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ABSTRACT: 

 

This paper presents the architecture of the City Modelling Procedural Engine (CMPE), a system for the automatic / semi-automatic 

reconstruction of virtual models of cities. Although the entire data flow can automatically proceed from the beginning to the end, in 

each stage the manual intervention of the user is possible to correct mistakes caused by the automatic process, to optimize the results, 

or to introduce further details. The CPME is integrated in XVR, a framework for the development of VR applications. So far the 

CMPE engine is still in progress, but many of the main modules have been developed and some interesting conclusions may be 

outlined both on the quality and on the performance side. 

 

 

1. INTRODUCTION 

An increasing interest has been growing in latest years in the 

field of procedural generation of urban environments, as this 

technique can be advantageously exploited both for research 

and commercial purposes. For instance, the visualization of 

maps and cities has lately become very interesting popular, as 

the recent spreading of GPS receivers at cheap prices, to be 

used as a navigation aid in cars, has stimulated the interest in 

the market of high-precision maps. The software used by the 

large majority of navigation devices, whose complexity is or can 

be compared to that of palmtop computers, usually shows a 2D 

flat or a “fake 3D” perspective representation of road maps. 

Indeed, a full 3D visualization of the maps, regarding not only 

roads but also the surrounding environments, could be very 

helpful to assist the visual association between the displayed 

map and the real location. Another application which rapidly 

gained a large success is Google Earth (http://earth.google.com) 

, which displays satellite images, aerial images and vector maps 

projected onto a simple 3D representation of the terrain they are 

associated. In general, urban planning for analysis, insight, and 

decision-making, will more and more make a thoroughly use of 

virtual cities, in the same way as in video games, especially in 

the context of driving simulations, and in the movie industry.  

 

Whether the application requires a high visual detail or not, 

modelling a whole city is a long and tiring job from a manual 

approach point of view. A much more time-effective technique 

for city modelling may consist in semi-automatic generation of 

3D models; this is  the technique presented in this paper, where 

the first and coarser model levels of detail are generated 

automatically, starting from a set of parameters which may 

consist in maps or even textual descriptions. Afterwards, a 

manual intervention of modellers should be foreseen to have a 

better control on the final results, especially in terms of visual 

pleasantness and realism.    

 

 

 

2. RELEVANT WORK 

A great deal of research on the topic of virtual cities is currently 

ongoing in several universities and departments. One of the 

most important points of reference on the web is the Virtual 

Terrain Project (http://www.vterrain.org) which, since 1998, has 

been hosting a huge amount of articles, images and software 

tools to “foster the creation of tools for easily constructing any 

part of the real world in interactive, 3D digital form”. The tools 

and their source code are freely shared to help accelerating the 

adoption and development of the involved technologies. 

Currently the project is still far from proposing a unified 

approach; rather it is a collection of algorithms, taxonomies and 

applications which, although well categorized, are not yet fully 

integrated. However, VTP is one of the most interesting and 

challenging project in the sector. 

A remarkable work in the field of the procedural generation of 

cities is City Engine, the evolution of the work proposed by 

Parish and Mueller (2001). The engine uses a procedural 

approach based on L-systems to model cities. From various 

image maps given as input, such as land-water boundaries and 

population density, the City Engine generates a system of 

highways and streets, divides the land into lots, and creates the 

appropriate geometry for the buildings on the respective 

allotments. A texturing system based on texture elements and 

procedural methods allows adding visual definition to the 

buildings.  

Another noticeable work regards Large Urban Environments 

(Browne, 2004), a comprehensive approach which takes in 

account both modelling and rendering issues. 

 

The steps for the creation of a virtual city can be resumed in the 

definition of the following entities: 

• Urban Zone: information about geographical and, optionally, 

social-statistic features of the terrain, usually defined in a GIS 

system 

• Road Network: commonly, but not always, present in GIS 

systems 

• Block definition: very rarely this information is present in the 

GIS, usually it is deduced from other data 

• Lots: blocks are divided into lots with methods ranging from 

heuristics to pattern instantiation 



 

• Buildings: several methods exist: fully procedural (shape 

grammars), semi-procedural (declarative modelling) or 

manual (geometric modelling). 

 

As for the first two entities, input data may be easily available if 

related to the United States (in the Tiger/line format,  

http://www.census.gov/geo/www/tiger/tigerua/ua_tgr2k.html), 

whilst it is sometimes more difficult to be found for other 

countries, where there is still not such an integrated effort. 

However, elevation maps under the Digital Elevation Models 

(DEM) format of several regions overall the world are today 

commonly available. The most common sources for road data 

are centerlines, which are described by vector data formats.  

Nevertheless, most of the existing data bases are proprietary and 

not freely available. Therefore it seems convenient to establish a 

procedure to create such data by commonly available data, for 

instance extracting information from an existing set of raster 

maps, or aerial photographs, which are considerably easier to 

find, either directly in a digital format or after a scanning 

process from physical maps. Building the vector set from a 

raster source involves processing the road network raster image, 

either by hand or with the assistance of an automated computer 

application.  

When passing to 3D, basically two main approaches are 

available to model roads starting from 2D vectorial data: the 

road geometry is draped on top of the terrain (faster, but Z-

fighting may occur) or it can be embedded into the terrain (no 

visual issues, but computationally expensive). With either 

approaches, an algorithm is needed to convert road centerlines 

(raw vector data) to a full 2D/3D representation and to date 

there are not established algorithms for doing this.  

 

As far as the blocks and buildings modelling is concerned, the 

first issue to address is spatial location. A possible approach is 

the automatic extraction of footprints features from the raster 

images, as in the case of the road network.  Buildings modelling 

can be carried out using classical techniques. Although manual 

modelling leads to the most pleasant and realistic results, it is 

often desirable to perform a parameterization of the buildings 

properties so as to quickly create 3D models with a reasonable 

degree of realism. The problem is commonly addressed 

providing a very rough detail (box-like) for large datasets, 

increasing the level of detail for some noticeable buildings. 

Conversely, in the aforementioned work of Parish and Mueller 

(2001) buildings are generated by means of specialized L-

Systems which provide three possible styles: commercial, 

residential or skyscrapers. Roofs are built from templates. 

Facades and windows, along with other details, are modelled 

with procedurally composed textures. This means that 

photographs of real buildings are taken and subsequently 

decomposed in elements (windows, balconies, gates etc.) and 

re-composed adapting them to the surfaces of the generated 

geometry. This leads to good visual results, even if certain 

repetitiveness is easily perceivable. The VTP addresses the 

problem limiting the possible footprint shapes to rectangular, 

circular or polygonal. In the case of an arbitrary (but forcedly 

convex) polygonal shape, the roof can only be flat.  

 

The concept of split grammars, a specialized type of grammar 

operating on shapes, is introduced in (Winka, 2003). Its 

suitability for the automatic modelling of buildings stems from 

the fact that restrictions have been carefully chosen so as to 

strike a balance between the expressiveness of the grammar (i.e. 

the number of different designs it permits) and its suitability for 

automatic rule selection. The objects manipulated by the 

grammar are parameterized basic shapes. 

 

All the examined solutions address often very efficiently, but 

separately, the single problems involved in the generation of a 

virtual city. Nevertheless, only commercial solutions are 

available for an integrated approach which takes in account all 

of the involved issues. Even in this case, they are often devoted 

either only to the modelling aspects (favouring visual quality) or 

the real-time aspects (favouring performances).  

 

 

3. THE RENDERING FRAMEWORK 

The XVR framework (Carrozzino, 2005), jointly developed by 

PERCRO and VRMedia s.r.l., is a fully integrated environment 

devoted to the development of VR applications, based on a VR-

oriented scripting language specifically dedicated to 3D 

graphics, 3D sound and, in general, many other typical VR 

components.  

XVR is actually divided in two main modules: the ActiveX 

Control module, which hosts the interface for web browsers, 

and the XVR Virtual Machine (VM) module, which contains 

the technology core, such as the 3D graphics, audio and physics 

engines, the multimedia engine and all the software modules 

managing the other built-in XVR features. It is also possible to 

load additional modules which offer advanced functionalities 

not directly available. The XVR scripting language allows 

specifying the behaviour of the application, providing the basic 

language functionalities and the VR-related methods, available 

as functions or classes. The script is then compiled in a 

bytecode which is processed and executed by the XVR-VM. 

The integrated 3D engine, built on top of OpenGL, allows to 

manage the visual output not only on a standard graphical 

window (either web or local hosted), but also on more advanced 

devices such as Stereo Projection Systems and Head Mounted 

Displays. The engine uses state of the art algorithms of culling, 

simplification, normal mapping and image caching to achieve 

good real-time performances even with high-complexity 

models. 

 

Many applications built with XVR make use of 3D urban 

models. These may include vehicle simulators, crowd behaviour 

simulators and, lately, also an innovative methodology (ISEE) 

dealing with the access to information related to Cultural 

Heritage (Pecchioli, 2008).  

 

 
Figure 1 – The ISEE application 

 

In this work, interactive 3D models reproducing the main 

features of corresponding real environments are used in order to 

map relevant spatial zones to “pieces” of information. The 

innovative aspect lies in the use of 3D Gaussians both to map 

the information-related zones and the current view of the user; 



 

this yields to automatically obtain a measure of the “spatial 

relevance" of information, defined based on its location in the 

world and on the position/orientation of the user in the 3D 

space. This application represents a typical case where the 

visual fidelity is not the main issue: rather, the possibility of 

rapidly generating even roughly defined 3D models, with a 

sufficient geographical correspondence with the real places, is a 

key-aspect in order to quickly prototype the databases to be 

accessed with this methodology. 

 

 

4. THE ENGINE 

The City Modelling Procedural Engine (CMPE) is a tool for the 

semi-automatic generation of 3D urban environments, designed 

to support as many inputs as they are available, like vector 

maps, raster maps, DTMs, aerial photographs, text descriptions, 

trying to provide the most coherent output with the provided 

input. Although the entire data flow can automatically proceed 

since the beginning to the end, in each stage the manual 

intervention of the user is possible to correct mistakes caused by 

the automatic process, to optimize the results, or to introduce 

further details.  

 

The CMPE main objective is to allow the creation of huge 3D 

urban datasets, suitable for real-time rendering, which can be: 

• quickly obtained with  limited user interventions, so 

as to speed up the creation process (either finalized to 

a prototype or to the final model); 

• stored in a limited amount of memory, so as to allow 

the transmission over the network of related data even 

in low bandwidth conditions. 

 

An additional software library (PVRlib) implements the features 

related to the procedural generation of simple architectural 

entities (starting from basic geometries like cylinders, boxes and 

spheres, to more complex shapes like arches, columns, capitals) 

which can be used to easily add minor refinements to the final 

model or, embedded in the XVR scripting language, to model 

more complex architectural entities (like churches, temples, 

monuments) not directly characterizable by means of simple 

parameters (fig.2). 

 

 
 

Figure 2 - Examples of PVRlib objects 

 

As a general overview, the CMPE work flow (fig. 3) can be 

sketched as follows: 

 

• automatic extraction from raster maps of relevant features 

related to the road network or to the block footprints (this 

stage may not be performed if data are already in vectorial 

format); 

• generation of data structures for the general management; 

• generation of the 2D road network (includes, if possible, 

railways and rivers); 

• generation of the 3D road network; 

• identification of the parameters for the subsequent stages 

(blocks and buildings); 

• generation of the 3D blocks and of the 3D buildings; 

• storage of the global 3D model in the AAM format, either to 

directly feed the XVR real-time rendering engine, or to be 

manually refined within 3D modellers such as 3D Studio 

Max; 

• manual modelling of the details (either with the 3D 

modelling software or directly within XVR, through the 

PVRLib) and export to AAM; 

• XVR Rendering. 

 

  
 

Figure 3 - A hi-level scheme of CMPE workflow 

 

4.1 Automatic extraction of road networks and building 

footprints 

In the current implementation, the CPME input data consists in: 

 

• a 2D raster map of the city to be modelled; 

• a DTM of the same region (optional); 

 

with planned support to vector maps. If the DTM is included, 

both maps must be geo-referenced in order to be correctly co-

located. 

 

The first step consists in a simplification of the raster image 

(which may come from digital archives or even from scanning, 

therefore it may contain inscriptions, labels or other “noisy” 

elements, see fig. 4a) to clean the map and make it easier the 

features extraction. The stages to be performed: 

 

• reduction of the colours to a constant number (which may 

be user-specified); 

• elimination of the “isolated” pixels (noisy pixels produced 

by image compression or anti-aliasing), assigning to them 

the mean of the adjacent pixels colours; 

• identification of the most frequent colours (let N be the 

number of these colours) and further reduction of the 

image colours to N; 

• elimination of the labels, if present, as in the case of 

isolated pixels; 

 

This stage leads to the production of a raster map that, even if 

not perfectly clean, is much handier for the subsequent stages. 

This allows a great number of sources which are commonly 

available and free (like, for instance, scanned maps) to be used 



 

as input data. However, user intervention is possible for small 

manual corrections. 

 

The second stage consists in the vectorization of the map. The 

result of this stage is a graph composed of nodes (corresponding 

to crossroads, curves etc.) and links (which are segments 

connecting two nodes). Particular attention must be put on 

squares, which cannot be treated as simple crossroads if 

wanting, in the next stages, to add details or other architectural 

elements like fountains etc.  

 

Nodes and links are therefore categorized as follows: 

 

Nodes Links 

Blind Alleys  Streets 

Crossroads  Railroads 

Curve Nodes  Watercourses 

Square Vertices  

  

 

Table 1.  Nodes and links categorization 

 

 

 
 

 
 

Figure 4: (a) – A sector of a possible input raster map 

(b) – The map skeleton overimposed on the cleaned map 

 

To vectorize the map, the identification of the above mentioned 

relevant features, i.e. nodes and links, is performed by means of 

a process of skeletonization (fig. 4b), a form of thinning aiming 

to extract a region-based shape feature representing the general 

form of an object (Blum, 1967). The skeleton represents both 

local object symmetries and the topological structure of the 

object. Therefore it is a good starting point for the extraction of 

vector features from a 2D raster map (Gold, 2001). 

The map is then processed in order to identify the relevant 

points which will be subsequently treated as nodes. The first 

step is to recognize crossroads, then the blind alleys and finally 

the curves. In order to get a restricted number of nodes (so as to 

limit the geometrical complexity of the final 3D model of the 

road network) the curve bending shall exceed a pre-defined 

user-specified bending angle. If this happens, the point where 

bending exceeds the limit is marked as a curve node. In Figure 

5a crossroads are highlighted in red, blind alleys in blue and 

curve nodes in green. In this stage, nodes coordinates are still 

stored in the picture reference system. If the picture is geo-

referenced, the real coordinates will be computed afterwards; 

otherwise a generic reference system is used.  

The obtained graph is then optimized by removing redundant 

nodes and links, likely to be the result of approximation errors 

in the previous stage (links connecting blind alleys are removed, 

crossroads connected by very short links are collapsed, etc.) 

 

The next feature to identify is roads width. Different cases may 

occur: 

• blind alley or curve branch: it is enough to measure the 

width in a certain number of points (usually the extremes 

and the medium points) along the road orthogonal direction; 

• roads ending in crossroads: the extreme points, in this case, 

cannot be used, as the orthogonal direction should point to 

another road, therefore the measured width is commonly 

non significant (it could result even in the intersecting road 

length). In this case, a series of semicircles is traced starting 

from the crossroad until the borders of the road are reached. 

 

A particular case is represented by squares (fig. 5b). 

Automatically recognizing squares is not straightforward, as 

they can be sometimes mistaken by crossroads. An attempt is 

made by comparing a link width with its length. If their ratio is 

nearly 1, the link is likely to make part of a square. In this case, 

a further search is performed to find the nodes related to the 

adjacent links. The convex envelope of these nodes constitutes 

an acceptable approximation of the square shape. A better 

approximation is given by considering the convex envelope of 

an enriched set of nodes, including additional nodes created on 

the width boundaries of the roads at their connection with the 

square (fake nodes). 

With a similar technique, and with the search of the minimal 

closed loops in the graph, the boundaries of blocks are 

identified (fig. 5c). As appears from the picture, block footprints 

currently do not take in account internal shapes, like courtyards; 

they are not automatically retrieved in this stage, even if they 

can subsequently be manually added.  

 

   
Figure 5: (a) – Nodes highlighting,  

(b) – Squares features extraction, 

(c) – Blocks features extraction 

 

At the end of the whole process, the complete graph is 

composed of: 

 

• a set of nodes, characterized by a coordinate pair (x,y) and a 

type; 



 

• a set of links, characterized by the related nodes, a type and 

a width; 

• a set of squares (collections of connected nodes defining an 

area lying on the road network); 

• a set of blocks, (collections of connected nodes defining an 

area lying outside the road network); 

 

This City Graph (CG) has an almost 1:1 correspondence with a 

vector map, which is therefore easily built. The vector map can 

be displayed as an overlay on the raster map, so as to allow the 

user to manually modify the nodes position and/or to add new 

nodes, in order to refine (Figure 6) the obtained results and to 

correct the possible mistakes so far made. It is worthy of note 

that user interventions are always optional, hence the algorithm 

is able to generate an equivalent vector map directly from the 

raster map.  

 

 
Figure 6:– Manual refinement of the City Graph 

 

The user in this stage can also add labels or additional types to 

the City Graph elements for the subsequent automatic 

generation of 3D data. For instance a certain portion of the map 

can be labelled as downtown or suburbs, so as to provide 

information about buildings style and size. In the same way, 

blocks can be marked as parks, either because user-identified or 

because of map colours. Finally, the user can label blocks as 

monuments; in this case the automatic generation of the block 

might access additional geometrical data either manually or 

procedurally modelled. 

 

If data are geo-referenced and a DTM is also present, the graph 

nodes are updated with the addition of the z coordinate. This 

allow defining also the morphology of the terrain and, if 

present, the height of buildings. Otherwise the city is considered 

to by lying on a plane and buildings heights will be pseudo-

randomly generated on the basis of qualitative attributes. The 

next stage consists in the generation of a polygonal mesh 

representing the road network.  

    

4.2 Generation of the 3D road network 

The simplest method to address this issue consists in converting 

links in quads, using the information related to the links 

extremes in terms of coordinates and widths. However this 

would lead to overlapping polygons, resulting in annoying z-

fighting effects. Therefore a more refined tessellation (fig. 7 

a,b,c) must be done on crossroads (3 or more roads meeting). 

The opposite problem may occur in curve branches (2 roads 

meeting) where the simple method could leave uncovered areas, 

depending on the bending angle. In this case the tessellation 

should create new triangles to cover these areas (fig. 57 d).  

 
 

Figure 7: (a,b,c) – Crossroad tessellation, 

(b) – Curve tessellation 

 

 

Subsequently textures, with different traffic signs, centre lines 

and track signs, are applied to roads, depending on their type, 

width and importance (fig. 8). 

 

 
  

Figure 8 – Road texturing 

 

 

4.3 Generation of the 3D buildings 

The next step is to generate blocks and buildings starting from 

data contained in the vectorial map. A block is identified by a 

line of block, which represents its perimeter. The engine can 

generate blocks in two modalities: Perimetral and Mix. 

 

The Perimetral mode simply generates a courtyard inside the 

perimeter. The thickness of buildings is taken so as to avoid 

edifices overlapping. The Mix mode is more complicated; the 

block is completely subdivided in buildings based on the angles 

formed by the perimeter lines. The size and the height of 

buildings, if not specified in the City Graph, are pseudo-

randomly calculated in order to differentiate buildings inside the 

same blocks (Fig. 9).  

  

 
 

Figure 9 – Different building shapes from the same block 

 



 

The shape and the appearance of the building can be as well 

defined and modified, for instance treating the ground floor 

differently from the other ones or allowing to stack floors of 

different size (like in skyscrapers, for instance). Several types of 

roofs have been implemented which can be manually set or 

automatically chosen from labels and block type (Fig. 10). 

In addition to the code-based procedural generation, an 

authoring/editing tool has been developed to assist the user if a 

manual intervention is needed to fine tune the model. The tool 

has advanced procedural capabilities oriented to the buildings 

modelling, therefore by setting few parameters it is possible to 

create complex models. Dedicated features are available to 

model pavements and arcades. The appearance of buildings can 

be enhanced by applying textures of portals, doors, balconies 

and windows (Fig. 10). The procedure follows the one 

described in (Parish, 2001). Work is in progress to generate 

some of these features as geometry rather than textures (for 

instance balconies, ridgecaps etc.). It is also possible to have 

more than one representation to be stored as different LODs. 

Parks are treated as a separate case; the minimal LOD is given 

by a green polygon, but additional entities will be easily added 

(procedurally generated trees or billboards, from external 

libraries). The set of entities will be completed by additional 

vertical traffic signs and stoplights, lamps, benches and other 

urban furniture. Also in this case rules can be defined to 

automatically add these features; otherwise they can be 

manually specified. 

 

 
Figure 10 – Textured buildings 

 

All these geometrical entities can be directly generated inside 

XVR or exported in the AAM format, in order either to be used 

inside XVR or to be imported into 3D modeller programs where 

the model can be improved and enriched by: 

• correcting possible mistakes; 

• refining geometries and textures; 

• adding new elements; 

• perform shaders-based photo-realistic rendering and 

exporting static lighting features on textures 

A detailed CMPE block diagram is presented in fig. 11. 

 

 

 
Figure 11 – CMPE block diagram 

 
 

Figure 12 (a) – Simplest LOD for a City Graph of Pisa 

Figure 12 (b,c) – More detailed LOD for the same City Graph 

Figure 12 (d) – Sample of a textured high-detail LOD 

 

 

 

5. RESULTS 

Being CMPE still under development, results are only partially 

significant. However, some tests were made to investigate the 

possible uses of the engine. Being natively XVR a web-oriented 

technology, one of the foreseen uses of CMPE is related to 

internet-based applications. Therefore, measuring CMPE 

performances in terms of time required for geometry generation, 

is interesting to understand if it is suitable for on-demand 

rendering urban models in networked environments. A 

comparison should occur between a scenario where a 3D urban 

model of a given complexity is ready to be downloaded and 

another one where the 3D model is generated on the fly on the 

base of a raster map downloaded from network. 

 

In the case of on-the-fly modeling, the total needed time is: 

 

tOTF = tJPG + tCG + t3DM 
 

where tJPG is the downloading time of the raster map from 

network, tCG is the time needed for the generation of the City 

Graph, t3DM is the time needed for the procedural generation of 

the 3D model. 

 

In the case of network downloading, the corresponding time is: 

 

tDL = tDL + tFL 

 

where tDL is the downloading time of the 3D road network 

model from network, and tFL is the loading time of the 3D 

model file in memory. 

 

In the following, network times are calculated considering the 

best network performances possible (i.e. full bandwidth). The 

tests were performed on an Intel Pentium 2M notebook, 

equipped with an ATI 9600 and 512 MB RAM. The models 

where generated based on maps of increasing size, resulting in 

increasingly complex geometry:  

 

 



 

Map Resolution (pixel) 512 1024 2048 4096 

# of links 92 379 1152 3168 

# of nodes 156 632 1876 5159 

# of triangles 9479 84939 280380 770790 

 

Table 2 – City Graph complexity vs. map size 

 

Fig. 13a shows that the time needed to have the model ready for 

rendering is slightly shorter in the case of on-the-fly modeling 

with respect to Ethernet network downloading, while it is 

considerably better if compared with DSL 4Mb network 

downloading. Network incidence is almost negligible in the 

case of on-the-fly modeling, thus DSL and Ethernet offers 

roughly the same performances. 

 

The efficiency of on-the-fly modeling is more evident (fig. 13b) 

when the generation of the City Graph (which is by far the most 

time-consuming operation) is performed on the server side. In 

this case it is not possible to generate virtual cities from any 

map (unless the client does not send a request to the server by 

sending the desired raster map, but in this case uploading time 

should be taken in account) and the detail is not so easily 

parameterizable.  

 

 

 
Figure 13: (a) – Performances for CG generation 

(b) – Performances for CG download 

 

However, using pre-computed City Graphs reduces the needed 

time for visualization to: 

tOTF = tCGT + t3DM 

where  tCGT  is the needed time to download the City Graph, 

rather than to generate it. In this case tOTF is considerably 

smaller than tDL also in broadband network circumstances. A 

network application could therefore provide a wide choice of 

City Graphs whose data may be transmitted and locally 

evaluated in order to generate the 3D geometry. It could also be 

considered to implement network services which build City 

Graphs on demand having as input data a raster map received 

by the client side. 

 

 

6. CONCLUSIONS 

We have presented the City Modeling Procedural Engine, a tool 

for the rapid automatic generation of very complex virtual urban 

environments, suitable for real time rendering and requiring 

minimal user interventions. With respect to existing procedural 

engines, we introduced the possibility of manual refinements in 

every stage of the work flow, in order to ensure a better control 

on the final results, usually a weakness of procedural modeling 

algorithms.  

 

We believe that this mixed strategy can produce interesting 

results: procedural techniques are used to deal with the 

quantitative aspects intrinsic in complex virtual environments 

and, optionally, then manual user actions are possible to refine 

the generated models from a qualitative point of view. This 

allows for mistakes or undesired features, resulted from the 

procedural generation, to be fixed at earlier stages of the 

process. Besides, as not all the desired components of a 

complex VE can be described in terms of procedures, manual 

refinements may be not only advisable but, indeed, needed to 

produce the expected results. 

 

Many improvements may be performed on the City Modeling 

Procedural Engine: 

 

• a single, unified interface collecting all of the engine 

modules in order to provide an integrated framework able 

to manage the whole workflow;  

• a deeper support to vector road networks; 

• a more extensive support to procedurally generated 

vegetation and urban furniture;  

• addressing the problem of modeling the whole transport 

network (including railroads and subways), along with 

watercourses, and related elements; 

• the integration with the Crowd Rendering Module, jointly 

developed by PERCRO and UCL, in order to bring life to 

the generated virtual cities. A cross-research could be 

performed investigating issues related to the behaviour of 

the city elements, meaning not only human crowds but 

also vehicles etc. ; 

• the algorithms which rule the automatic generation of the 

road network, blocks and buildings may be improved to 

achieve better performances. In particular the map 

skeletonization results in being the bottleneck of the 

whole process, therefore alternative approaches may be 

tried to reduce the processing times; 

• due to time constraints and to poor availability of maps 

and textures, the styles of the generated elements are 

currently chosen among a few. In order to enrich the 

range of models, the realization of additional modules for 

various styles (downtown, suburbs, commercial areas, 

industrial areas), possibly differentiated depending on 

countries, is advisable; 



 

• a more intensive use of state-of-the-art techniques for 

photo-realistic rendering is foreseen, exploiting XVR 

support to shaders, in order to improve the visual quality 

of the models without excessively increasing their 

geometrical complexity. Shaders should also be used to 

create ex-novo procedural or composite textures, to be 

used as materials for building or vegetation as in (Zalesny, 

2001), having as input data small samples or simple 

procedural rules. 

 

Another interesting issue to keep into account is the interface to 

CityGML (http://www.citygml.org) an information model for 

the representation of 3D urban objects defining not only with 

their geometrical, topological and appearance properties, but 

also semantical properties. Since this promises to become an 

interesting open standard for storing and sharing city models, 

future work on CMPE will consider the opportunity of realizing 

models complying with this format. 
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