; C1=Road, C2=Settlement, 
C3=Water, C4=Wetland, C5=Openland, C6=Farm, C7=Forest) 
 
Cellular Automata Simulation Runs: In keeping with the goal 
of simulating the rural land-use dynamics for our study area, 
CA-based transition rules (algorithms) were implemented in an 
ILWIS-based script. In designing the CA transition rule, the 
Moore neighbourhood kernel (see Section 1.3)  was adopted 
with a kernel threshold of 3.  A cell would therefore undergo  
state transition to the state of the predominant cell in its 8-cell 
neighbourhood if its transition suitability value is greater than 
zero and if it is not “Settlement” or “Road” and if its transition 
suitability value is greater than the suitability threshold value 
and if the count of the predominant cell is greater than or equal 
to the neighbourhood kernel threshold value of 3. It is to be 
noted that several other constraints can be integrated into the 
transition rule to achieve some set configuration. Algorithm 1 
shows a simple Basic-like CA-based transition algorithm 
developed for the simulation. The script was designed to 
reference the five raster-structured maps generated in the 
previous sub-section as input maps to compute  final (simulated) 
raster maps corresponding to the 1999-2011 and 1999-2023 
scenarios based on neighbourhood map calculation. Figure  5 
shows the resulting simulated maps for the two proposed 
scenarios.   
 

   

  
  Seed image (1999) 

 
  Simulated (2011) 

 
  Simulated (2023) 

 
 

Figure 5. Seed image (1999) and  simulated images  (2011 and 2023). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Simulation Evaluation: In order to determine the degree of 
reliability of the simulation results, a numerical evaluation was 
conducted using the historical image data sets for the three 
periods (1975, 1987 and 1999). This task was done by 
simulating transition rates for 1987 and 1999 using the  1975 and 
1987 class populations respectively based on Markov chain 
prediction. For each simulation scenario, the accuracy in the 
estimation of each land-use class was computed using the 
following formula: 















=

Value Real
Value Real - Value Simulatedabs - 1100)Accuracy(%  

The results obtained for the two scenarios are as presented in 
Table 8 below. 
 

Simulation  for 1987  Simulation  for 1999 LU 
Class Real Predicted Acc(%) Real Predicted Acc (%) 

C1 38378 35177 91.7 40596 39781 98.0 
C2 1135212 941912 83.0 1661531 1564405 94.2 
C3 882703 1074995 78.2 984230 957563 97.3 
C4 1148271 2051885 21.3 2977357 2109228 70.8 
C5 8016597 7109876 88.7 7191009 7016688 97.6 
C6 8561286 6642613 77.6 4202185 6429666 47.0 
C7 2613603 4539592 26.3 5339142 4278720 80.1 

Table 8: Simulation evaluation results 
(C1=Road, C2=Settlement, C3=Water, C4=Wetland, C5=Openland, C6=Farm, 
C7=Forest) 
 

4. RESULTS AND DISCUSSION 

The quantitative results of the integrated spatial simulation of 
rural land-use dynamics  undertaken in this study are presented 
in Tables 6 and 7  while its graphical (image) outputs are 
presented in Figure 5.  As shown in Tables 7  (b) and (c), Water, 
Wetland, Openland and Forest classes were predicted to register 
net losses of  8.5%, 36.2%, 8.4% and 14.2% respectively for the 
2011 scenario and  16.2%, 32.2%, 9.0% and 22.9%  respectively  
for the 2023 scenario, while Road, Settlement and Farm classes 
were predicted to register net gains of  11.4%, 31.6%, and 47.5% 
respectively for the 2011 scenario and  24.3%, 62.9% and 46.1%  
respectively  for the 2023 scenario. As can be discerned from 
Table 8, the accuracies of the simulation of the various land-use 
change rates are better for the 1999 scenario (long-tern 
projection) than that for the 1987 scenario (short-tern 
projection).  This situation needs to be further investigated.  
 
From the initial and simulated images presented in Figure 5,  the  
morphological changes in the land-use classes between the 
original image and its simulated versions are clearly visible.  
 

5. CONCLUSION AND RECOMMENDATIONS 

An integrated methodological approach featuring the coupling of 
GIS with Markovian, MCE and CA models for modelling and 
simulating the spatio-temporal dynamics in a rapidly changing 

Algorithm 1: Basic-like CA-based transition rule for the simulation 
--------------------------------------------------------------------------------------- 
If (Suitability_Map = 0) Then 
         Simulated_Map = Initial_Map;   ‘No change in cell state 
  Else 
     If ((Initial_Map = "Settlement") Or (Initial_Map = "Road")) Then 
            Simulated_Map = Initial_Map;   ‘No change in  cell state 
     Else 
        If ((Suitability_Map >= Suitability_Threshold_Map) And        
             (Predominant_Count >= 3)) Then 
                Simulated_Map = Predominant_Class; ‘ Update cell state 
        Else 
                Simulated_Map = Initial_Map;   ‘No change in cell state 
        End if 
     End if 
  End if 
----------------------------------------------------------------------------- 
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ecosystem (the Lake Chad Basin) was presented in this study. 
The proposed integrated model was successfully used to model, 
analyze and construct  future land-use scenarios based on 
empirical, ground-truth spatial data sets acquired over a period 
of twenty-four years (1975-1999). The results of the simulation 
analysis indicate that the Lake Chad ecosystem is steadily 
undergoing land-use/land-cover changes. In particular, the study 
reveals that the water stock of the lake is rapidly shrinking.  
 
This study was conducted on only a section of the basin. To 
perform a more comprehensive analysis of the causes and 
consequences of the land-use dynamics in the basin, the study 
area needs to be extended to cover the entire basin. Socio-
economic factors that were not available for the determination of 
the transition potential values also need to be integrated in future 
studies to enhance the realism of the simulation.  
 
The results obtained from this study demonstrate that integrated 
rural land-use scenario building and analysis relying on the CA-
based land-use simulation model can support land-use planning 
and policy for sustainable land development. However, issues 
concerning simulation evaluation, calibration and validation 
need to be further considered and  investigated.  
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