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ABSTRACT: 

 
This study aims to explore the potential and advantage of using the red-edge spectral bands of the forthcoming Vegetation and 
Environmental New micro Spacecraft (VENμS) for assessing Leaf Area Index (LAI) in field crops.  Field spectral data were 
collected from experimental plots of wheat and potato at the northwestern Negev, Israel.  These data were resampled to the VENμS 
bands being used for calculating the Red-Edge Inflection Point (REIP) and the Normalized Difference Vegetation Index (NDVI), 
which were compared to these same indices calculated with the original wavelengths.  The VENμS data were found to be as good 
predictor of LAI as when using the original (continuous) data.  The REIP was found to be significantly better than NDVI for 
prediction of wheat plants LAI and therefore could potentially be applied for future monitoring field crops LAI by VENμS.  
 
 
 

1. INTRODUCTION 

1.1 

1.2 

Leaf Area Index 

Leaf Area Index (LAI) is defined as a simple ratio between the 
total one side leaf surface of a plant and the surface area of the 
land on which the plant grows.  LAI is a dimensionless value, 
typically ranging from 0 for bare ground to 8 for dense 
vegetation. LAI is one of the most important variables 
governing the canopy processes (Baret et al., 1992) and is 
related to leaf and canopy chlorophyll contents, photosynthesis 
rate, carbon and nutrient cycles, dry and fresh biomass, and 
growing stages (Aparicio et al., 2002; Baret et al., 1992; 
Clevers et al., 2001; Coyne et al., 2009; Darvishzadeh et al., 
2008; Pimstein et al., 2009; Pu et al., 2003; Ye et al., 2008).  
Hence, LAI is applied in plants and environmental studies of 
evaporation, transpiration, light absorption, yield estimation, 
growth stages of crops and chemical element cycling (Aparicio 
et al., 2002; Delegido et al., 2008; McCoy, 2005; Moran et al., 
2004; Pimstein et al., 2009).  Darvishzadeh (2008) that in 
addition to several direct and indirect methods, LAI has been 
estimated in numerous studies using remote sensing in either 
statistical approaches or canopy reflectance models, for 
agricultural crops as well as forests.  A common non-
destructive surrogate for LAI, which is based on reflectance of 
red (R) and near infrared (NIR) bands, is using the Normalized 
Difference Vegetation Index (NDVI).  However, the prime 
disadvantage of this method is that the relationship between 
these two variables tends to saturate at LAI > 3 (Aparicio et al., 
2002; Coyne et al., 2009), preventing to assess LAI in cases of 
high biomass loosing ability to monitor phenological stages that 
are important for decision making.  Therefore, for better 
estimation of LAI, including higher LAI values, it is proposed 
to use red-edge inflection point (REIP).  
 

Red-Edge  

The red-edge region can be defined mathematically as the 
inflection point position on the slope connecting the reflectance 
in the red and in the NIR spectral regions (Mutanga and 
Skidmore, 2007; Pu et al., 2003).  This steep increase of 
reflectance marks the transition between photosynthetically 
affected region of the spectrum (chlorophyll absorption feature 
in the red region), and the region with high reflectance values of 
the NIR plateau is affected by plant cell structure and leaves 
layers.  This feature enables a clear representation of 
chlorophyll absorption dynamics, illustrating a shoulder shifts 
towards longer wavelengths when the absorption increases 
(chlorophyll content), and a shift towards the shorter 
wavelengths with decreasing absorption (Moran et al., 2004).  
Thus, the position of the red-edge, on canopy scale, provides an 
indication of plant condition that might be related to a variety of 
factors e.g., LAI, nutrients, water content, seasonal patterns, 
and canopy biomass (Blackburn and Steele, 1999; Clevers et 
al., 2001; Delegido et al., 2008; Jorgensen, 2002; Moran et al., 
2004; Pu et al., 2003; Tarpley et al., 2000).  Baret et al. (1992) 
modeled canopy scale reflectance using a radiative transfer 
model (SAIL model) concluding that information provided by 
shifts in the red-edge is not equivalent to broad bands R and 
NIR reflectance.  They also concluded for canopy scale that 
shifts in red-edge are mainly produced by chlorophyll 
concentrations and LAI variations.  The location of the REIP is 
also highly correlated with foliar chlorophyll content and 
dependant on the amount of chlorophyll observed by the sensor 
(Baret et al., 1992; Darvishzadeh et al., 2008).  Clark et al. 
(1995) conducted experiment presenting red-edge shift 
detection obtained by the Airborne Visual and Infra-Red 
Imaging Spectrometer (AVIRIS) that is a hyperspectral airborne 
sensor.  Multispectral or superspectral sensors that aim at high 
quality precision agricultural implementations should introduce 
unique combination of spectral and spatial resolutions as well as 
revisit time with the same viewing angle.  
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Due to the importance of the above-mentioned variables for 
vegetation monitoring in general, and for agriculture in 
particular, many spectral indices were derived to assess and 
correlate these variables with the state and condition of 
different crops.  In recent years, most of the high spatial 
resolution operational satellites (e.g., Ikonos, QuickBird, 
RapidEye, GeoEye) are characterized by a small number of 
broad spectral bands, usually in the blue (B), green (G), R, and 
NIR.  Due to their high spatial resolution, these systems are 
frequently applied for precision agriculture tasks.  However, 
their spectral ability is limited mainly for simple broad-band 
vegetation indices.  In this regard, it is important to mention 
that only one superspectral spaceborne system, MERIS, has 15 
bands ranging from 390 to 1040 nm with programmable 
bandwidth ranging from 2.5 to 30 nm.  The 4 red-edge bands 
are centered at 681.25, 708.75, 753.75 and 760.625 nm and 
commonly set to bandwidths of 7.5, 10, 7.5 and 3.75 nm, 
respectively.  However, this system is characterized by spatial 
resolution of 300 m and therefore is not suitable for precision 
agriculture applications.  The future superspectral satellite 
Sentinel-2, to be launched in 2013, is aiming at environmental 
applications.  It will include 4 red-edge bands centered at 665, 
705, 740 and 775 nm with bandwidth of 30, 15, 15 and 20 nm, 
and a spatial resolution of 10, 20, 20 and 20 m, respectively.  
This spatial resolution is still not enough for precision 
agricultural implementations.  
 
1.3 Vegetation and Environmental New micro Spacecraft 

Another future superspectral spaceborne system, named 
Vegetation and Environmental New micro Spacecraft (VENμS) 
will be launched in 2011.  This system is characterized by high 
spatial (5.3 m), spectral (12 spectral bands in the visible – near 
infrared), and temporal (2 days revisit time) resolutions.  In this 
regard, the most notable feature is the availability of four bands 
along the red-edge, centered at 667, 702, 742, and 782 nm with 
bandwidth of 30, 24, 16 and 16 respectively, as presented in 
Table 1. The satellite will circulate in a near polar sun-
synchronous orbit at 720 km height and will acquire images 
with 27 km swath.  The tilting capability, up to 30 degree along 
and across track, will provide more flexibility enabling to detect 
targets at up to 360 km off-nadir.  All data for a given site will 
be acquired with the same observation angle in order to 
minimize directional effects.  Due to these combined unique 
capabilities, the primary objective of this system is vegetation 
monitoring.  Moreover, it will be specifically suitable for 
precision agriculture tasks such as site-specific management 
that can be applied in decision support systems.  .  
 

Band # Band 
center (nm) 

Bandwidth 
(nm) 

1 420 40 
2 443 40 
3 490 40 
4 555 40 
5 620 40 
6 620 40 
7 667 30 
8 702 24 
9 742 16 

10 782 16 
11 865 40 
12 910 20 

Table 1. VENμS bands 

   
1.4 Objectives 

This study is strived to demonstrate the ability of the VENμS 
spectral bands to assess accurately LAI values in field crops.  
The first step is to find out if the spectral resolution of VENμS 
is appropriate for LAI assessment.  Then the relation to LAI and 
its prediction abilities by the whole spectra as well as by REIP 
and NDVI, obtained by continuous spectra will be compared to 
the same analyses obtained by resampled VENμS data.   
 

2. METHODOLOGY  

The measurements acquired were ground spectral reflectance 
from canopy and the LAI of the plants included in the field of 
view of the spectral measurements.  These were obtained in the 
north-west part of the Negev in Israel, for wheat and potato 
plants in experimental plots.  The wheat measurements were 
conducted along two growing seasons, in the winters of 2003-
04 (2004) and 2004-05 (2005), at Gilat Research Center (31° 21’ 
N, 34° 42’ E).  The potato measurements were also conducted 
along two growing seasons in the autumn of 2006 and the 
spring of 2007, in experimental plots at Kibbutz Ruhama 
(31°28’ N, 34°41’ E).  
The measurements in the wheat fields were obtained from 
around 20 days after emergence, until the heading stage around 
90 days after emergence (Pimstein et al., 2007a). The 
measurements in the potato field were obtained from around 45 
days after emergence, until around 90 days after emergence.  
150 measurements were acquired in the 2004 season, 96 
measurements in 2005, 120 measurements were obtained in the 
2006 season and 100 measurements in the 2007.  The total 
number of spectral measurements is 466.  The data were 
analyzed by 7 different data sets: each growing season (e.g. 4 
data sets); each crop (e.g. 2 data sets); and all the data together 
(e.g. 1 data set).  
Each spectral measurement was followed by a LAI one.  
Canopy reflectance measurements were obtained using 
Analytical Spectral Devices (ASD) FieldSpec Pro FR 
spectrometer with a spectral range of 350-2500 nm, and 25o 
field of view.  The spectral measurements were collected +/- 2 
hours of solar noon, under clear skies in nadir orientation. The 
measurements were collected from 1.5 m above the ground, 
generating an instantaneous field of view of about 0.35 m2. 
Along the season, as the height of the crops increased, the 
sensor’s distance from the top of the canopy diminished from 
almost 1.5 m to 0.7 m for wheat canopy (Pimstein et al., 2007b) 
and to 0.9-1.3 m for potato canopy (Herrmann et al., In press).  
The height differences are corresponding to a field of view 
around 0.08 m2 and 0.13-0.26 m2, respectively.  Pressed and 
smoothed powder of barium sulfate (BaSO4) was used as a 
white reference (Hatchell, 1999) for the potato spectral data 
acquisition and the standard white reference panel (Spectralon 
Labsphere Inc.) for the wheat spectral data collection.  The LAI 
was measured by the AccuPAR LP-80 device, that was 
programmed differently according to each crop and location 
based on the operation instructions (Decagon Devices, 2003). 
Each LAI value for data analysis is an average of three readings 
(replications).  The three readings were collected from exactly 
the same location at which the canopy reflectance was 
measured.     
The spectral data were resampled to VENμS spectral bands, 
being presented from now onwards as Continuous spectra and 
VENμS spectra, respectively.  For both data formations, 
continuous and VENμS, the partial least squares (PLS) analysis 
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was applied in order to find out the wavelengths and bands that 
are most influenced by LAI variation.  Prediction by the root 
mean square error prediction (RMSEP) of LAI was calculated 
for the continuous as well as the VENμS spectra.  Each of the 7 
data sets was randomly sorted, and divided to 60% calibration 
and 40% validation.  This prediction was implemented by The 
Unscrambler® software v.9.1.  In order to know if there is any 
difference between pairs of correlation coefficient (r) values, 
the “difference tests”  was applied using Statistica v.9 software.   
Two known vegetation indices values were calculated using 
both data formations, NDVI (Rouse et al., 1974) and REIP 
(Guyot and Baret, 1988).  In formulas (1) and (2) the ρ stands 
for reflectance in certain wavelength (the center of the VENμS 
band) and expressed in nanometers.   
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=
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The indices values were scatter plotted with LAI to provide 
general saturation examination as well as in order to obtain the 
correlation coefficient (r) values for linear relation between 
each of the indices and LAI.  In order to apply prediction by the 
two indices each of the 7 data sets was randomly sorted, and 
divided to 60% calibration and 40% validation.  LAI prediction 
by linear modeling was applied for both indices calculated by 
continuous as well as VENμS spectra the RMSEP was 
calculated in order to evaluate the prediction.   
 

3. RESULTS AND DISCUSSION  

Figure 1 presents the regression coefficient plots  of the PLS 
model for all data.  In this figure both Y axis values present the 
regression coefficients of VENμS spectra and continuous 
spectra.  It is shown that both data formations have the same 
trend and that the red-edge region is highly influenced by LAI 
variability.     
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Figure 1. Figure 1. Regression coefficients of the continuous 
and VENμS spectra correlation with LAI (all data) 

 
Table 2 presents the correlation coefficient (r) values of LAI 
predicted by both data formations for the entire spectra versus 
the observed LAI.  All the r values are significant (p<0.05).  

According to the RMSEP values (Table 2) it can be concluded 
that the VENuS spectra can predict LAI as good as the 
continuous spectra.  The probability (p) values of the data 
formation comparison intend to show similarity or 
dissimilarities between the data formations.  Since all p values 
(except one case) are higher than 0.05, continuous spectra and 
VENuS spectra are with high probability the same in their 
abilities to predict LAI.  
 

 VENμS Continuous  
Data 

formation 
comparison 

  r  RMSEP r  RMSEP p  
2007 
potato 0.73 0.68 0.81 0.47 0.40 

2006 
potato 0.81 0.47 0.73 0.54 0.35 

All 
potato  0.80 0.52 0.72 0.54 0.21 

2005 
wheat 0.73 0.82 0.80 0.82 0.49 

2004 
wheat 0.91 0.48 0.82 0.79 0.05 

All 
wheat  0.93 0.68 0.95 0.60 0.24 

All 
data 0.88 0.70 0.91 0.63 0.15 

 
Table 2. LAI prediction by spectra for both data formations. All 

r values are significant (p<0.05). 
 

As presented in Figures 2 and 3, saturation of the NDVI values 
and non saturation of the REIP values occurred as expected for 
the continuous and VENμS data formations, respectively.  
These figures present scatter plots of LAI relation to NDVI and 
REIP, for all 466 samples.  Both data formations present 
saturation of NDVI when related to LAI.  The saturation begins 
in LAI value of approximately 2 that is even smaller than what 
was expected according to the literature.  However, NDVI can 
be an excellent LAI predictor up to LAI saturation, around 
LAI=2.  Table 3 presents r values of relating NDVI and REIP to 
LAI for both data formations, all the r values are significant 
(p<0.05).  It also presents p values of the r values of the same 
index being the same for both data formations as well as for 
both indices.  For example – in the season (data set) of 2007 the 
probability that the r value of REIP calculated by VENμS data 
(0.70) is the same as the one calculated by continuous data 
(0.69) is 0.89.  For the same season (data set) the probability 
that the r value of REIP (0.70) is the same as the r value of the 
NDVI (0.59), both calculated by VENμS data, is 0.24.  Since, 
as presented in Table 3, the r values of the compared pairs are 
the same or their probability to be the same is very high 
VENμS spectra can provide the same quality of relation to LAI 
as the continuous spectra.  When looking into the indices 
comparison it is shown that both data formations provide the 
same correlation abilities to LAI.  The potato data sets (2007, 
2006 and all potato) present p values higher than 0.05 for the 
indices comparison. Therefore, both data formations have high 
probability of having the same relation to LAI.  For the other 4 
data sets, the probabilities are smaller than 0.05, implying that 
NDVI and REIP r values are different.  It is important to 
mention that in wheat and wheat and potato (2005, 2004, all 
wheat and all data) data sets the REIP r values are higher than 
the r values of the NDVI and therefore REIP is better related to 
LAI in both data formations.   
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Figure 2. Relation of LAI to REIP and NDVI calculated by 
continuous spectra 

Figure 3. Relation of LAI to REIP and NDVI calculated by 
VENμS spectra 

  
  

 

 VENμS Continuous  Data formation 
comparison Indices comparison 

 r  r  p p  
 NDVI REIP NDVI  REIP NDVI  REIP  VENμS Continuous 
2007 
potato 0.59 0.70 0.60 0.69 0.91 0.89 0.24 0.19 

2006 
potato 0.55 0.54 0.55 0.55 1 0.91  0.83 1 

All potato  0.57 0.62 0.57 0.63 1 0.86 0.42 0.42 

2005 wheat 0.32 0.76 0.38 0.75 0.64 0.87 0.000 0.000 

2004 wheat 0.71 0.84 0.71 0.85 1 0.76 0.005 0.002 

All wheat  0.77 0.92 0.78 0.92 0.78 1 0.000 0.000 

All data 0.67 0.78 0.66 0.79 0.79 0.69 0.000 0.000 

 
Table 3. Correlation of NDVI and REIP indices to LAI and probability of difference; calibration data  

 
 

 VENμS Continuous VENμS Continuous Data formation 
comparison Indices comparison 

 r r  RMSEP RMSEP p p 

 NDVI REIP NDVI REIP NDVI REIP NDVI REIP NDVI REIP VENμS Continuous 
2007 
potato 0.50 0.59 0.56 0.69 0.75 0.69 0.84 0.69 0.72 0.47 0.58 0.36 

2006 
potato 0.62 0.48 0.66 0.66 0.62 0.68 0.61 0.63 0.75 0.20 0.34 1 

All 
potato  0.65 0.64 0.53 0.57 0.68 0.66 0.71 0.68 0.23 0.47 0.91 0.71 

2005 
wheat 0.36 0.72 0.49 0.84 1.15 0.85 1.31 0.79 0.51 0.20 0.03 0.006 

2004 
wheat 0.73 0.84 0.69 0.89 0.96 0.77 0.91 0.56 0.67 0.29 0.12 0.003 

All 
wheat  0.77 0.93 0.77 0.93 1.14 0.67 1.21 0.74 1 1 0.000 0.000 

All data 0.68 0.81 0.65 0.81 1.14 0.92 1.18 0.93 0.61 1 0.005 0.001 

 
Table 4. LAI prediction by indices for both data formations; validation data  
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Table 4 presents r values of LAI predicted by NDVI and 
REIP, calculated by both data formations, versus the 
observed LAI, all the r values are significant (p<0.05).  The 
RMSEP values of both data  formations  show  advantage for  
the REIP, except for the case of data set 2006 by VENμS 
data.  According to Table 4, for wheat, REIP has higher LAI 
prediction quality than NDVI.  The p values of the data 
formation comparison are the probability that the r values of 
both data formations are the same.  All p values of the data 
formation comparison are higher than 0.05, therefore the 
abilities of NDVI and REIP calculated by continuous and 
VENuS spectra to predict LAI are significantly the same for 
all 7 data sets.   The indices comparison of p values shows 
the same behavior as in Table 2.  Therefore, as mentioned 
before, the continuous data do not provide any significant 
advantage over the VENμS data. As observed in Table 2 for 
the last 4 data sets, REIP is a better predictor of LAI in both 
data formations, except for the 2004 data set in the case of 
VENμS resulting no difference between NDVI and REIP but 
for the other wheat data sets (2005 and all wheat) the REIP 
has significant advantage over the NDVI.    
 
 
 

4. CONCLUSIONS 

• Continuous and VENuS spectra as well as calculated 
indices relation to LAI and abilities to predict it are in 
most cases with high probability the same.  The 
continuous data do not provide any robust or significant 
advantage over the VENμS resampled data.  Therefore, 
in the spectral point of view the VENμS is as good as 
continuous data for LAI prediction.   

• The red-edge is the most influenced area by LAI 
variability, the NDVI is saturated when related to LAI 
around 2, and for wheat REIP has significantly better 
relation and higher prediction accuracy to LAI than 
NDVI.  Therefore the REIP is concluded to be a better 
index than NDVI for LAI assessment for wheat.   

• Different crops presents different results therefore there 
is a need to explore more crops in order to explore the 
robustness of the results and also to obtain data from 
more seasons of wheat and potato in order to provide 
wider statistical basis.   

 
 

5. SUMMERY  

In order to demonstrate the ability of VENμS spectral bands 
to assess LAI values in field crops two spectral data 
formations (continuous and VENμS), for wheat and potato 
plants, were implemented.  The relation of the data 
formations to LAI and prediction of it by entire spectra as 
well as by calculated indices (REIP and NDVI) were 
explored by several methods.  The PLS analysis presented 
the red-edge as the most sensitive region to LAI variability 
and therefore the REIP was introduced to this study.  Simple 
relation of the indices to LAI was also applied as well as 
prediction of LAI by the entire spectra as well as by indices.  
The results show that the superspectral band setting, as exists 
on the VENμS system, can perform as good as hyperspectral 
sensors in LAI prediction.  For wheat the REIP is 
significantly a better predictor of LAI than the NDVI and 
therefore can by applied by VENμS for the same application. 

 
 
The REIP calculated by VENμS data should be explored also 
for natural habitats in order to provide LAI assessment 
leading to productivity monitoring and potentially provide an 
additional environmental application for VENμS beside the 
potential agricultural application presented here. 
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