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ABSTRACT: 

 

 

The results obtained after the application of parcel-oriented classification over two geographic areas of Galicia, in the northwest of 

Spain, are presented. In this region, forest and shrublands in mountain environments are very heterogeneous, with many private 

unproductive parcels, some of which are in a high state of abandonment. This situation entails a low economic productivity of the 

land and a higher vulnerability to wildfires and degradation in the affected areas. In this sense, the local government is promoting 

new methodologies based on high resolution images in order to classify the territory in basic and generic land uses. This land 

database will be used to plan specific actions for the sustainable management of degraded parcels, including the creation of a land 

bank.   

The data used were 0.5 m/pixel visible and near infrared aerial imagery, and cadastral cartography employed to define the image 

objects (parcels) to be analysed. A set of features was computed from the images to quantitative describe different properties of the 

objects: spectral, texture and structural. In addition, several shape features were extracted from the parcel polygons. The 

classification was performed by means of decision trees, combined using the boosting technique. For the evaluation, field data 

samples were collected. An additional test using as a descriptive feature the land use class contained in a previous thematic database 

was performed. The overall accuracies of the classifications obtained are always above 90%. In one of the two areas tested, where 

forest and shrublands are especially undefined, the discrimination between these two classes is low. In conclusion, the use of 

automatic parcel-oriented classification techniques for land use updating tasks, particularly when broad and well defined classes are 

required, seems to be effective in some of the areas tested. 

 

 

1. INTRODUCTION 

Different scale land use/land cover geospatial databases are key 

information for territory management and economic monitoring. 

The accuracy and the reliability of these databases is crucial for 

territory management and decision-making. The high dynamism 

of some geographic areas and the need of periodical updating of 

the information contained in the geospatial databases require a 

high economic cost that makes difficult to update the 

information with the appropriate frequency. Image classification 

can contribute to automate, the processes of land use/land cover 

geospatial database updating, particularly those that allow the 

integration of the parcel limits derived from existing 

cartography for object definition. These methods could 

substantially reduce costs at production level. Some examples 

of the use of remote sensing techniques for updating land use 

land/cover geospatial databases are described in Walter (2000), 

Marçal et al. (2005), Catani et al. (2005), and Ruiz et al. (2009). 

 

The periodic updating of the information contained in a land 

use/land cover geospatial database allows for an efficient 

territory management and avoids the appearance of neglected 

lands. Abandoned lands generate low economic productivity 

and a high vulnerability to wildfires and degradation in the 

affected areas. 

 

This paper presents the results of a preliminary study of the 

suitability of the employment of parcel-based image 

classification for land use geospatial database updating in 

Galicia (Northwest of Spain). In this region, forest and 

shrublands in mountain environments are very heterogeneous, 

presenting many private unproductive parcels, some of which 

are in a high state of abandonment. The local government is 

promoting new methodologies based in high resolution images 

in order to classify the territory in basic and generic land uses, 

with the goal of creating a geospatial database. This land use 

database will allow for planning specific actions for a 

sustainable management of neglected parcels, including the 

creation of a land bank of Galicia1. Object-oriented 

classification applied to update agricultural and forest parcels 

can be focused on different thematic levels. In this case, generic 

classes would provide operative information for discriminating 

between productive and unproductive parcels. 

 

The objective of this study is to define and evaluate a 

productive methodology based on parcel-oriented classification 

of high-resolution images, for updating a generic land cover 

database. This database could be eventually used to detect 

abandoned agricultural and forest parcels. 
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2. STUDY ZONES AND DATA 

2.1 Study zones 

The study has been performed on two local administrative areas 

(comarcas) of Galicia: Baixo Miño and A Limia (see Figure 1). 

The first one is located in the Atlantic coast of the province of 

Pontevedra, and is mainly covered by forest, agricultural crops 

and vineyards. The administrative area of A Limia is located in 

the province of Ourense and presents large areas of agricultural 

crops, forest and shrublands. 

 

  
a. Location of Galicia in 

Spain 

b. Location of analyzed 

regions in Galicia. 

 

Figure 1.  General location maps. 

 

2.2 Data 

The images employed were acquired from the Spanish National 

Plan of Aerial Orthophotography (PNOA). These images have 

a spatial resolution of 0.25 m/pixel and 4 spectral bands: red, 

green, blue and near infrared. The images of A Limia were 

acquired between May and July of 2007, and those of Baixo 

Miño in the same months of 2008. 

 

Cartographic boundaries to define the final objects (plots) were 

obtained from the Land Parcel Information System (SIGPAC), 

a geospatial database oriented to agriculture management. The 

plots represent a continuous area of land within a parcel for a 

single agricultural use, being the total number of plots 468,721 

in A Limia and 255,347 in Baixo Miño. 

 

There have been available field samples collected in the same 

date that the images employed for each region. These samples 

have square shape with side sizes of 350 or 500 meters. Figure 

2 shows the distribution of field samples on both administrative 

areas. 

 

  
a. Baixo Miño b. A Limia 

 

Figure 2.  Distribution of field data in the two administrative 

areas. 

 

 

 

3. METHODOLOGY 

In this section, a general description of the steps followed in the 

methodological approach is done, with references to documents 

containing a more exhaustive explanation. Main classification 

steps include: Image and data pre-processing, selection of 

training samples, descriptive feature extraction, classification 

method, post-processing and evaluation. 

 

3.1 Pre-processing 

The images used were already orthorectified and 

georreferenced, panchromatic and multispectral bands fused, 

mosaicking and radiometric adjustments applied, as a part of the 

PNOA project (Arozarena et al., 2008). Additionally, in order to 

facilitate the descriptive feature extraction process, images were 

resampled to 0.5 m/pixel, using bilinear interpolation. This 

spatial resolution was considered as optimum for information 

extraction in our particular conditions and classes. 

 

A number of common classes for both regions were defined: 

Buildings, Forest, Shrublands and Arable and crop land. Due 

to the definition accuracy presented by the classes regarding to 

roads and rivers in the SIGPAC, these classes were transferred 

directly from the geospatial database. Arable and crop lands 

class includes also pastures, being built up by aggregation of 

three sub-classes, differencing the vegetation level of a plot: no 

vegetation, medium vegetation and cultivated field. Besides, 

some additional classes were defined in order to adapt the 

legend to the reality of each region. Thus, a Water layer class 

was defined in A Limia to classify new flooded areas not 

registered in the SIGPAC database. In Baixo Miño, the 

additional Vineyards and Greenhouse classes were defined. 

 

In the region of A Limia, most of the training samples were 

selected from the field samples register available from the 

SIGPAC project, being adequate in number and spatial 

distribution (Figure 2b). Since the sampling polygons did not 

coincide with the SIGPAC plots limits (Figure 3), the 

assignation of samples to each class was manually done. 

Additional samples were added by photointerpretation in order 

to avoid the a low representation of some classes, particularly 

Water layers, Forest and Shrublands. As in the province of 

Baixo Miño, the number of field samples was substantially 

lower, the training samples were mainly selected using 

photointerpretation techniques, and using the field registers as 

ancillary data. 

 

  
a. Field sampling segment 

and polygons 

b. SIGPAC plots 

 

Figure 3.  Example of the geometric differences between field 

sampling polygons and SIGPAC plots. 

 

 

 

Baixo Miño 

A Limia 
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Spatial objects were created using the SIGPAC plot limits. In 

order to confer coherence to the automatic feature extraction 

process, which requires a minimum parcel surface, and to 

preserve the classification accuracy, parcels with a surface 

lower than 60 m2 were rejected. Besides, SIGPAC parcels with 

very large dimensions were excluded (representing images with 

more than 9,000,000), due to the RAM memory limitations for 

processing the per parcel feature extraction algorithms. 

 

3.2 Feature extraction 

The use of efficient features is essential for accurate 

classification. At this point, every parcel was independently 

processed to extract descriptive features that characterize the 

current land use. The features employed in this study can be 

grouped in four categories: spectral, textural, structural and 

shape. Besides, the effect of the use of ancillary data from the 

previous use has been tested. 

 

Spectral features used provide information about the spectral 

response of objects on the visible and near infrared regions of 

the spectrum, which depends on land coverage types, state of 

vegetation, soil composition, construction materials, etc. These 

features are particularly useful in the characterization of 

spectrally homogeneous objects, such as herbaceous crops or 

fallow fields. Mean and standard deviation were computed from 

the bands NIR, R, G and also from the Normalized Difference 

Vegetation Index (NDVI). 

 

Texture features inform about the spatial distribution of the 

intensity values in the image, being useful to quantify properties 

such as heterogeneity, contrast or uniformity related to each 

object (Ruiz et al., 2004). These properties are obviously related 

to the land use/land cover inside an object. For every object, the 

features proposed by Haralick et al. (1973) based on the grey 

level co-occurence matrix (GLCM) were computed. This 

information was completed with the values of kurtosis and 

skewness of the histogram, and the mean and the standard 

deviation of the edgeness factor for each parcel (Laws, 1985). 

The edgeness factor represents the density of edges present in a 

neighbourhood. These features were derived from the red band. 

 

The semivariogram curve quantifies the spatial associations of 

the values of a variable, and measures the degree of spatial 

correlation between different pixels in an image. This is a 

particularly suitable tool in the characterization of regular 

patterns. For continuous variables the expression that describes 

the experimental semivariogram is: 
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where z(xi) = value of the variable in position xi. 

 N = number of pairs of data considered. 

 h = separation between elements in a given direction. 

 

The experimental semivariogram representing each object is 

obtained by computing the mean of the semivariograms 

calculated in six directions, ranging from 0º to 150º with a step 

of 30º. Afterwards, each semivariogram curve is filtered using a 

Gaussian filter with a stencil of 3 positions, in order to smooth 

its shape and to eliminate experimental fluctuations. Several 

structural descriptive features were computed considering the 

singular points of the semivariogram, such as the first 

maximum, the first minimum, the second maximum, etc., being 

described in detail in Balaguer et al. (2010). 

 

Shape features inform about the complexity in the shape of the 

objects. They can contribute to differentiate polygons with 

specific shapes. Several standard features were extracted for 

each object: compactness, shape index, fractal dimension, area 

and perimeter. 

 

Finally, the previous land use, contained in the SIGPAC 

geospatial database, was included as a qualitative descriptive 

feature to evaluate its performance.  

 

Due to the high number of features extracted from each object, 

some of them presented a high correlation, being redundant the 

information provided. The inclusion of these variables in the 

study could act as noise in the creation of the classification 

rules. The relations and redundancies existing between features 

was initially analysed by principal component analysis. Then, 

linear descriptive discriminant analysis was applied in order to 

determine the significance of the features, removing from the 

study those with low significance level. 

  

3.3 Classification through decision trees 

Objects were classified by using decision trees. A decision tree 

is a set of organized conditions in a hierarchical structure, in 

such a way that the class assigned to an object can be 

determined following the conditions that are fulfilled from the 

tree roots (the initial data set) to any of its leaves (the assigned 

class). The algorithm employed in this study is the C5.0, which 

is the latest version of the algorithms ID3 and C4.5 developed 

by Quinlan (1993). This algorithm is the most widely used to 

deduce decision trees for classifying images (Zhang and Liu, 

2005). 

 

The process of building a decision tree begins by dividing the 

collection of training samples using mutually exclusive 

conditions. Each of these sample subgroups is iteratively 

divided until the newly generated subgroups are homogeneous, 

that is, all the elements in a subgroup belong to the same class. 

These algorithms are based on searching partitions to obtain 

purer data subgroups, which are less mixed than the previous 

group where these come from. For each possible division of the 

initial data group, the impurity degree of the new subgroups is 

computed, and the condition which gives the lower impurity 

degree is chosen. This is iterated until the division of the 

original data into homogeneous subgroups is carried out by 

using the gain ratio as splitting criterion. This criterion employs 

information theory to estimate the size of the sub-trees for each 

possible attribute and selects the attribute with the largest 

expected information gain, that is, the attribute that will result 

in the smallest expected size of the sub-trees. 

 

Objects were classified using 10 decision trees, by means of the 

boosting multi-classifier method, which allows for increasing 

the accuracy of the classifier. The methodology followed by the 

boosting to build the multi-classifier is based on the assignment 

of weights to training samples. The higher the weight of a 

sample, the higher its influence in the classifier. After each tree 

construction, the vector of weights is adjusted to show the 

model performance. In this way, samples which are erroneously 

classified increase their weights, whereas the weights of 

correctly classified samples decrease. Thus, the model obtained 

in the next iteration will give more relevance to the samples 
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erroneously classified in the previous step (Hernandez-Orallo et 

al., 2004). After the construction of the decision tree set, the 

class to each object is assigned considering the estimated error 

made in the construction of each tree. The lower the estimated 

error e, the higher the weight given to a tree, according to the 

formula: 
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The sum of the weights of those trees which assign the same 

class to one object is computed, giving to that object the class 

with the highest value. 

 

3.4 Evaluation  

The evaluation of the classification was done using cross-

validation. From confusion matrix, the user’s and producer’s 

accuracies per class were computed, that respectively measure 

the commission and omission errors. 

 

In a typical process of geospatial database updating, the class 

assigned after the classification is compared to the land use 

contained in the original database. The differences between 

them register the potential land use/land cover changes 

produced in the territory, but also the errors produced in the 

classification. 

 

In the updating process, correctly classified cases can be 

divided in two categories: coincidences and detected changes. 

Coincidences are these cases with equal land use assigned in the 

classification, reference data and database. A detected change 

occurs when the classification land use is correctly assigned 

meanwhile the land use appearing in the database is wrong. The 

sum of the percentage of coincidences and detected changes is 

equal to the overall accuracy of the classification. Updating 

errors can be divided in two respective categories: detectable 

and undetectable errors. A detectable error is produced when a 

mistaken land use is assigned in the classification, being the 

land use contained in the database correct. This error is also 

given if the classification process assigns an erroneous land use, 

the land use contained in the database is also incorrect, and both 

are different. An undetectable error happens when the land use 

assigned in the classification process and that contained in the 

database are the same but incorrect. The accumulation of 

detected changes and detectable errors compose the number of 

parcels to review in the updating process. 

 

 

4. RESULTS AND DISCUSSION 

4.1 Analysis of the results 

4.1.1 A Limia:  Table 1 shows the confusion matrix of the 

classification performed using spectral, texture, structural and 

shape features. The highest confusion is made between the 

classes Arable and crop lands with Shrublands, and Shrublands 

with Forest. This confusion is produced due to the high 

similarities between Shrublands and Forest. 

 

When the previous land use contained in the SIGPAC 

geospatial database is added as descriptive feature in the 

classification, the producer’s and user’s accuracies of the three 

classes with higher confusion degree increase. The higher 

number of errors is still produced between Arable and crop 

lands and Shrublands, and Shrublands and Forest. Adding the 

previous land use as a descriptive feature increases the overall 

accuracy, as proved by Recio et al. (2009). In this case, the 

increase produced is approximately of 3%. 

 

 

 
In order to analyse the effect of the previous land use in the 

updating process, the classification results are compared with 

the information contained in the database. Even when the land 

uses defined in the database are different to the employed in the 

classification, they were grouped to produce a direct 

correspondence between land uses, in order to detect the 

changes produced. Figure 4 shows the distribution of errors in 

the different cases defined. Assuming a thematic updating of 

land use contained in the SIGPAC, the number of changes 

detected without employing the previous land use is 5%, 

meanwhile employing this information, detected changes are 

reduced to 3.3%. Detectable errors without using ancillary data 

represent a 6.2% and a 1.4% using this information. This means 

that when previous land use is employed the number of parcels 

to be revised (possible detected changes) is reduced to a 4.7%, 

against 11.2% without using it. However, the proportion of 

detected changes is notably reduced. 

 

The undetectable errors in a later classification are practically 

doubled (from 2.4% to 4.3%) when the ancillary information is 

introduced in the classification. This means that even when the 
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Arable lands 1 3 2 23 574 95.2 

Producer’s accuracy 89.5 95.6 88.3 84.5 94.4 91.4 

 

Table 1.  Confusion matrix of the classification performed 

using spectral, texture, structural and shape features in A 

Limia. 

 

  Reference 

  

W
at

er
 

B
u

il
d

in
g

s 

F
o

re
st

 

S
h

ru
b

la
n

d
s 

A
ra

b
le

 l
an

d
s 

U
se

r’
s 

ac
cu

ra
cy

 

Water 16    1 94.1 
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Arable lands 1 3 2 12 580 97.0 

Producer’s accuracy 84.2 96.7 89.5 93.9 95.4 94.3 

 

Table 2.  Confusion matrix of the classification performed 

using spectral, texture, structural, shape and previous land 

use features in A Limia. 
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use of the previous land use as descriptive feature improves the 

classification accuracy, in an updating process the undetectable 

errors would be increased, which are the proportion of parcels 

where the land use has changed but has been misclassified with 

the previous land use. 
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Figure 4. Distribution of coincidences, changes and errors  

including or not the previous land use contained in the SIGPAC 

geospatial database as descriptive feature (A Limia). 

 

4.1.2. Baixo Miño: The confusion matrix of the 

classification using spectral, texture, structural and shape 

features (Table 3) shows high confusion between Greenhouse 

with Buildings and Arable and crop lands classes. In addition, 

some errors are produced between Shrublands with Forest, 

Vineyards and Arable and crop land due to the heterogeneity 

presented by the Shrublands class. The overall accuracy of the 

classification reaches 89.2%. Introducing the previous land use 

contained in the database as descriptive feature (see Table 4), 

the overall accuracy increases up to 92.9%, but the errors are 

mostly produced between the same classes. 

 

 

 
 

4.2 Discussion and problems 

One of the most important group of problems that introduce 

errors in the classification process in both areas of study is 

related with the geometry and shape of the plots. Some 

polygons, particularly in Baixo Miño, presented extremely long 

and narrow shapes (Figure 5,a). In other cases, the very small 

area of the plots makes the feature extraction process more 

difficult. On the other hand, the parcels with large dimensions 

normally present mixed land uses (Figure 5.b). This problem 

can be solved using automatic segmentation algorithms and 

classifying the generated sub-objects. Similarly, since the 

analyzed regions are basically rural areas, some built-up zones 

are contained in parcels mixed with vegetation (Figure 5.c). In 

this sense, the introduction of a post-processing step to filter or 

control improbable changes could reduce this type of errors and 

improve the classification accuracy for the classes involved. 

 

  
a. Narrow parcels. b. Mixed land use parcels. 

  
c. Mixed built-up parcels. d. Mixed forest-shrublands 

 

Figure 5. Examples of cases that difficult a correct 

classification. 
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Producer’s 

accuracy 
97.3 97.7 68.2 81.2 96.0 96.9 92.9 

 

Table 4.  Confusion matrix of the classification performed 

using spectral, texture, structural, shape and previous land 

use features in Baixo Miño. 
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Vineyards  2 3 15 2 231 91.3 

Producer‘s 

accuracy 
93.1 97.7 59.8 71.6 95.6 89.2 89.2 

 

Table 3.  Confusion matrix of the classification performed 

using spectral, texture, structural and shape features in 

Baixo Miño. 
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In the training sample selection process, partially done through 

photointerpretation, the visual discrimination between forest 

and shrubland was sometimes difficult. The SIGPAC database 

plots present mixed classes very frequently (Figure 5.d). In 

addition, the class Shrublands presents a significant internal 

heterogeneity in the area of Baixo Miño. Finally, since the 

regions of study were significantly large, those land cover 

classes having a very low representation were not considered in 

the classification legend. 

 

 

5. CONCLUSIONS 

A methodology for land use/land cover geospatial database 

creation and updating, based on generic classes and a parcel-

based classification approach from high resolution multispectral 

images has been presented and analysed. The classification is 

based on the combination of several descriptive features derived 

from images, parcel shape and ancillary data. The analysis has 

been focused on detecting neglected agricultural and forest 

parcels, since this information is required by the Land Bank of 

Galicia to eventually intermediate between owners and potential 

users for a productive reutilization of the land. 

 

The results obtained in this study show a high capability of the 

proposed techniques as a supporting tool for updating and 

managing this land cover / land use information. Main 

classification errors are produced in the discrimination between 

forest and shrublands areas, because of the complexity of the 

landscape. Several problems were found differentiating these 

classes using photointerpretation techniques. The effect of the 

use, as a descriptive feature, of the previous land use contained 

in the geospatial database has also been tested. The results show 

that even when the addition of this feature improves the 

classification accuracy reducing the errors, it produces a 

significant increase of the undetectable errors, difficulting the 

process of geospatial database updating. 
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