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ABSTRACT 
Laser scanning measurements are characterized by errors of different kind and simplified analytical models are normally applied to 
estimate the differential terms used to locally compute the object surface curvature values. The paper synthesizes the statistical 
analyses of the non parametric model applied, and of the Gaussian K and mean H local curvatures values, as already proposed by 
the authors in recent papers. The statistical analyses are based at first on a Chi-Square test applied to verify the second order 
Taylor’s expansion model fulfilment. Afterwards, the variance-covariance propagation law is applied to the estimated differential 
terms to calculate the covariance matrix of a vector containing the Gaussian and the mean curvature estimates and an F ratio test is 
applied to verify their significance. By analyzing the test results for K and H, and their sign, a reliable classification of the whole 
point cloud into its geometrical basic types is carried out. To perform the units segmentation, by analytically detecting discontinuity 
lines, an analysis of the extended Taylor’s model to the third and fourth order terms is mentioned. Some numerical experiments on 
real noisy laser data relating to a complex surface of a church apse confirm the validity of the method proposed. 
 
 

1. INTRODUCTION 

The paper synthesizes the most recent researches conducted by 
the authors in the direction of a reliable geometrical 
classification method of the laser point clouds, whose analytical 
aspects and whose laser scanning applications have been 
presented at the XXI ISPRS General Congress (Crosilla, 
Visintini and Sepic, 2008) and recently accepted for publication 
on Applied Geomatics (Crosilla, Visintini and Sepic, 2009). 
The procedure is fundamentally based on the statistical analysis 
of the Gaussian K and mean H curvatures, obtained for a 
certain surface point by the differential terms of a second order 
Taylor’s expansion. The weighted least squares estimate of the 
unknown vector, collecting the differential terms, is obtained by 
considering a selected number of surrounding points, within a 
bandwidth radius, and by applying a weighting function, 
depending on their distance from the central point. 
Since the measurements noise worsens the data quality and the 
non parametric modeling simplifies the surface true shape, the 
curvature values have to be statistically verified, i.e. also the 
variances of the estimated values have to be taken into account. 
To verify the fulfilment of the second order Taylor’s expansion 
model, a Chi-Square ratio test is applied to the estimated 
variance factor and to the a priori measurement variance. 
If the null hypothesis is accepted, the corresponding local 
Gaussian K and mean H curvature values, as well as the 
principal curvatures, can be reliably determined by the locally 
estimated surface differential terms. 
A statistical analysis of the curvature vector, containing the 
Gaussian and the mean curvature values, is then carried out. By 
applying the variance-covariance propagation law, the 
covariance matrix of the curvature vector is obtained. A Fisher 
ratio test is subsequently applied to verify the significance of 
the curvature values. If the null hypothesis is accepted, the 
surface can be locally accepted as planar. If the null hypothesis 
is rejected a ratio test for each K and H curvatures is carried out. 
By simultaneously analyzing the sign and the values of K and 
H, a classification of the points is achievable according to the 
following surfaces basic types: hyperbolic (if K < 0), parabolic 
(K = 0 but H ≠ 0), planar (K = H = 0), and elliptic (K > 0). 

In case the null hypothesis of the Chi-Square ratio test is 
rejected, third and fourth order terms of the Taylor’s expansion 
model can be considered to automatically proceed to the object 
segmentation. As reported in the literature (e.g. Cazals and 
Pouget, 2007), third and fourth order series can be exploited to 
detect ridges, crest lines and their properties. Moreover, to 
correctly determine discontinuity lines, some emphases on the 
definition of the Monge frame and on the computation of the 
Taylor’s series higher order terms in this frame, are stressed. 
The numerical testing of the proposed procedure has been 
achieved with satisfactory results for real noisy data acquired 
with the Riegl Z390I laser scanning system and relating to the 
complex apse surface of the Church of Saint Anthony Abbot in 
San Daniele del Friuli (Italy). 

2. LOCAL SURFACE NON PARAMETRIC 
ESTIMATION 

Let us consider the following polynomial model of second order 
terms (Crosilla, Visintini and Sepic, 2008, 2009): 
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where the coefficients and the parameters are locally related to a 
measured value jZ  by a Taylor’s expansion of the function 

εµ +=Z  in a surrounding point i of j, as: 
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with ii Y,X  and jj Y,X  plane coordinates of points i and j. 

The parameter 0a  is the estimated function value 
i

Z0  at point i, 
while the parameters sa , with s > 0, are the first and second 



 

 

order partial derivatives along X,Y directions at the i-th point of 
the best approximating local surface. 
Rewriting model (1) in algebraic form as: 

 vXβz +=  (2) 

the unknown parameters are collected into the [6 x 1] vector: 

 [ ]Taaaaaa 543210=β  (3) 

while, considering the p neighbour points j of point i, the 
coefficient matrix X has p rows as: 
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In order to weight the different jZ  values for the least squares 

estimation of β , a diagonal weight matrix W is assumed by 
using a symmetric kernel function centred at the i-th point as: 

 [ ]331 )bd(w ijij −=  for 1<bdij  

 0=ijw  for 1≥bdij  

where ijd  is the distance between the points i,j and b is the 

radius (bandwidth) of the sphere encompassing the p closest 
points to i. The weighted least squares estimate of the unknown 
vector β  from p neighbour points hence results as: 

 WzXWXXβ
TT )(ˆ 1−=  (5) 

The residual vector v̂  for the p points is given as βXzv ˆˆ −= . 

Thus, the a posteriori variance factor 20σ̂  at point i is given as: 
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This  value has to be suitably evaluated for each point i, in order 

to verify by a 2χ  test if it is comparable to the measurement 
noise or if it is sensible also to a systematic effect, due to 
limitations in the Taylor’s expansion order, or due to the 
presence of possible outliers or data slips. 

3. TESTING THE FULFILLMENT OF THE APPLIED 
MODEL  

For each laser point i, the estimated value of the variance factor 
2
0σ̂  is crucial to verify whether the behaviour of the residuals of 

the encompassing bandwidth points, βXzv ˆˆ −= , are due to the 
noise of the laser measures, to possible outliers, or rather to 
limitations in the non parametric model. For such aim, the 
following Chi-Square test is applied, with null hypothesis H0: 
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where: 

• 2
lsσ  is the variance of the laser scanning (ls) instrument 

employed for the data acquisition; 

• 2
6 α-1)p( −χ  is the Chi-Square distribution value for )p( 6−  

degrees of freedom and α probability for a first kind error. 
The following analysis of the Chi-Square test results can be 
done, considering that if: 

• H0 is accepted: a good local congruence between laser 
measures and a second order model is statistically proved. 

The values derived from vector β̂ , as the Gaussian and 
mean curvatures, are statistically meaningful and in such 
zones a curvature based classification can be carried out. 

• H0 is rejected; the local congruence between laser measures 
and the Taylor’s model is not statistically fulfilled, i.e. a 
significant difference between the acquired laser data and 
the second order polynomial modeling is present. A part the 
reasons for this discrepancy, the derived curvature values in 
such zones have to be interpreted with particular care. 

In general, 2
0σ̂  significantly differ from 2

lsσ  along the lines of 

discontinuity of the scanned objects or along ridges or crest 
lines. This might be explainable as a not sufficient modeling of 
the Taylor’s order terms or as an improper choice of the 
bandwidth radius, as will be seen in the numerical experiments. 

4. COMPUTATION AND SIGNIFICANCE ANALYSIS 
OF THE CURVATURE VALUES 

For the local shape analysis of laser point cloud, local 
Gaussian, mean and principal curvatures values are taken into 

account. Starting from the sa  terms of the estimated vector β̂ , 

the following expressions for the Gaussian K and the mean H 
curvatures can be obtained: 
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The covariance matrix of these curvature values can be 
computed applying the variance-covariance propagation law to 

the same vector β̂ . Let rewrite [ ]Tâââââẑˆ
543210=β  

in the partitioned form [ ]Tˆẑˆ aβ 0=  sharing the estimated 

function value 0ẑ  from the sub vector â  of the Taylor’s 

expansion differential terms at point i. Let ββΣ  be the 

estimated variance-covariance matrix of vector β̂  terms; also it 
can be partitioned as: 
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where aaΣ  is the variance-covariance matrix of the sub vector 

a containing the differential terms at point i. As known, the 
variance-covariance matrix ββΣ  can be expressed as: 
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where ββQ  is the covariance matrix of vector β̂ , while 2
0σ̂  is 

given by the relationship (6). 
The estimated Gaussian and mean curvature values are not 
independent, as can be seen observing equations (8) and (9). In 
order to apply a significance test taking in account also the 
correlation between the curvature values K and H, the following 



 

 

[2 x 1] vector is introduced: 

 [ ]THK=ω  (12) 

Applying the variance-covariance propagation law, the 
covariance matrix of vector ωωωω can be obtained as: 

 T
aa ωωωωωω FQFQ =  (13) 

where: 
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In conclusion, for the points where the null hypothesis of the 
2χ  test (7) is fulfilled, to verify whether the Gaussian and 

mean curvature vector ωωωω is significantly different from zero, the 
alternative hypothesis of the following F ratio test must be 
satisfied (Pelzer, 1971), with null hypothesis H0: 0=)(E ω  

and alternative hypothesis H1: 0≠)(E ω : 
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where: 
• r = rank ( ωωQ ) = 2, 

• ∞− ,r,F α1  Fisher distribution value for r and ∞ degrees of 

freedom and α probability for a first kind error. 

5. SIGNIFICANCE ANALYSIS OF THE CURVATURE 
BASED CLASSIFICATION 

If 0≠)(E ω , it is worthwhile to independently test the values of 
K and H, in order to check if both, or just only one of them, are 
significantly different from zero. The null hypothesis is separately 
rejected for K and H, i.e. 0≠)K(E , 0≠)H(E , if: 
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where: 
• kkq  and hhq  are the diagonal terms of matrix ωωQ , 

• ∞− ,,F 121 α  Fisher distribution value for 1 and ∞ degrees of 

freedom and 2α  probability for each of the two tests in 

order to satisfy a global first kind error value equal to α 
(Bonferroni correction). 

By simultaneously analyzing the sign and the values of K and 
H, a statistically proven classification of the whole point cloud 
is finally made possible. In fact, as known, each surface can be 
classified as one of the following types (see Table 1): 
hyperbolic (if K < 0), parabolic (K = 0 but H ≠ 0), planar (K = H 
= 0), and elliptic (K > 0). 
When the null hypothesis H0: K = 0 is only satisfied, if H > 0 
the single curvature surface can be classified as a concave 
parabolic valley, while if H < 0 as a convex parabolic ridge. 
Finally whether both null hypotheses are rejected, the surface is 
classifiable as a concave pit (if K > 0 and H > 0), as a convex 
peak (K > 0, H < 0), as a saddle valley (K < 0, H > 0), or as a 
saddle ridge (K < 0, H < 0). 

Table 1: Classification of surfaces according to the values of 
Gaussian K and mean H curvatures (from Haala et al., 2004). 

As reported in Crosilla, Visintini and Sepic (2008, 2009), the 
subsequent automatic modeling of each recognized unit is 
performed by estimating the corresponding surface analytical 
function, starting from raw clusters detected by a region 
growing method. Furthermore, the automatic segmentation of 
geometrical units can be indirectly obtained by means of 3D 
spatial intersections among the estimated surfaces. 

6. ESTIMATING HIGHER ORDER TERMS OF THE 
TAYLOR’S EXPANSION 

As reported in the literature (e.g. Cazals and Pouget, 2003), 
ridges are curves along which one of the principal curvatures 
has an extremum along its curvature values. For this reason, 
their location requires estimating differential quantities up to 
the third order, and actually up to the fourth order to decide 
whether the extremum is a maximum or a minimum. 
Furthermore, ridges can furnish information for the laser point 
clouds segmentation, registration and matching procedures. As 
ridges are detected analyzing the principal curvature values, it is 
necessary to adopt for each point, where the Taylor’s expansion 
is applied, a local reference system able to directly furnish 
principal curvature values and their directional derivatives. This 
coordinate system is the so-called “Monge frame”, where the 
terms 4210 a,a,a,a  are equal to zero. The Taylor’s expansion up 

to the fourth order terms assumes the following expression: 
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where: 
• 53 a ,a  correspond, in the Monge frame, to the principal 

curvatures; 
• 30 b ,b  are the directional derivatives of 53 a ,a  along their 

respective curvature lines; 
• 21 b ,b  are the directional derivatives of 53 a ,a  along the 

other curvature lines. 
Points having an extremum value for 0b  or 3b  automatically 

identify ridges. Specific algorithms to perform the curvature 
estimation of the differential terms in the Monge frame and to 
automatically extract ridges have been recently proposed in the 
literature (Cazals and Pouget, 2007). The analytical process is 
complex since it requires the following four steps algorithm. 

6.1 Principal Component Analysis 

First step performs a Principal Component Analysis (PCA) for 
each sampled point, relating to its surrounding ones. This 
analysis allows to determine three orthogonal eigenvectors and 
the associated eigenvalues. If the surface is well sampled, PCA 
provides one small and two large eigenvalues. The eigenvector 
associated to the small one approximates the normal vector. 



 

 

6.2 Roto-translation of the coordinate frame 

At the second step, a change of coordinates is executed, to move 
the original values into a new frame (S), having as origin the 
point at which the estimation is performed. A polynomial fitting 
as (1) extended to fourth order terms, is then carried out. 

6.3 Computation of the Monge basis 

Third step allows to determine the Monge basis by computation 
of the normal direction to the estimated surface, by a 
symmetrization and diagonalization process of the so called 
“Weingarten matrix” A (e.g. Do Carmo, 1976) transformed in 
the orthonormal basis of the tangent space. 
Normal direction n is defined by the vector: 
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The symmetrization is carried out, first by computing an 
orthonormal basis of the tangent plane applying the Gram-
Schmidt algorithm to the tangent plane basis: 

 { } [ ] [ ]{ }TT a,a, 21 1001=vu  (18) 

in which the Weingarten matrix A is originally computed. After 
that, calling G the upper sub matrix [2 x 2] of the [3 x 2] ortho-
normal basis of the tangent plane, the symmetric Weingarten 
matrix symA  is computed from (Cazals and Pouget, 2007): 

 AGGA 1−=sym  (19) 

The principal curvatures are obtained from a diagonalization of 
matrix symA  since corresponding to its eigenvalues, while the 

principal directions are given by the eigenvectors of symA . 

6.4 Principal curvatures directional derivatives computation 

Finally directional derivatives 30 b ,b  of the principal curvatures 

are computed by differentiating the implicit equation of the 
fitted polynomial surface in the Monge basis. This last one is 
obtained by applying a parameter transformation to the equation 
of the fitted polynomial defined in the S frame used to compute 
the Weingarten matrix A. 
From the implicit function theorem (e.g. Do Carmo, 1976), the 
surface ( ) 0=Z,Y,Xf  can be locally written as the graph of the 

height function ( )Y,XgZ = . The directional derivatives 30 b ,b  

in the Monge frame are finally obtained by applying the chain 
rule while differentiating the equation ( ) 0=)Y,X(g,Y,Xf . 

7. NUMERICAL EXPERIMENTS 

The automatic analytical model proposed has been implemented 
in a C language program and so some numerical experiments 
have been carried out and are now presented. 
Dataset regards real laser scanning points acquired with the 
Riegl Z390I system into the Church of Saint Anthony Abbot in 
San Daniele del Friuli (Italy). The detailed description of the 
church, of the laser scanning and photogrammetric surveying, 
and of the photorealistic VRML/X3D modeling is reported in 
Visintini, Siotto and Menean (2009), in this proceedings 
volume. The rectangular presbytery and the pentagonal apse are 
upper closed by a composed surface and are decorated with very 
important Renaissance frescoes painted by Martino da Udine 
(1467-1547): in particular, the apse ceiling is shaped by a rib 
vault with eight sails (see Figure 2 at left). 
The laser point cloud of about 70.000 points submitted to the 

numerical experiments regards the final part of the apse, with 
three portions of vertical walls, five parts of vault sails (cloves), 
and six ribs, two entire and four clipped, converging into the 
circular medallion in the dome apex (see Figure 2 at right). 

  
Figure 2: Laser points of the apse of the Church of St.Anthony 

Ab. in S.Daniele (I) coloured by RGB (at left) and by Z (at right). 

The points were acquired from the centre of the apse with the 
principal axes of the laser scanning system turned of 90°, i.e. 
horizontal, and with an angular step of 0,120° so obtaining a 
very high density on the apse surface, meanly of about 5.500 
points per square meter. Such points are coloured in Figure 2 at 
right according to their Z value, from blue (−6,67 m) to red 
(−3,24 m): it means that, to fruitfully apply Taylor’s expansion 
(1), Z vertical axis has been simply flipped from upward 
(zenith) to downward (nadir), without any other rotation. 

7.1 Computation and statistical analysis of curvature values 

Using a bandwidth sphere radius b = 10 cm, so encompassing 
meanly a number p of about 170 points, the local unknown 

vectors β̂  have been estimated by (5), while the local variance 

factors 2
0σ̂  by (6); these lasts are shown in Figure 3 at left. 

  
Figure 3: Points coloured by 20σ̂  values (at left), from blue to 

red, and by 2χ  test results (at right), green = H0, red = H1. 

As can be seen, most part of points are blue coloured (dark blue 
corresponds to zero), for instance about 52.000 points (75% of 
dataset) have a 0σ̂  less than ±7 mm, numerically evidencing a 

general correctness of the adopted second order non parametric 

model. Points coloured in red, having maximum values of 2
0σ̂ , 

are about 3.000 (4% of dataset) with 0σ̂  ranging from ±23 mm 

to ±56 mm: such points are located in the ribs where these, 



 

 

occluding the scanning surveying, cause data slips in Z values. 
Nevertheless, to statistically verify the model fulfilment, the 
Chi-Square test (7) has been carried out considering a 2

lsσ  
value equal to 0,16 cm2 (i.e. lsσ = ± 4 mm). The results are 
shown in Figure 3 at right: the green points, representing the 
local acceptance of the null hypothesis, are 64% of the dataset 
and are located on the regular surfaces, i.e. in the frescoes 
scenes. The red points, where the test fails, put in evidence that 

2
0σ̂  is locally significantly higher than 2

lsσ  and this happens 
along the ribs and their surroundings. 
A thought arises from the obtained results for variance factor 
and Chi-Square test: in the buffer zones around the intersections 
between two regular surfaces, e.g. in the arcs, the width of 

unsatisfactory 2
0σ̂  and rejection 2χ  areas corresponds about to 

the bandwidth radius b. These refusal areas might be reduced by 
choosing a smaller value for b, as will be later shown. 
Going on with a 10 cm bandwidth radius, Figure 4 shows the 
estimated Gaussian curvature values [m-2], while Figure 5 those 
of the mean curvature [m-1]. For a qualitative evaluation of 
these results, the shape of the apse sails has been reasonably 
supposed as constituted by two double curvature concave 
surfaces, starting from an acute arc onto the planar wall, and 
ramping up to the apex node. In truth, some constructive 
irregularities can be visually perceived in situ in the vertical 
walls, while it is quite impossible to recognize deformations in 
the higher twofold curved and frescoed sails. 
The values of Gaussian K curvature in Figure 4 at left, a part in 
the edges zones, are mainly coloured in green, corresponding to 
the interval −0,1÷0,0, and in brown, relating to the interval 
0,0÷0,1, as can be better seen in Figure 4 at right, where only 
such little values of K are depicted. These last K values stand 
for principal curvature radii of a size from 3,16 m to infinite, 
i.e. low curved or planar surfaces. Nevertheless, their variability 
from negative to positive sign among near points, confirms the 
requirement to carry out a statistical analysis of the K values. 

  
Figure 4: Points coloured by K values, from blue to red (at left) 

and only for K ∈−0,1÷0,0 (green) and 0,0÷0,1 (brown) (at right). 

For a better qualitative evaluation of the mean H results, 
coloured from blue to red in Figure 5 at left, only some values 
around zero are reported in Figure 5 at right: in particular, the 
interval −2,5÷ −0,2 in red, −0,2÷0,2 in green and 0,2÷2,5 in 
yellow. For red and yellow points the principal curvature radii 
have a size from 0,4 to 5,0 m, while is higher for the green ones, 
i.e. very low curvatures. A chromatic exam puts in evidence that 
mainly H ∈ −0,2÷0,2 (green) for the planar areas, and this is 
correct; for the vault sails, where H > 0 values are expected, not 
only higher positive (yellow) values but also higher negative 

(red) ones result, i.e. the surface is concave and convex. 
Surprisingly, after a careful visual evaluation of the TIN model 
of such points and also by transversal sections, such estimated 
convex shapes have been confirmed for each vault sail! 

  
Figure 5: Points coloured by H values (at left) and only for H ∈ 

−2,5÷ −0,2 (red), −0,2÷0,2 (green) and 0,2÷2,5 (yellow) (at right). 

Coming back to Figure 5 at left, in the buffer areas around the 

intersections among different surfaces, although 2χ  test 
evidences that the second order expansion model should be 
extended with higher order terms, the underestimated H values 
are so large to anyway suggest the presence of convex edges in 
blue (where H <−4,5) and concave edges in red (where H >5,0). 

  
Figure 6: Points coloured by F ratio test results (at left), green = 

H0, red = H1, and by classified surface types (at right). 

The results of the F ratio test (14), onto points satisfying the 
Chi-Square test, are depicted in Figure 6 at left: adjacent points 
with the same answer, but creating areas smaller than 2b , are 
prudentially omitted. The percent of green points where H0 is 
accepted is 39%, and correctly corresponds to the planar areas, 
while red points, meaning curved surfaces, ensue as 71%. 
Last but not least, Figure 6 at right shows the obtained point 
classification: planes are in green, concave pits in blue, and 
saddle ridges in yellow. For caution, classified points forming 
too small clusters (area < 2b ) remain unclassified (white). 

7.2 Optimization of the classification process 

An automatic classification process should be followed from the 
automatic modeling of the classified points, at least from the 
mathematical point of view. In any case, the automatic 
classification of the higher part of a point cloud is an essential 
task. To reach such a goal with the proposed method, given a 
certain dataset, the size of the bandwidth radius b is 



 

 

determinant. Figure 7 depicts the results obtained with a new 
numerical experiment carried out with b reduced to 5 cm. 

  
Figure 7: Points coloured by 2χ  test results (at left) and H 

values (at right), from blue to red, with a bandwidth b = 5 cm. 

As can be seen at left, with respect to Figure 3 at right, the 

percent of green points where the 2χ  test H0 hypothesis holds, 
grows to 83%: also for most part of the arc points, the second 
order model is statistically sufficient to locally describe the 
surface. In Figure 7 at right, the high values of H, red colored if 
H >8,0, correctly indicate the presence of the arc concave edges. 
Figure 8 concerns the most complicated part of the dataset, 
namely the medallion were the ribs are connected, submitted to 
a third experiment with a bandwidth further on limited to 3 cm. 

  
Figure 8: Enlargement of apex points coloured by 2χ  test 

results (at left) and H values (at right), with b = 3 cm. 

The H0 prevalent result of the 2χ  test (at left) for the central 
part of the ribs affirms as significant the obtained H values (at 
right). Blue colour corresponds to H < −15, namely a convex 
surface with a principal curvature radius size less than 6,6 cm: 
this fully agrees with some measures in the point cloud. 
Moreover, the torus border of the medallion is yet blue 
coloured: for some points H < −20, i.e. a curvature radius size 
less than 5 cm. Concluding, by using centimetric values of b, 
surfaces with centimetric curvature radius can be modeled. 
Off course, the reduction of the bandwidth radius has a 
drawback: it leads to a low redundancy (p − 6) in the estimation 
of β  and all the curvature values derived from, and this is quite 
thoughtless in processing real noisy laser datasets. 
A strategy to find the optimal bandwidth radius could be to start 
with a rather large value b able to classify at least 50% of 
points, and to reduce it until the Chi-Square test fails, rejecting 
points belonging to surfaces already classified with a larger b. 
Summarizing, a large part of real laser points of St. Anthony 
Church apse have been directly classified by means of the 

proposed method: for unclassified points, i.e. where non 
parametric model results are not reliable, the automatic 
classification can be done by a robust parametric modeling, as 
described in Crosilla, Visintini and Sepic (2008, 2009). 

8. CONCLUSIONS 

The paper proposes a procedure based on a statistical analysis 
able to automatically detect reliable Gaussian and mean 
curvature values for laser point clouds, computed by applying a 
local surface non parametric Taylor’s expansion. 
First, the fulfilment of the analytical model applied is verified 
by a Chi-Square test comparison of the a priori and a posteriori 
variance factors. A second test considers the variance-
covariance propagation law applied to the estimated Taylor’s 
terms, in order to compute the covariance matrix of the 
Gaussian and mean curvature values. If the null hypothesis of 
the applied F test is rejected, at least one curvature value is 
significantly different from zero and the sign analysis allows to 
classify the geometrical shape of each object surface unit. 
A fascinating procedure to automatically detect discontinuity 
lines is then presented. By the analysis of higher order terms of 
a Taylor’s expansion expressed in the Monge frame, it is 
possible to detect points characterized by the highest values of 
principal curvature directional derivatives. 
The carried out numerical experiments on real laser data of a 
complex surface show the capabilities of the proposed method. 
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