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ABSTRACT: 

 

 

The geographic characteristics of the territory determine the spatial distribution of land uses and are considered as essential clues by 

photo-interpreters to determine the land uses. Parcel-based classification of high-resolution images is one of the most reliable 

alternatives for the automatic updating of land use geospatial databases. Each parcel can be characterized by means of a set of 

features extracted from the image, its outline, the contextual relationships with its neighbours, etc. Features derived from geographic 

ancillary data can be considered as descriptive information in order to characterize the objects contained in the database. Several 

tests have been done in order to evaluate the usefulness of different types of geographic ancillary data to improve the land use/land 

cover classification. The ancillary data employed are: distance maps to key geographical elements, soil maps and features extracted 

from digital elevation models. In this study, each database object is described with its spectral feature set extracted from the image, 

using a per-parcel approach, completing this information with the geographic properties. Afterwards, objects are classified using 

decision trees combined with boosting techniques. The assigned class is compared with the land use in the database in order to detect 

changes or errors in any of the compared sources. The classification results demonstrate that a significant increase in overall 

accuracy can be achieved by combining spectral and textural features with geographic data.  

 

 

1. INTRODUCTION 

Land use-land cover geo-spatial databases are an essential 

source of information for natural resource management. The 

updating of this type of databases is expensive and time 

consuming and requires a high degree of human intervention. 

Currently, recent advances in quality and quantity of airborne 

and satellite sensors have entailed an important increase in the 

availability of high resolution images. At the same time, new 

methodologies are being developed to analyze these data. 

 

In an object-oriented image analysis the minimal analysis unit is 

not a pixel but a group of pixels. Image objects can be created 

grouping pixels by means of automatic segmentation 

algorithms, or by using available cartographic information, such 

as cadastral or agricultural cartography. In this approach, the 

limits of the objects have more geographical meaning than 

regions created with segmentation algorithms, which produce a 

space division conditioned by sensor attributes instead of the 

territorial characteristics. Quantitative description of each object 

is carried out by means of a set of features which cover different 

aspects: spectral response, texture, planting pattern, shape of the 

parcel, etc. 

 

Geographic characteristics of territory, like altitude, slope, 

aspect, etc. determine the spatial distribution of land uses. 

Features extracted from geographic data can complete the 

description of the objects with useful information in addition to 

the features extracted from images. In a traditional photo-

interpretation process, geo-spatial information is considered to 

assign a class to each object in the database. Therefore, this 

information must be considered in a detection change semi-

automatic process to obtain similar results to the obtained 

manually. 

 

Integration of ancillary data into the classification has usually 

been divided in three categories: before, after or during 

classification. Integration before classification can be done 

through stratification, where ancillary data are used for dividing 

zones which have to be analyzed in a different way (Strahler et 

al., 1978). Some authors have used ancillary data after 

classification in order to improve or correct the results of the 

classification. Land use, rainfall (Cohen and Shoshany, 2002) or 

topographic information (Raclot et al., 2005) has been added in 

order to better discriminate between classes with a similar 

spectral response. 

 

Integration of ancillary data during classification can be done in 

different ways. Many authors (Heipke and Straub, 1999; Olsen 

et al., 2002; Walter, 2004) employ the land cover/land use 

contained in agricultural and cartographic geospatial databases 

to automatically provide training samples for the classifier. The 

easiest and most employed technique to include ancillary data 

during the classification process is to use it as an additional 

descriptive feature. This technique is determined by the data 

type (continuous or discrete), and also by the classifier 

employed, because discrete data is not tolerated by statistical or 

distance-based classifiers. Some authors included land use/land 

cover information contained in the geospatial database as a 

descriptive feature (Rogan et al., 2003; Recio, 2009). Ancillary 

data derived from digital terrain models, such height, slope or 

aspect, has been included in many studies (Hoffer, 1975; 

Hutchinson, 1982; Bruzzone et al., 1997; Treltz and Howarth, 

2000; Lawrence and Wright, 2001) due to its simplicity of use 
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(Pedroni, 2001) and the known improvement in the 

classification accuracy (Hoffer et al., 1975).  

 

The aim of this study is to analyze the influence of considering 

ancillary qualitative geographically referenced information in 

objects description and classification, for a particular case of 

study. Land uses often show a strong correlation with 

geographic characteristics and, therefore, geographic attributes 

provided by Digital Terrain Models (DTM) or geological map 

can be particularly useful when integrated with descriptive 

features derived from the image. 

 

 

2. STUDY ZONE AND DATA 

2.1 Study zone 

The study area is the local region (comarca) of A Limia (see 

Figure 1) which is located in the province of Ourense, in Galicia 

(Spain). The study area presents large areas of agricultural 

crops, forest and shrublands. 

 

  
a. Location of Galicia in 

Spain 

b. Location of analyzed 

region in Galicia. 

 

Figure 1.  General location maps. 

 

2.2 Data 

The images employed were acquired from the Spanish National 

Plan of Aerial Orthophotography (PNOA). These images have 

a spatial resolution of 0.25 m/pixel and 4 spectral bands: red 

(R), green (G), blue (B) and near infrared (NIR). The images 

were acquired between May and July of 2007. 

 

Cartographical boundaries have been obtained from the 

Geographical Identification System for Agricultural Parcels 

(SIGPAC) existing in Spain since 2005 for the management of 

agricultural aids. This is a registry of analogous properties to 

the cadastre.  

 

Ancillary data were extracted from a Digital Terrain Model 

(DEM) with 10 meter resolution. This was employed to obtain 

the geographical features of the parcels and to derive the 

drainage network of the study area. In addition, the geological 

map of Galicia at a scale of 1:250,000 provided basic 

lithological information of the working area.  

 

 

3. METHODOLOGY 

Main steps of database updating by means of object oriented 

image classification are shown in figure 2. Firstly, objects are 

generated through information pre-processing and integration of 

different data. In addition, a ground truth database must be 

collected in order to train the classifier and to evaluate the 

results of the classification. Besides, a descriptive feature 

extraction process is developed to describe intensely the objects 

in the database. When the training sites are fully described, they 

can be used to train the classifier which would assign a class to 

each object considering its features. The assessment is done by 

comparing ground truth database with the classification results. 

Finally, discrepancies between classification and database to 

update determine the changes to be reviewed by a photo-

interpreter.  

 

 

Figure 2. Workflow diagram for spatial database updating using 

digital image classification. 

 

3.1 Pre-processing 

High resolution images presented a high pre-processing degree: 

geometric rectification, panchromatic and multispectral fusion, 

mosaicking, and radiometric adjustments. Additionally, in order 

to facilitate the descriptive feature extraction process, images 

were resampled to 0.5 m/pixel using bilinear interpolation. This 

spatial resolution has been considered optimum for this 

application. Reference systems of maps (parcel database, 

geological and DEM) and images were synchronised in order to 

guarantee the geometric concordance of the data. 

 

Seven classes were defined (see figure 3): Mass of water, 

Buildings, Forest, Shrublands, and  Arable land divided in 

three classes to differenciate the vegetation level of the parcel: 

without, sparse and dense vegetation. Training sites are 

necessary to provide the inductive learning algorithm with 

samples about the classes to be trained and to evaluate the 

classification results. Around 1300 training samples were 

selected using mainly field work and also photointerpretation 

techniques, in order to avoid the underrepresentation of some 

classes, especially Water layers, Forest and Shrub lands. 

Objects are described as contiguous pixel groups with similar 

characteristics to the real world elements that are modelling. 

The main SIGPAC geographical objects are parcel and plot 

(Mirón, 2005). We will define a parcel as a continuous area of 

land with a unique alpha-numerical reference, and a plot 

(recinto) as the continuous area of land within a parcel for a 

single agricultural use.  In this study, spatial objects are created 

using the plots limits contained in the SIGPAC database. To 

avoid the inclusion of pixels not belonging to the plot, due to 

errors in the delineation of limits or due to positional defects, a 

morphological erosion filtering was applied to each object with 

circular structuring element of 5 pixels diameter. 
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a. Arable land with 

dense vegetation 

b. Arable land with 

sparse vegetation 

c. Arable land without 

vegetation 

   
d. Shrublands e. Forest f. Buildings 

 

 

 

 g. Mass of water  

Figure 3. Examples of the classes defined. 

 

3.2 Feature extraction 

The use of valuable features is essential for an accurate 

classification. Each plot has been independently processed to 

extract descriptive features that characterize the current land 

use. The features employed in this study can be grouped in four 

categories: spectral, texture, structural and ancillary data based. 

 

Spectral features provide information about the spectral 

response of objects, which depends on land coverage types, 

state of vegetation, soil composition, construction materials, etc. 

These features are especially useful in the characterization of 

spectrally homogeneous objects, as herbaceous crops or fallow 

fields. Mean and standard deviation were computed from the 

bands NIR, R, G and also from the Normalized Difference 

Vegetation Index (NDVI). 

 

Texture features inform about the spatial distribution of the 

intensity values in the image, being useful to quantify properties 

such as heterogeneity, contrast or uniformity related to each 

object (Ruiz et al., 2004). These properties are obviously related 

to the land use/land cover inside an object. For every object, the 

features proposed by Haralick et al. (1973) based on the grey 

level co-occurence matrix (GLCM) were computed. This 

information was completed with the values of kurtosis and 

skewness of the histogram, and the mean and the standard 

deviation of the edgeness factor for each parcel (Laws, 1985). 

The edgeness factor represents the density of edges present in a 

neighbourhood. These features were derived from the red band. 

 

Structural features describe spatial distribution and spatial 

relations between the elements contained in the objects 

(regularity patterns, distances between elements, etc.). They are 

important to describe tree crops with regular planting pattern. 

The structural features used in this work are based on the 

semivariogram. The semivariogram quantifies the spatial 

associations of the values of a variable, and measures the degree 

of spatial correlation between different pixels in an image. This 

is a particularly suitable tool in the characterization of regular 

patterns. For continuous variables the expression that describes 

the experimental semivariogram is: 
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where z(xi) = value of the variable in position xi. 

 N = number of pairs of data considered. 

 h = separation between elements in a given direction. 

 

The experimental semivariogram representing each object is 

obtained by computing the mean of the semivariograms 

calculated in six directions, ranging from 0º to 150º with a step 

of 30º. Afterwards, each semivariogram curve is filtered using a 

Gaussian filter with a stencil of 3 positions, in order to smooth 

its shape and to eliminate experimental fluctuations. The 

parameters computed consider the singular points of the 

semivariogram, such as, the first maximum, the first minimum, 

the second maximum, etc., and are fully described in Balaguer 

et al. (2010). 

 

The ancillary data-based features are extracted from diverse data 

sources and contribute to the object description adding spatial 

and contextual characteristics. The features employed in this 

study are: mean and standard deviation of the elevation, slope 

and aspect, average distance to the rivers and most frequent 

lithology. 

 

 

Figure 4. Distribution of classes according to terrain elevation. 

 

Elevation is a determining factor for distribution of spontaneous 

vegetation and crops. Figure 4 shows the class distribution of 

the training samples depending on the terrain height. Land uses 

located in areas with elevation higher than 1,000 m above sea 

level are limited to Forest and Shrublands, meanwhile 

agricultural classes and Mass of water trend to be placed at 

lowest levels. Landforms also condition the land use. As it is 

shown in figure 5, plains are kept for agricultural uses while 

spontaneous vegetation predominates in steepest terrains. 

Information about landforms can be derived from the DEM, by 

calculating the local slope along the steepest direction. Aspect 

of hillsides is the major determining factor in soil water content, 

that influences the vegetation distribution. This feature is 

related with land use in mountainous areas, but has a reduced 

significance in plain areas. 
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Figure 5. Distribution of classes according to terrain slope. 

 

In mountainous terrains, crop areas are located along the valleys 

close to the rivers. The feature “Distance to the rivers” can be 

useful to describe the position of the parcels with respect to the 

channels, providing contextual information. This feature has 

been computed from the drainage network deduced from the 

DEM. 

 

Lithology data is useful to model species distribution, even 

when detailled knowledge on soil vegetal species preferences is 

not available for many species (Gastón et al., 2009). In addition, 

lithologic properties are related with landforms and in some 

manner with the land use. A lithology class is assigned to each 

plot as the most frequent type given. This information was 

obtained from the geological map of Galicia. Geologic materials 

in A Limia are grouped in three categories: about 30% of the 

surface is covered with detritus deposits, 52% with granites and 

18% with slates. This feature is defined as a discrete data type, 

requiring classifiers able to manage thematic features. 

 

3.3 Classification through decision trees 

Objects have been classified in several tests by using decision 

trees with different descriptive features. A decision tree is a set 

of organized conditions in a hierarchical structure, in such a 

way that the class assigned to an object can be determined 

following the conditions that are fulfilled from the tree roots 

(the initial data set) to any of its leaves (the assigned class). The 

algorithm employed in this study is the C5.0, which is the latest 

version of the algorithms ID3 and C4.5 developed by Quinlan 

(1993). This algorithm is the most widely used to deduce 

decision trees for classifying images (Zhang and Liu, 2005). 

The C5.0 algorithm can manage several data types, such as 

continuous or discrete, which highly increases the possibility of 

adding descriptive features coming from diverse data sources to 

perform the classification. 

 

Objects were classified using 10 decision trees, by means of the 

boosting multi-classifier method, which allows for increasing 

the accuracy of the classifier (Freund, 1995). The methodology 

followed by the boosting to build the multi-classifier is based 

on the assignment of weights to training samples (Freund and 

Shapire, 1997). After each tree construction, the weights vector 

is adjusted to show the model performance. In this way, samples 

erroneously classified increase their weights, whereas the 

weights of correctly classified samples are decreased. Thus, the 

model obtained in the next iteration will give more relevance to 

the previously wrongly classified samples (Hernandez-Orallo et 

al., 2004). After the decision tree set is constructed, the class 

assigned to an object will be done considering the estimated 

error made in the construction of each tree. The sum of the 

weights of those trees which assign the same class to one object 

is computed, giving that object the class with higher value. 

 

The effect of the inclusion of ancillary data-based features was 

evaluated by comparing the results of several classifications. 

Table 1 shows the combinations of descriptive features used in 

the 42 classifications performed (6 groups of image-based 

features and seven alternatives of inclusion of the ancillary data-

based features). 

 

The performance of a classifier on the training samples from 

which it was constructed gives a poor estimate of its accuracy 

on new cases. The accuracy of the classifier can be estimated by 

using a separate sample set; either way, the classifier is 

evaluated on cases that were not used to build it. However, this 

estimate can be unreliable unless the numbers of cases used to 

build and evaluate the classifier are both large. One way to get a 

more reliable estimate of predictive accuracy is by f-fold cross-

validation. In our work, the training sample set was divided into 

10 blocks of roughly the same size and class distribution. For 

each block in turn, a classifier is constructed from the cases in 

the remaining blocks and tested on the cases in the hold-out 

block. In this way, each case is used just once as a test case. The 

error rate of a classifier produced from all the cases is estimated 

as the ratio of the total number of errors on the hold-out cases to 

the total number of cases.  

 

 

4. RESULTS AND DISCUSSION 

First row of table 1 shows the overall accuracies of 

classifications without considering the ancillary features. 

Results show that spectral features are, in this case, the image-

based features with the highest discriminant power. As 

expected, the combination of spectral information with texture 

and structural features produced moderate increments at the 

overall accuracies. 

 
  Image-based features 
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None 80.8 69.7 66.5 84.1 82.0 84.4 

Height 82.6 74.8 72.0 85.3 84.9 86.9 

Slope  81.2 73.4 71.9 84.9 84.8 85.5 

Aspect 79.2 70.3 68.5 82.8 83.5 84.2 

Lithology  81.5 72.0 68.0 85.4 84.2 85.4 

River distance  84.3 74.7 72.4 86.7 86.7 86.6 

All 86.6 80.2 77.4 86.7 86.0 86.8 

 

Table 1. Overall accuracies of the classifications with different 

input data 

 

The addition of ancillary data-based features produced overall 

accuracies increments with the exception of considering the 

feature Aspect which, in some cases, entailed a slight accuracy 

decrease. This is due to the fact that this feature does not give 

additional information in mainly plain terrains and should be 

considered jointly with the Slope. The overall accuracy 

increments are more significant as worst is the description of the 

objects with the image-based features. The ancillary feature that 

presents a higher discriminative power is Distance to the rivers. 

The addition of this feature produced increments on the overall 
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accuracies ranging from 2.2% to 5.9%, meanwhile the Height 

produced slightly lower accuracy increments.  

 

The analysis of confusion matrixes reveals that the Distance to 

the rivers increases the separability of the classes Forest and 

Shrubland. Using this feature, average increments of the 

producer’s accuracy of these classes was 11.6% and 4.5%, 

respectively. Moreover, the average user´s accuracies 

incremented 7.5% for Forest and 6.5% for Shrubland. 

However, this is the most subjective feature because its value 

depends on the criterion employed to define the channels from 

the DEM.  

 

Lithological properties of plots had a reduced effect in the 

classifications. In all cases, overall accuracies obtained were 

slightly higher when this feature was considered, not having a 

negative effect. In our study area, no correlation was observed 

between land uses and lithology classes, furthermore, the low 

level of detail of the geologic cartography employed made 

difficult to properly describe the geologic properties of the 

plots.  

 

In A Limia, crops are limited to slopes lower than 10%, whereas 

forest and shrublands predominate in higher slopes. This feature 

had a positive effect in classification but it was less significant 

than other features. 

 

The jointly addition of ancillary data-based features involved 

increments of the overall accuracies ranging from of 2.4% when 

the plots were described with spectral, textural and structural 

features, to a 10.9% when only the structural features were 

employed.  

 

 

5. CONCLUSIONS 

This study evaluates the contribution of geographic ancillary 

information into object-based classification of high resolution 

images for database updating in a particular area of study. 

Numerous alternatives to describe the objects contained in 

spatial databases have been compared in order to deduce the 

object class. 

 

Features regarding to topographic properties and spatial 

arrangement provide useful information to describe objects and 

complement spectral features in a similar way to the textural 

and structural features but with fewer variables.  
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