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ABSTRACT: 
 
This paper describes a semi-automatic system for road verification from high resolution orthophotos in an urban context. The system 
combines several road detection and road verification approaches from current literature to form a more general solution. Each road 
detection / verification approach is realized as an independent module representing a unique road model and thus a unique strategy. 
The object-wise verification result of each module is formulated as a binary decision between the classes “correct road” and 
“incorrect road”. These individual decisions are combined by Dempster-Shafer fusion, which provides tools for dealing with 
uncertain and incomplete knowledge about the statistical properties of the data. For each road detection / verification module a 
function for confidence is introduced that reflects degree of correspondence of an actual test situation with an optimal situation 
according to the underlying road model of that module. Experimental results achieved with four different test sites in Japan 
demonstrate the potential and confirm the reliability of the new system. 
 
 

1. INTRODUCTION 

 
The Geographical Survey Institute (GSI), the national mapping 
agency of Japan, is currently establishing an authoritative 
topographic cartographic database (Fundamental Geospatial 
Data, which then is introduced into Digital Japan Basic Map 
(Map Information)) corresponding to a mapping scale of 1:2500 
for the whole urban area of Japan. The data structure is 
standardized, but the data are produced by different local 
governments and thus show heterogeneous quality. Therefore, 
quality control measures are required to achieve a consistent 
quality standard. In order to reduce the huge manual efforts for 
this quality check, this task has to be automated without 
compromising the data quality. We propose a semi-automatic 
strategy based on orthophotos for that purpose. The basic idea is 
that database objects found to exist at the location indicated in 
the database by an automated process need not be checked 
interactively. The database is not corrected fully automatically, 
but the automatic procedure highlights potential errors that have 
to be checked by a human operator. The main challenge is the 
general applicability required for the automatic system because 
the appearance of roads varies a lot in the images. Roads can be 
described as homogeneous areas with parallel edges, by their 
spectral or structural differences to their surroundings, by road 
markings, or by relations to context objects such as cars or 
buildings. As most algorithms for road extraction can only deal 
with a subset of these characteristics, their success is usually 
connected to a specific road type. Different road types can be 
defined by their appearance in the imagery, and thus can be 
extracted by different methods with different success. If each of 
these specific road extraction methods can deliver a measure for 
its own trust into its decision, the results of these algorithms can 
be combined by decision level fusion. This paper deals with the 
setup of such a fusion framework, with a focus on the definition 
of confidence values for different road extraction/verification 
methods. 

2. RELATED WORK 

In this review of existing approaches for road extraction, we 
focus on the aspects that are most important for the work 
presented in this paper, namely on the underlying road models 
and their consequences for road objects that do not conform to 
the models and on the robustness with respect to different 
appearance of road objects in different surroundings.  
 
In (Baumgartner et al., 1999; Wiedemann, 2002) roads are 
modelled as linear objects in aerial or satellite imagery with a 
resolution of about 1-2 m. If the underlying line extraction 
algorithms are parameterized based on prior knowledge about 
the road width from an existing database, these algorithms can 
be applied to different road types. The line model can also be 
improved by incorporating parallel edge pairs (Baumgartner et 
al., 1999; Zhang, 2004). Nevertheless, these line based 
approaches only work in areas with homogeneous background, 
especially in rural areas. The EuroSDR test on automatic road 
extraction algorithms (Mayer et al., 2006) has shown the 
weakness of such approaches in an urban context. In contrast, 
the edge based approach by Youn et al. (2008) is specifically 
designed for dense settlement areas. The underlying model 
focuses on the discrimination of rows of buildings and roads 
and thus cannot deal with homogeneous background. The road 
model is also restricted to a grid-like road network. 
 
Another group of approaches is based on aerial colour or texture 
classification in high resolution aerial imagery, e.g. (Mena and 
Malpica, 2005; Zhang & Couloigner, 2006). Roads are 
modelled as homogeneous image regions with certain 
radiometric properties. The geometrical aspects of the road 
model are considered in the post processing steps. Fujimura et 
al. (2008) use prior information from an existing database to 
define an appropriate shape of a window for a texture analysis 
that is carried out at all probable window positions around the 
position indicated by the database. For road tracking, 
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Haverkamp (2002) and Liang et al. (2008) assume a similar 
model. Here the image texture in a rectangular window is used 
to track the direction of a road from a starting point defined 
previously. Grote and Rottensteiner (2009) apply a normalized 
cuts segmentation and then classify the resulting segments. 
They are grouped in a process that considers the geometrical 
and topological properties of roads. All these area-based 
algorithms can in principle deal with complex scenes, but they 
have problems with objects that are radiometrically similar to 
roads, e.g. buildings and parking lots. In (Bacher & Mayer, 
2005), a combined approach is introduced. A pixel-based 
classification is used to generate a ”road class-image”. The 
training data for the supervised classification is obtained from a 
very strict initial road extraction according to (Wiedemann, 
2002), using also parallel edge information (Baumgartner et al., 
1999). Various works, e.g. (Hinz & Baumgartner, 2003; Zhang 
2004; Youn et al., 2008; Grote & Rottensteiner, 2009) introduce 
3D information to make the road model more robust to 
confusion with buildings. The 3D information is used either as 
an additional feature in the classification step or for an internal 
evaluation of 2D road hypotheses. Context objects such as 
buildings or vehicles can also be used as an additional cue for 
road extraction. Hinz and Baumgartner (2003) use buildings and 
vehicles and connect them with the main road model by Fuzzy-
Set theory. In (Zhang 2004), buildings and trees are integrated 
in a context model. In (Hu et al., 2004), vehicles are used to 
classify roads and parking lots.  
 
It is the basic idea of this work to combine powerful approaches 
from the current research in the field of road extraction to create 
a more general solution for the verification of urban road data 
that is applicable for the whole road network of Japan. Rather 
than formulating a complex road model that is valid for all the 
roads of Japan, we exploit the specific strengths of existing 
algorithms for the situations that conform to their underlying 
road models. An alternative strategy could be the consequent 
use of machine learning algorithms, where all the low level 
features used in the existing approaches are collected in a large 
feature vector. In that case the different road types would 
correspond to different clusters in feature space. Such a strategy 
could deal with more types of roads, but it would require a high 
amount of training data, which is not available in our case. 
 
 

3. THE MULTILPLE MODEL METHOD 

Our method relies on a set of existing object extraction 
algorithms realized as so called verification modules. Every 
road object in the database is checked by every available 
verification module. Along with its decision about the 
correctness of the road object in the database, each module also 
delivers a confidence value C with 0 ≤ C ≤ 1 that reflects the 
degree to which the situation encountered for the road object 
corresponds to the optimal situation according to the module’s 
underlying object model. The decisions from all modules are 
combined in a decision level fusion process in which the 
confidence values control the impact of a single decision on the 
final result. It is possible to include algorithms for extracting 
other objects than roads into our framework. For instance, if a 
building detection algorithm is confident in detecting a building 
where the database indicates a road, this can be considered in 
the overall framework as a very confident vote against the 
correctness of the road object.  
 
There are three advantages to our strategy. Firstly, the 
combination of an increasing number of approaches based on 
different models covers more road objects and thus improves 
the efficiency of quality control. Secondly, whereas road 

candidates not covered by any of the introduced road models 
still cannot be classified reliably, such a situation should be 
detectedable by analysing the confidence values, so that these 
objects can be passed on to the human operator for a final 
decision. Thirdly, the framework can be expanded easily by 
new verification modules.   
 
The fusion of the results from the different verification modules 
is based on the theory of Dempster-Shafer, e.g. (Klein 1999). 
Our approach follows the thoughts of Gerke and Heipke (2008) 
and distinguishes the two classes road (R) and non-road (N). 
Consequently, the hypothesis space, which is called frame of 
discernment Θ in the terminology of Dempster-Shafer, contains 
only of two elements: Θ = {R, N}. The power set of Θ, denoted 
by 2Θ-1, is 2Θ-1 = {R, N, R∪N}. A probability mass m is 
assigned to each of the three classes by a “sensor” (verification 
module) such that 0 ≤ m(x) ≤ 1 and m(R), m(N) and m(R∪N) 
sum up to 1. The sum of all probability masses assigned directly 
to a class A Œ 2Θ-1 is called support sp(A) of A. If p sensors are 
available, probability masses mi have to be defined for all these 
sensors i with 1 ≤ i ≤ p. The Dempster-Shafer theory allows the 
combination of the probability masses from several sensors to 
compute a combined probability mass for each class A Œ 2Θ-1: 
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After combining the probability masses using equation 1, both 
sp(R) and sp(N) can be computed. The normal case is that the 
class obtaining maximum support will be accepted. However, 
we know that we will not find a solution for all objects. For our 
specific task it is most important to ensure that all errors in the 
database are detected. Road objects from the database that are 
detected by the automatic component are no longer inspected by 
the user. A false detection of a road thus directly leads to an 
error in the database. On the other hand, a road object that is not 
detected by the automatic component will be inspected by the 
user. Thus, this error type is less critical. As a consequence we 
only consider roads as verified for which the data reliably 
support that decision. This can be achieved by only accepting 
road hypotheses with a support sp(R) larger than 0.75. This 
threshold of 0.75 was found by empirical analysis.  
 
In our model for the original probability masses we assume that 
each verification module p delivers a binary decision for or 
against a road, i.e., either Rp or Np, and a confidence value 
Cp ∈ {0, 1} measuring the trust into this decision. Its negation 
Cp

N = 1 - Cp corresponds to the degree to which no decision can 
be taken by the module given the data. This can be modelled by 
assigning a probability mass of 1 - Cp to Θ, thus 
mp(Rp∪Np) = 1 - Cp. If the module’s decision is Rp, we set 
mp(Rp) = Cp and mp(Np) = 0; otherwise, we set mp(Rp) = 0 and 
mp(Np) = Cp. Thus, the decision is weighted by Cp in the 
Dempster-Shafer framework. If the confidence value Cp is low 
for all modules p, the support for R and N will be relatively low, 
too, so that these cases can be found by applying a threshold as 
described above.   
 
 

4. THE VERIFICATION MODULES 

Currently, our system includes seven verification modules. 
Three of them required considerable improvement compared to 
the way they were described in the literature and thus will be 
presented in more detail. This includes a short description of the 
underlying road model and an overview of the basic strategy for 
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its application to database verification with a focus on the way 
the information from the database is used to optimize the 
verification process. Finally, the derivation of the confidence 
value will be described. The further four modules will be 
described by a short summary. 
 
All the modules are adjusted to deal with RGB orthophotos with 
0.2 m ground resolution (Digital Japan Basic Map (Orthophoto 
Imagery), developed and maintained by GSI) as well as a 
Digital Terrain Model (DTM) and a Digital Surface Model 
(DSM) generated as by-products of the orthophoto generation 
process with 5 m grid spacing and 0.1 m resolution for the 
height component. From the DSM and the DTM a normalised 
DSM (nDSM) reflecting the height differences between the 
DSM and the DTM is generated. The road database corresponds 
to a cartographic map scale of about 1:2500. The geometrical 
accuracy standard for road objects in the database is stated as 
2.5 m, but the real accuracy is significantly higher 
(approximately 1 m). 
 
4.1 The SSH Module 

SSH means ''Sum of Similarity of Histograms'' and was 
introduced as a road model by Fujimura et al. (2008) to remove 
a parallel shift of cartographically generalized road data.  

 
4.1.1 Model: The basic idea is that the image region belonging 
to a road can be identified by the uniqueness of its intensity 
distribution compared to its surroundings. The model assumes 
that the intensity distributions in areas in the vicinity of a road 
are more similar to each other than to the distribution in the 
road. Since colour is used by another module, only the intensity 
channel is used for the calculations.  
 
4.1.2 Strategy: Figure 1 shows the strategy of the SSH based 
verification in an exemplary way. The road geometry and width 
information from the database is used to define several image 
regions with identical shape and area. This is realized by 
shifting the road region in a direction orthogonal to the road 
axis. The region in the centre represents the road candidate from 
the database. All regions outside the tolerated GIS-specific error 
distance represent the neighbourhood and are thus expected to 
be non-road regions. To avoid a second road candidate in the 
neighbourhood the number of generated regions is 
parameterized by the expected city block size. This parameter 
depends on the character of a city district and has to be set by 
the user in advance. Subsequently, the intensity histograms for 
all regions are calculated. For each histogram s, a similarity 
value SSH is computed by comparing it to all other histograms 
t. The histogram similarity is expressed using the Bhattacharyya 
distance BC(Hs,Ht) (Fukunaga 1990): 
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In equation 2, δ denotes the Dirac function and g denotes a grey 
value in the set of possible grey values G. Figure 1b shows an 
exemplary result of the SSH based approach in urban area. If 
the SSH of the histogram associated to the road in the database 
is significantly lower than the SSH scores of the non-road 
regions the road is classified as correct. For this significance test 
a Gaussian distribution of all SSHs from the off-road segments 
is assumed. This assumption has been evaluated empirically for 
relatively long roads with homogeneous background. However, 
it does not hold for all target objects. Therefore, the model 
should be enhanced by an adaptive distribution in the future. 
 
4.1.3 Confidence: The optimal realization for the SSH model is 
characterized by a homogeneous neighbourhood in a direction 

orthogonal to the given road axis. But the model can also deal 
with inhomogeneous neighbourhoods if there is no single non-
road region having a high SSH score. Thus, a continuous 
function for the confidence CSSH of the SSH module is useful. 
CSSH is modelled as the difference of the actual configuration 
(Figure 1b) and the optimal SSH model SSHopt (Figure 1c): 
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In equation 3, r is the region index and R is the number of 
regions considered. CSSH mainly depends on the surroundings of 
the road. A confidence CSSH = 1.0 is achieved if all non-road 
regions have the same intensity histogram and only the road 
region is different. A confidence CSSH = 0.0 corresponds to a 
situation where every non-road region has a histogram that is 
totally different from the histograms of all the other non-road 
regions. The term CLength(l) depending on the road segment 
length l was introduced to model the fact that longer road 
segments are more reliable because they contain more pixels to 
compute the histograms and because they are less likely to be 
confused with building roofs. This term CLength(l) is assumed to 
be 1 for road objects longer than a predefined threshold Lmax. 
The parameter Lmax corresponds to the length of big buildings in 
a scene and has to be defined by the user. For 0 ≤ l ≤ Lmax, 
CLength(l) is described by a cubic parabola:  
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(a) 

 
(b) 

 
(c) 

Figure 1.

  

The SSH module. a) Orthophoto superimposed by one 
road region (blue) and 24 non-road regions (yellow); 
b) SSH; the x-axis shows the region index. The blue 
column denotes the true road candidate; c) Optimal
SSH configuration. 
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4.2 The Colour Module 

We use the approach described in (Fujimura et al., 2008) as a 
verification module evaluating colour information 
 
4.2.1 Model: An image region belonging to a road has specific 
radiometric properties that can be defined in advance. More 
precisely, the RGB feature space is used to define probable 
clusters for roads and for non-roads. 
 
4.2.2 Strategy: As the goal of this approach is the verification 
of a database and not the extraction of new roads, the problem 
can be relaxed compared to other approaches. No pixel-wise 
analysis is required, and the entire road candidate region is 
considered at once. Regions are defined in the neighbourhood of 
the road segment in a similar way as for the SSH module (see 
Figure 1), and the histogram of every region is calculated 
independently for all bands. A modal filter is applied to extract 
only the five most typical gray values for every region and 
every band and thus exclude small objects from the analysis. 
The verification problem is turned into a classification problem 
for the two classes road and non-road. We use the support 
vector machine (SVM) classifier (Vapnik, 1998) in the 
implementation of the open-source library LIBSVM (Chang & 
Lin, 2001). The necessary training data are selected manually 
and should include representative examples of road and non-
road regions in a scene. The SVM classifier provides a decision 
for every tested road candidate region.  
 
4.2.3 Confidence: It was shown by Zhang and Couloigner 
(2006) that a colour based classification is weak in areas with 
parking lots, houses and industrial buildings having similar 
radiometric properties as roads (Figure 2b). Hence, the colour 
model is only applicable if the surrounding area shows good 
contrast, e.g. for houses with coloured roof (see Figure 2a). 
Therefore, the SVM classification is applied to all the regions 
defined in a similar way to Figure 1a. If the region 
corresponding to the road in the database is classified as non-
road, the road is decided to be incorrect. If there are multiple 
regions classified as roads, including areas that are supposed to 
be non-road regions by the model, no decision can be taken 
based on this module, which has to be reflected by a confidence 
value Ccol of 0. Only if the region corresponding to the road in 
the database is classified as road and all surrounding regions are 
classified as non-road, the colour module provides a decision 
for the correctness of the road. 
 

 
(a) 

 
(b) 

Figure 2. Two orthophotos superimposed by road edges
(yellow). a) Buildings with coloured roofs and good 
contrast to the road; b) Buildings with a low contrast. 

 

The basic precondition for the SVM classifier is the availability 
of representative training data. For practical use it is hard to 
fulfil such a rigid demand. Especially for the non-road class this 
seems to be impossible with a realistic amount of training data. 
As the SVM classifier always delivers a solution independently 
of the distance of a point in feature space to the nearest training 
cluster, the resulting decisions could be based on insufficient 
data without any indications for the user. In order to overcome 
this problem, the confidence Ccol of the classification result is 

described by the degree of correspondence between training 
data and a test object. The concept of Support Vector Domain 
Description (SVDD) (Tax, 2001), also known as SVM-based 
outlier detection, is used for this purpose. This approach 
constructs a hypersphere around the training data in the 
transformed feature space (based on the Gaussian kernel in our 
SVM approach) so that it encloses most of the training data with 
minimal volume. As the hypersphere is constructed in the 
transformed feature space, it corresponds to a region of arbitrary 
shape in input feature space. As mentioned before the reliability 
of the SVM results decreases for high distances to the clusters 
representing the used training dataset. The sequential 
combination of the conventional two-class SVM and the SVDD 
allows a very sharp separation of two classes through the SVM, 
whereas vague decisions based on unexpected data can be 
prevented through the SVDD. However the use of SVDD leads 
to a decreasing efficiency because one important advantage of 
two-class SVM, the generalization effect, is significantly 
weakened at the periphery of the trained clusters. Therefore, for 
points outside the hypersphere, their distances from the 
hypersphere are used to define a softer criterion so that objects 
close to but outside of the hypersphere will still receive a high 
confidence value compared to objects that are far away. We use 
the method introduced by Guo et al. (2009) to compute the 
distance d of a test point to the hypersphere. The average 
distance Davg of test points enclosed by the hypersphere to their 
nearest hypersphere point is calculated to define an appropriate 
scale. In our experience the objects outside the hypersphere that 
are further away than ½Davg show significant differences to the 
training dataset and thus are assigned a zero confidence. Objects 
inside the hypersphere obtain full confidence (Ccol = 1). For 
objects outside the hypersphere, but having a distance smaller 
than ½Davg to the hypersphere, the confidence Ccol is modelled 
by a cubic parabola function. 
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∀ avgD 2/10 ≤≤ d  
In equation 5, again a length dependent factor (see equation 4) 
is included to consider the weakness of the model for short 
objects. The colour module provides a decision for the 
correctness (RCol) or against the correctness (NCol) of a road 
object and a value for the confidence Ccol. Note that a high 
percentage of small confidence values for a scene is taken as a 
hint for the operator to define a new training dataset. This 
occurs usually if the radiometric conditions or the style of 
buildings change dramatically. 
 
4.3 The Intersection Module 

This module is based on the method developed by Youn et al. 
(2008) for the task of road extraction in dense urban areas. 
 
4.3.1 Model: The model takes into account the structural 
differences between a road and a row of buildings. In an edge 
image the direction of the majority of detectable edges within a 
road region conforms to the direction of the road. In the area 
next to a road, objects such as houses lead to multiple edge 
directions. This difference is used for classification.  
 
4.3.2 Strategy: The original method by Youn et al. (2008) was 
adapted to be used for verification. This module defines a set of 
lines that are parallel to the road segment from the database and 
counts the number of intersections of these lines with edges 
extracted from the image (see Figure 3). According to the 
model, there should be no edges across the road, so that the 
intersection count should be close to zero for lines inside the 
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road (cf. Figure 3c). Figure 4a shows the distribution of this 
count for the lines in Figure 3. The small values in the centre 
indicate the true position of the road, whereas greater values 
indicate buildings. The number N of shifted elements is 
restricted by the expected city block size LBlo that is one of the 
parameters to be set by the user. To check the positional 
accuracy the histogram of intersections is smoothed by a 
Gaussian filter of width σ (Figure 4b). The attribute road width 
available from the input data is used to define a suitable value 
for σ. The minimum of the filtered histogram is assumed to 
correspond to the road centreline. If the distance between the 
position of this minimum and the position of the centreline 
indicated by the database is below the maximum allowable error 
according to the specifications of the database and if the number 
of intersections is smaller than a threshold the road is classified 
to be correct and thus RInt is true. Whereas the model assumes 
that there are no intersections at all for the road, a value larger 
than 0 allows for small disturbances on the road surface as they 
might be caused by single road markings or shadows. The 
threshold was set to 2 in all experiments. 
 
4.3.3 Confidence: For dense urban areas containing a lot of 
small houses, the model is robust. However, more homogeneous 
context such as grassland, paddy fields or huge industry halls is 
not covered by the model. Therefore, the confidence value is 
modelled as a function of the surrounding structure elements. 
The actual histogram is compared with a histogram based on the 
optimal situation for that model. This optimal situation is an 
absolute free passage through the expected road and a number 
of intersections on each side of the road, which occur if a row of 
buildings of standard size is situated next to the road. The 
standard size of a building varies with the area and is another 
parameter to be set by the user. Figure 4c shows such an 
optimal histogram for the example depicted in Figure 3. The 
confidence Cint for the intersection model is calculated as the 
area ratio between the optimal histogram HModel and the actual 
histogram H. As the neighbouring areas may be fairly different 
on both road sides, the area to the left and the area to the right of 
the road are considered by different terms.  
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In equation 6, n is the profile index of A is the index of the 
centreline profile. Δ(n) = HModel(n) - H(n) if HModel(n) ≥ H(n) 
and Δ(n) = 0 otherwise. Again a length dependent term CLength(l) 
(see equation 4) is included to prevent instabilities of the model 
with respect to very short roads.  
 
4.4 Further Modules 

A frequently used characteristic of roads are parallel edge pairs 
to represent road borders in an edge image. In our system, this 
information is used by a module based on the approach by 
Baumgartner et al. (1999). Another module is based on (Hinz 
and Baumgartner, 2003) where roads are detected as valleys in 
nDSM data. To define an appropriate confidence for these 
modules the extraction results are evaluated by a statistical 
approach presented in (Gerke & Heipke, 2008).  

Finally, two modules extracting buildings and vegetation, 
respectively, are included. Building detection is based on nDSM 
information and follows the work of Hinz and Baumgartner 
(2003), whereas vegetation detection is realized similar to 
(Zhang, 2004). With regard to our task the nDSM based 
building model turns out as very robust in any situation. The 
only weak point is the low spatial resolution of the nDSM. 

Therefore, the confidence function describes its proportion to 
the assumed road width. Since the vegetation module uses 
radiometric properties, the confidence function is based on the 
colour saturation of the detected vegetation areas. In contrast to 
the other modules the building and the vegetation modules can 
only vote for the incorrectness of a road object. Possible 
contradictions are resolved by the Dempster-Shafer approach. 
 

(a) 
 

(b) (c) 
Figure 3.

 

The intersection module. a) Image detail. b) Extracted
edges. c) Edges (black) superimposed by expected 
road centreline (cyan, dotted) and several parallel 
profiles (blue). 

 

(a) 

(b) 

(c) 
Figure 4.

  

Histogram of the intersection counts over the profile 
index. a) Raw results of the example in Figure 3. b)
Results after Gaussian filtering with σ = road width.
c) HModel: Optimal situation according to the model.  
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5. EXPERIMENTS 

In order to evaluate the proposed verification strategy, a test 
based on four urban test sites with each 0.76 km x 0.92 km was 
carried out (Figure 5). The Uraga test site is situated in a hilly 
sub-urban area with many small residential buildings. The 
Okayama test site shows mainly big modern houses in flat 
terrain. There are hardly any shadows. This is the only scene 
with nDSM data. The test site Kyoto1 is situated in the historic 
centre of Kyoto and is characterised by grey roofs and narrow 
roads. There are significant shadow effects. The second test site 
from Kyoto (Kyoto2) shows some big residential and 
community buildings. The roads are wide, partly covered by 
trees, and there are significant shadow effects. 
 
In total 1124 road objects were automatically processed. For the 
Okayama test site we could use all verification modules, 
whereas for the others we could not use the building detection 
and the 3D line detection modules because they require a 
nDSM. Only road objects that show a support over 0.75 are 
accepted as correct by the automatic system. All the other 
objects are highlighted for manual post processing. For the 
Uraga test site (Figure 5a) where there is a significant difference 
between the database and the image due to a huge 
redevelopment zone, the automatic results could be compared to 
a manual reference of correct / incorrect database objects. The 
confusion matrix is shown in Table 1. The system finds enough 
support for 46.3% of the road objects (plus one false positive). 
This value marks the advantage of the semi-automatic approach 
against a completely manual procedure and can be called 
“efficiency”. The false alarm rate, i.e. the rate of roads that 
correspond poorly with one of the road models used by the 
verification modules, is 36.3%. The low rate of undetected 
errors (only 1, corresponding to 0.2%) shows the high reliability 
of the system for the test scene. 
 

 accepted 
(system) 

rejected 
(system) 

correct (reference) 46.3% (185) 36.3% (145) 
incorrect (reference) 0.2% (1) 17.2% (69) 

 

Table 1. Confusion matrix for the Uraga test site. 
 

Efficiency analysis ∑= 1054 road objects 
 accepted (system) rejected (system) 
correct dataset 57.8% (609) 42.2% (445) 
Sensitivity analysis ∑= 791 road objects 
 accepted (system) rejected (system) 
incorrect dataset 0.5% (4) 99.5% (787) 

 

Table 2. Efficiency and stability analysis for the Okayama, 
Kyoto1 and Kyoto2 test sites. 

 
For the other three scenes the number of errors in the vector 
data was too small to determine a meaningful confusion matrix. 
Therefore, the system was tested by two different setups: the 
first contains only correct data; the second contains only 
incorrect data. The first dataset corresponds to the input data 
without a few wrong objects. In this case, 100% of the objects 
should be accepted, whereas 0% should be rejected. The second 
dataset was generated by rotating the first dataset by 180°. In 
this case, the system should reject 100% of the objects and 
accept none. The results shown in Table 2 confirm the results 
for the Uraga test site, with an efficiency of 57.8% and less than 
1% of undetected errors. The best results were achieved for the 
Okayama test site because the modules requiring a nDSM could 
be used there. Unmodelled shadow effects are a weak point of 
our system. In order to improve efficiency, a module 
considering shadows should be included.    

6. CONCLUSION AND OUTLOOK 

The results presented in this paper show that the manual efforts 
for road verification can be reduced by nearly 60% on the basis 
of the ideas presented in this paper. The introduced modules use 
comparably simple models, but more complex models that 
describe the relations between shadow, cars and buildings can 
be added without changing the overall framework. Thus, more 
and more road objects as well as background objects could be 
described in future, which can raise the efficiency of the 
automatic system step by step. 
 
 

ACKNOWLEDGEMENTS 

A part of the work was funded by the Japanese Ministry of 
Education, Culture, Sports, Science and Technology (MEXT) 
by supporting a one-year stay of H. Fujimura at IPI. A four-
month stay of M. Ziems at GSI was financed by the Japan 
Society for the Promotion of Science (JSPS). We gratefully 
acknowledge this support. 
 
 

REFERENCES  

Bacher, U., Mayer, H., 2005. Automatic road extraction from 
multispectral high resolution satellite images. In: IAPRSIS 
XXXVI (B3/W24), pp. 29–34. 

Baumgartner, A., Steger, C., Mayer, H., Eckstein, W., Ebner, 
H., 1999. Automatic road extraction based on multi-scale, 
grouping, and context. PE & RS 65(7):777–785. 

Gerke, M., Heipke, C., 2008. Image based quality assessment of 
road databases. International Journal of Geoinformation 
Science 22 (8): 871-894  

Grote, A., Rottensteiner, F., 2009. Assessing the impact of 
digital surface models on road extraction in suburban areas by 
region-based road subgraph extraction. In: IAPRSIS 
XXXVII(3/W4), pp. 27-33.  

Fujimura, H., Ziems, M., Heipke, C., 2008. De-generalization of 
Japanese road data using satellite imagery. PFG 5 (2008): 363-
373. 

Fukunaga, K., 1990. Introduction to Statistical Pattern 
Recognition. Academic Press, 2nd edition.  

Guo, S. M, Chen, L. C., Tsai S. H., 2009. A boundary method 
for outlier detection based on support vector domain 
description. Pattern Recognition 42(1):77-83. 

Haverkamp, D., 2002. Extracting straight road structure in 
urban environments using IKONOS satellite imagery. Optical 
Engineering 41(9): 2107-2110.  

Hinz, S., Baumgartner, A., 2003. Automatic extraction of urban 
road networks from multi-view aerial imagery. ISPRS Journal 
of Photogrammetry and Remote Sensing 58(1-2): 83 - 98. 

Hu, X., Tao, C.V., Hu, Y., 2004. Automatic road extraction 
from dense urban area by integrated processing of high 
resolution imagery and LIDAR data. In: IAPRS XXXV(B3), 
pp. 288-292. 

Klein, L., 1999. Sensor and Data Fusion, Concepts and 
Applications. SPIE Optical Engineering Press, 2nd edition. 

Liang, Y., Shen, J., Lin,  X., Bi, J., Li, Y., 2008. Road tracking 
by parallel angular texture signature. Proc. Earth Observation 
and Remote Sensing Applications (EORSA 2008), pp.1-6. 

18



 
 

ISPRS Archive Vol. XXXVIII, Part 4-8-2-W9, "Core Spatial Databases - Updating, Maintenance and Services – from Theory to Practice", Haifa, Israel, 2010 
 

Mena J., Malpica J., 2005. An automatic method for road 
extraction in rural and semi-urban areas starting from high 
resolution satellite imagery. Pattern Recognition Letters 
26(9):1201–1220. 

Mayer H., Baltsavias E., Bacher U., 2006. Automated 
extraction, refinement, and update of road databases from 
imagery and other data. Report Commission 2 on Image 
Analysis and Information Extraction, European Spatial Data 
Research - EuroSDR, Official Publication 50, pp. 217-280. 

Tax, D., 2001. One-class classification. Unpublished doctoral 
dissertation, Delft University of Technology. 

Vapnik, V. N., 1998. Statistical Learning Theory. Wiley, New 
York. 

Wiedemann, C. 2003. External evaluation of road networks. In: 
IAPRSIS XXXIV, (3/W8), pp. 93-98. 

Youn, J., Bethel, J. S., Mikhail, E. M., Lee, C., 2008. Extracting 
urban road networks from high-resolution true orthoimage and 
Lidar, PE&RS 74(2): 227-238. 

Zhang, C., 2004. Towards an operational system for automated 
updating of road databases by integration of imagery and 
geodata. ISPRS Journal of Photogrammetry and Remote 
Sensing 58 (3/4): 166–186.  

Zhang Q., Couloigner I., 2006. Automated road network 
extraction from high resolution multi-spectral imagery. In: 
ASPRS 2006 Annual Conference, Reno, Nevada (on CD).  

 

 
Uraga 

 
Okayama 

 
Kyoto1 

 
Kyoto2 

Figure 5: Results of road verification for the four test sites (red: rejected by the system, green: accepted by system. 
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