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ABSTRACT

Laser scanning measurements are characterizeddrg ef different kind and simplified analytical oels are normally applied to
estimate the differential terms used to locally pate the object surface curvature values. The psypathesizes the statistical
analyses of the non parametric model applied, dridedcGaussianK andmeanH local curvatures values, as already proposed by
the authors in recent papers. The statistical apalyare based at first on a Chi-Square test apgiegrify the second order
Taylor’'s expansion model fulfilment. Afterwardsgetiariance-covariance propagation law is appliethéoestimated differential
terms to calculate the covariance matrix of a vectmtaining theGaussianand themeancurvature estimates and Brratio test is
applied to verify their significance. By analyzirettest results fak andH, and their sign, a reliable classification of thieole
point cloud into its geometrical basic types igiear out. To perform the units segmentation, byhitally detecting discontinuity
lines, an analysis of the extended Taylor's modéhe third and fourth order terms is mentionedn&mumerical experiments on

real noisy laser data relating to a complex suréd@church apse confirm the validity of the metipooposed.

1. INTRODUCTION

The paper synthesizes the most recent researchdsiated by
the authors in the direction of a reliable georoetri
classification method of the laser point cloudspaéanalytical
aspects and whose laser scanning applications baen

In case the null hypothesis of the Chi-Square radist is
rejected, third and fourth order terms of the Teglexpansion
model can be considered to automatically procedatembject
segmentation. As reported in the literature (e.gzazaand
Pouget, 2007), third and fourth order series capxpdoited to
detect ridges, crest lines and their properties.rddeer, to

presented at the XXI ISPRS General Congress (Crosillagorrectly determine discontinuity lines, some enggisaon the

Visintini and Sepic, 2008) and recently acceptadpfablication
on Applied Geomatics (Crosilla, Visintini and Se#609).
The procedure is fundamentally based on the statisinalysis

definition of theMonge frameand on the computation of the
Taylor’s series higher order terms in this franre, stressed.
The numerical testing of the proposed procedure Ieen

of the GaussianK and meanH curvatures, obtained for a achieved with satisfactory results for real noisgadacquired

certain surface point by the differential termsacecond order
Taylor's expansion. The weighted least squaresnati of the
unknown vector, collecting the differential ternsspbtained by
considering a selected number of surrounding poinithin a

bandwidth radius, and by applying a weighting fiowt

depending on their distance from the central point.

Since the measurements noise worsens the dataycaradi the

non parametric modeling simplifies the surface tshape, the
curvature values have to be statistically verified, also the
variances of the estimated values have to be tamiteraccount.

To verify the fulfilment of the second order Taytoexpansion
model, a Chi-Square ratio test is applied to thémesed

variance factor and to the a priori measuremernianae.

If the null hypothesis is accepted, the correspomdiocal

with the Riegl Z390I laser scanning system and irejato the
complex apse surface of the Church of Saint Anthlyot in
San Daniele del Friuli (Italy).

2. LOCAL SURFACE NON PARAMETRIC
ESTIMATION

Let us consider the following polynomial model etend order
terms (Crosilla, Visintini and Sepic, 2008, 2009):
)
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where the coefficients and the parameters areljoedated to a

GaussianK and meanH curvature values, as well as the Measured valueZ; by a Taylor's expansion of the function

principal curvatures, can be reliably determinedthosy locally
estimated surface differential terms.
A statistical analysis of the curvature vector, tagming the

Gaussianand themeancurvature values, is then carried out. By
lavhe t

applying the variance-covariance propagation
covariance matrix of the curvature vector is oladinA Fisher
ratio test is subsequently applied to verify thgndicance of
the curvature values. If the null hypothesis isepted, the
surface can be locally accepted as planar. If thiehypothesis

is rejected a ratio test for eakkhandH curvatures is carried out.

By simultaneously analyzing the sign and the valhfek and
H, a classification of the points is achievable adow to the
following surfaces basic types: hyperbolic if< 0), parabolic
(K =0 butH # 0), planar K =H = 0), and ellipticK > 0).

Z = u+¢ in a surrounding poiritof j, as:
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with X; Y; and X; Y; plane coordinates of pointand;.

u=(Xj=%);

The parametery is the estimated function vaI\ZOi at pointi,
while the parametersg, with s > 0, are the first and second



order partial derivatives along,Y directions at thé-th point of
the best approximating local surface.
Rewriting model (1) in algebraic form as:

z=Xp+v
the unknown parameters are collected into the [pvector:
Bl a a & a af 3)

while, considering theg neighbour pointg of point i, the
coefficient matrixX hasp rows as:

@

Xij=[1u v 1u2 uv 1v2 4)
2 2

In order to weight the differenZ; values for the least squares

estimation of g, a diagonal weight matri¥V is assumed by
using a symmetric kernel function centred atitllepoint as:

w; =[1—(di,- /b)3]B for dy /b<1
VV“ =0 for d”/b21

where d; is the distance between the poinfsandb is the
radius pandwidth of the sphere encompassing thelosest

e HO is accepted: a good local congruence betweeer las
measures and a second order model is statistipedlyed.

The values derived from vectoﬁ’, as theGaussianand

mean curvatures, are statistically meaningful and irchsu
zones a curvature based classification can beedaorit.

* HO is rejected; the local congruence between lasssures
and the Taylor's model is not statistically fuldid, i.e. a
significant difference between the acquired lasstadand
the second order polynomial modeling is presenaX the
reasons for this discrepancy, the derived curvatahees in
such zones have to be interpreted with particldee.c

In general,frg significantly differ from aé along the lines of

discontinuity of the scanned objects or along ridge crest
lines. This might be explainable as a not suffitimodeling of
the Taylor's order terms or as an improper choidethe
bandwidth radius, as will be seen in the numegegleriments.

4. COMPUTATION AND SIGNIFICANCE ANALYSIS
OF THE CURVATURE VALUES

For the local shape analysis of laser point clolakal
Gaussian, meaand principal curvaturesvalues are taken into

points toi. The weighted least squares estimate of the unknowaccount. Starting from the, terms of the estimated vectq}r,

vector g from p neighbour points hence results as:
£ =(XTwx )™xTwz (5)

The residual vectof/ for thep points is given as/ = z— X4 .

Thus, the a posteriori variance facﬁzg at pointi is given as:

VW
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©)

This value has to be suitably evaluated for eaxhtp, in order

the following expressions for th@aussianK and themeanH
curvatures can be obtained:

2
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b = as(1+ay”) +as(1+a®) - a3,
2(a12 +1+ a22 )3/2
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The covariance matrix of these curvature values bean
computed applying the variance-covariance propagdéw to

. 2 g iy - ~ ~ . R R . R
to verify by a y“ test if it is comparable to the measurementy . <o e vectop . Let rewrite ﬂ:[io A & A& 3 Bs]T

noise or if it is sensible also to a systematiedff due to
limitations in the Taylor's expansion order, or dte the
presence of possible outliers or data slips.

3. TESTING THE FULFILLMENT OF THE APPLIED
MODEL

For each laser poinf the estimated value of the variance factor

03 is crucial to verify whether the behaviour of tesiduals of

the encompassing bandwidth pointss z— Xﬁ‘, are due to the
noise of the laser measures, to possible outl@mrgather to
limitations in the non parametric model. For sudm,athe

following Chi-Square test is applied, with null hypesis HO:

0¢ = oi and alternative hypothesis F o # o2 .

a5
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where:
. U'é is the variance of the laser scannirg) {nstrument

employed for the data acquisition;
. )((Zp_ﬁ)l_a is the Chi-Square distribution value 1( p-6)
degrees of freedom andprobability for a first kind error.

The following analysis of the Chi-Square test resuan be
done, considering that if:

in the partitioned form,i':[io é]T sharing the estimated
function value Z, from the sub vectora of the Taylor's
expansion differential terms at point Let Xz; be the

estimated variance-covariance matrix of vec)‘Abrterms; also it
can be partitioned as:

2 T

o c
o= 0 T2 (20)
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where X', is the variance-covariance matrix of the sub wecto

a containing the differential terms at pointAs known, the
variance-covariance matriX gz can be expressed as:

T -1
e R
08 Naa
(11)
-
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where Qﬁﬁ is the covariance matrix of vect(ir, while &S is

given by the relationship (6).

The estimatedGaussianand mean curvature values are not
independent, as can be seen observing equatio@dd(9). In
order to apply a significance test taking in acdoaliso the
correlation between the curvature vallkeandH, the following



[2 x 1] vector is introduced:

o=[K H[ (12)
Applying the variance-covariance propagation lavhe t
covariance matrix of vectapcan be obtained as:
Quw = FamQaaF(;rm (13)
where:
0K 0K K 0K oK
E 0ay Oa, Oag Oa, Oag
@7l OH OH oH OH OH
03y Oa, Oag O0a, Oas
In conclusion, for the points where the null hymsis of the

)(2 test (7) is fulfilled, to verify whether th&aussianand

meancurvature vectowis significantly different from zero, the
alternative hypothesis of the following ratio test must be
satisfied (Pelzer, 1971), with null hypothesis HB(w)=0

and alternative hypothesis HE(w )% : 0
0" Qo

rog

>Flgrew (14)

where:

e r=rank Quy) =2,

* Fgr0 Fisher distribution value for and« degrees of
freedom anahx probability for a first kind error.

5. SIGNIFICANCE ANALYSIS OF THE CURVATURE
BASED CLASSIFICATION

If E(w)#0, it is worthwhile to independently test the valaés
K andH, in order to check if both, or just only one oénh, are
significantly different from zero. The null hypotig is separately
rejected foK andH, i.e. E(K)# 0, E(H)#0, if:

K2
— > Fa210 (15.1)
00 Ok
2
= > P21 (15.2)
0 Ghh

where:
* Qg and gy, are the diagonal terms of matr@,,, ,

*  Figj210 Fisher distribution value for 1 and degrees of
freedom anda/2 probability for each of the two tests in

order to satisfy a global first kind error valueuatjto a
(Bonferroni correction).
By simultaneously analyzing the sign and the valoeK and
H, a statistically proven classification of the waqloint cloud
is finally made possible. In fact, as known, eagtface can be
classified as one of the following types (see Talile
hyperbolic (ifK < 0), parabolici = 0 butH # 0), planarK =H
=0), and ellipticK > 0).
When the null hypothesis H& = 0 is only satisfied, iH > 0
the single curvature surface can be classified aorecave

parabolic valley, while ifH < 0 as a convex parabolic ridge.

Finally whether both null hypotheses are rejected,surface is
classifiable as a concave pit K> 0 andH > 0), as a convex
peak K > 0,H < 0), as a saddle vallei(< O,H > 0), or as a
saddle ridgeK < 0,H < 0).

: parabolic/planar

K > 0 : elliptic

K < 0 : hyperbolic

27

Table 1: Classification of surfaces ccording ®vhlues of
GaussiarK andmeanH curvatures (from Haala et al., 2004).

As reported in Crosilla, Visintini and Sepic (20G®)09), the
subsequent automatic modeling of each recognizet ian
performed by estimating the corresponding surfatalyéical
function, starting from raw clusters detected byregion
growing method. Furthermore, the automatic segntientaof
geometrical units can be indirectly obtained by mseaf 3D
spatial intersections among the estimated surfaces.

6. ESTIMATING HIGHER ORDER TERMS OF THE
TAYLOR'’S EXPANSION

As reported in the literature (e.g. Cazals and BHuBg003),
ridges are curves along which one of tirecipal curvatures
has an extremum along its curvature values. Far itbason,
their location requires estimating differential gtises up to
the third order, and actually up to the fourth ortte decide
whether the extremum
Furthermore, ridges can furnish information for thser point
clouds segmentation, registration and matching guores. As
ridges are detected analyzing the principal cureatalues, it is
necessary to adopt for each point, where the Tayxpansion
is applied, a local reference system able to direfttrnish
principal curvature values and their directionalivagives. This
coordinate system is the so-calleilidnge fram& where the

terms ag & ., ,84 are equal to zero. The Taylor's expansion up

to the fourth order terms assumes the followingesgion:

Z; =1(a3u2 + a5v2)+1(b0u3 + 30U + 3o,uV +b3v3)+
2 6 (16)
i

+2—14(cou4 +4g UV + 60U + dcu® +c4v4)+ &j

where:
* a3,a correspond, in the Monge frame, to thencipal

curvatures;
* Iby,bs are the directional derivatives ag,a5 along their

respective curvature lines;
* by ,b, are the directional derivatives (az,a; along the

other curvature lines.
Points having an extremum value by or by automatically

identify ridges. Specific algorithms to perform tlarvature
estimation of the differential terms in tiMonge frameand to
automatically extract ridges have been recentlyppsed in the
literature (Cazals and Pouget, 2007). The analyficacess is
complex since it requires the following four stegorithm.

6.1 Principal Component Analysis

First step performs a Principal Component AnalyBi€A) for

each sampled point, relating to its surrounding soriEhis

analysis allows to determine three orthogonal eigetors and
the associated eigenvalues. If the surface is segtipled, PCA
provides one small and two large eigenvalues. Tgengector
associated to the small one approximates the norecabr.

iS a maximum or a minimum.



6.2 Roto-translation of the coordinate frame

At the second step, a change of coordinates isute@cto move
the original values into a new framg),( having as origin the
point at which the estimation is performed. A pamal fitting
as (1) extended to fourth order terms, is thenazaut.

6.3 Computation of the Monge basis

Third step allows to determine the Monge basisdiymutation
of the normal direction to the estimated surfacg, &
symmetrization and diagonalization process of thecalled

“Weingarten matrix”’A (e.g. Do Carmo, 1976) transformed in [

the orthonormal basis of the tangent space.
Normal directiom is defined by the vector:

L [ -a, 1T

,a12+1+a22

The symmetrization is carried out, first by compgtian
orthonormal basis of the tangent plane applying Gram-
Schmidt algorithm to the tangent plane basis:

{u,v}={[1 0 af o1 azIf} (18)

in which the Weingarten matriX is originally computed. After
that, callingG the upper sub matrix [2 x 2] of the [3 x 2] ortho-
normal basis of the tangent plane, the symmetricndéeten
matrix Asym is computed from (Cazals and Pouget, 2007):

n= a7)

Asym=G TAG (19)

The principal curvatures are obtained from a diagonalization o
matrix Agym since corresponding to its eigenvalues, while the

principal directions are given by the eigenvectfr\s .

6.4 Principal curvatures directional derivatives compufation

Finally directional derivative by ,b; of theprincipal curvatures

are computed by differentiating the implicit eqoatiof the
fitted polynomial surface in the Monge basis. Thist one is
obtained by applying a parameter transformatiotihéoequation
of the fitted polynomial defined in th&frame used to compute
the Weingarten matriA.

From the implicit function theorem (e.g. Do Carm@y76), the
surface f (X ,Y,Z) =0 can be locally written as the graph of the

height functionZ = g(x ,Y). The directional derivative by ,bs

in the Monge frame are finally obtained by applythg chain
rule while differentiating the equatioh(X Y. 9(XY )):O.

7. NUMERICAL EXPERIMENTS

The automatic analytical model proposed has beptemented
in a C language program and so some numerical iexpets

have been carried out and are now presented.

Dataset regards real laser scanning points acquiidd the

Riegl 2390l system into the Church of Saint Anthdkiybot in

San Daniele del Friuli (Italy). The detailed deptiin of the

church, of the laser scanning and photogrammetniceying,

and of the photorealistic VRML/X3D modeling is refsd in

Visintini, Siotto and Menean (2009), in this prodewys

volume. The rectangular presbytery and the pentdgarse are
upper closed by a composed surface and are dedavdtevery

important Renaissance frescoes painted by MartendJdine

(1467-1547): in particular, the apse ceiling ispdthby a rib
vault with eight sails (see Figure 2 at left).

The laser point cloud of about 70.000 points sutemito the

numerical experiments regards the final part of apee, with
three portions of vertical walls, five parts of ltasails (cloves),
and six ribs, two entire and four clipped, convegginto the
circular medallion in the dome apex (see Figuréerigat).

Figure 2: Laser points of the apse of the Churcht@nthony
Ab. in S.Daniele (I) coloured by RGB (at left) doyglZ (at right).

The points were acquired from the centre of thesapish the
principal axes of the laser scanning system tumieflo®, i.e.
horizontal, and with an angular step of 0,120° btaining a
very high density on the apse surface, meanly olia.500
points per square meter. Such points are colouré&igure 2 at
right according to their Z value, from blue6(67 m) to red

f(—3,24 m): it means that, to fruitfully apply Tayleréxpansion

(1), Z vertical axis has been simply flipped fronpward
(zenith) to downward (nadir), without any otheratiin.

7.1 Computation and statistical analysis of curvature alues

Using a bandwidth spheradiusb = 10 cm, so encompassing
meanly a numbep of about 170 points, the local unknown

vectors # have been estimated by (5), while the local vagan

factors &g by (6); these lasts are shown in Figure 3 at left.

Figure 3: Points coloured b&g values (at left), from blue to
red, and be2 test results (at right), green = HO, red = H1.
As can be seen, most part of points are blue cetb(dark blue

corresponds to zero), for instance about 52.006tpdi75% of
dataset) have @ less than 7 mm, numerically evidencing a

general correctness of the adopted second ordepa@metric
model. Points coloured in red, having maximum valogdg ,

are about 3.000 (4% of dataset) willy ranging from +23 mm
to 56 mm: such points are located in the ribs wehibrese,



occluding the scanning surveying, cause data sligsvalues. (red) ones result, i.e. the surface is concavecangex.
Nevertheless, to statistically verify the modelfiflent, the  Surprisingly, after a careful visual evaluationtioé TIN model
Chi-Square test (7) has been carried out considegil o2 of such points and also by transversal sectiors sstimated

value equal to 0,16 difie. o = + 4 mm). The results are convex shapes have been confirmed for each valilt sa
, . O =% .

shown in Figure 3 at right: the green points, repnting the
local acceptance of the null hypothesis, are 64%hefdataset
and are located on the regular surfaces, i.e. @ fthscoes
scenes. The red points, where the test fails,rpavidence that
Ag is locally significantly higher tha aé and this happens
along the ribs and their surroundings.

A thought arises from the obtained results for arace factor
and Chi-Square test: in the buffer zones aroundhtieesections
between two regular surfaces, e.g. in the arcs,wiitkh of

unsatisfactoryffg and rejection,\/2 areas corresponds about to

the bandwidth radiub. These refusal areas might be reduced by,
choosing a smaller value for as will be later shown.

Going on with a 10 cm bandwidth radius, Figure 4veh the
estimatedGaussiancurvature values [if], while Figure 5 those

of the mean curvature [ml] For a qualitative evaluation of Figure 5: Points coloured by values (at left) and only fod O

these results, the shape of the apse sails hasrbasonably _2 5.0 2 (red),-0,2:0,2 (green) and 0;2,5 (yellow) (at right).
supposed as constituted by two double curvaturecasan

surfaces, starting from an acute arc onto the plamdl, and Coming back to Figure 5 at left, in the buffer aressund the
ramping up to the apex node. In truth, some coosW intersections among different surfaces, althougtf test
iregularities can be visually perceivéd situ in the vertical  oyidences that the second order expansion modelidshue
walls, while it is quite impossible to recognizefatenations in  gytended with higher order terms, the underestithsitealues
the higher twofold curved and frescoed sails. are so large to anyway suggest the presence oBgadges in

The values of5aussiarK curvature in Figure 4 at left, a part in blue (whereH <—4,5) and concave edges in red (where5,0).
the edges zones, are mainly coloured in greenegsponding to ' '

the interval -0,1+0,0, and in brown, relating to the interval
0,0+0,1, as can be better seen in Figure 4 at righgrevionly
such little values oK are depicted. These lastvalues stand
for principal curvature radiiof a size from 3,16 m to infinite,
i.e. low curved or planar surfaces. Nevertheldssr tvariability
from negative to positive sign among near pointsificms the
requirement to carry out a statistical analysitheK values.

Figure 6: Points coloured Byratio test results (at left), green =
HO, red = H1, and by classified surface typesi(git).

The results of thd ratio test (14), onto points satisfying the
Chi-Square test, are depicted in Figure 6 at leffla@ent points
with the same answer, but creating areas smaléer Iﬁ, are
prudentially omitted. The percent of green pointseere HO is
accepted is 39%, and correctly corresponds to lgneap areas,
while red points, meaning curved surfaces, ensud #s

and only fork 0-0,1+0,0 (green) and 0;0,1 (brown) (at right).  Last but not least, Figure 6 at right shows theainied point
classification: planes are in green, concave pitdlue, and
saddle ridges in yellow. For caution, classifiedng® forming
too small clusters (areals?) remain unclassified (white).

For a better qualitative evaluation of tmeean H results,
coloured from blue to red in Figure 5 at left, oslyme values
around zero are reported in Figure 5 at right: antipular, the
interval 2,5+ -0,2 in red,-0,2:0,2 in green and 0i2,5 in 7.2 Optimization of the classification process

yellow. For red and yellow points therincipal curvature radii ) o

have a size from 0,4 to 5,0 m, while is highertfa green ones, An automatic classification process should be fedd from the
i.e. very low curvatures. A chromatic exam putewidence that ~automatic modeling of the classified points, atstefiom the
mainly H 0 -0,2:0,2 (green) for the planar areas, and this ignathematical point of view. In any case, the autama
correct; for the vault sails, wheke> 0 values are expected, not classification of the higher part of a point cloisdan essential

only higher positive (yellow) values but also higheegative ~ t@Sk. To reach such a goal with the proposed metgiven a
certain dataset, the size of the bandwidth radiusis



determinant. Figure 7 depicts the results obtawvid a new
numerical experiment carried out witheduced to 5 cm.

Figure 7: Points coloured sz test results (at left) and
values (at right), from blue to red, with a bandivid =5 cm.

As can be seen at left, with respect to Figure 3igitt, the

percent of green points where thé test HO hypothesis holds,
grows to 83%: also for most part of the arc poitits, second
order model is statistically sufficient to localtjescribe the
surface. In Figure 7 at right, the high valuesiofed colored if
H >8,0, correctly indicate the presence of the arcave edges.
Figure 8 concerns the most complicated part of dhtaset,
namely the medallion were the ribs are connectaingted to
a third experiment with a bandwidth further on tiedi to 3 cm.

Figure 8: Enlargement of apex points coloured)\tfytest
results (at left) anéll values (at right), withh = 3 cm.

The HO prevalent result of th;a;'2 test (at left) for the central
part of the ribs affirms as significant the obtairé values (at
right). Blue colour corresponds té < -15, namely a convex
surface with a principal curvature radius size kbss 6,6 cm:
this fully agrees with some measures in the poiloud
Moreover, the torus border of the medallion is ystie
coloured: for some pointd < -20, i.e. a curvature radius size
less than 5 cm. Concluding, by using centimetriciealofb,
surfaces with centimetric curvature radius can bdeted.

Off course, the reduction of the bandwidth radiuss ha
drawback: it leads to a low redundanpy-<(6) in the estimation
of g and all the curvature values derived from, ans ihiguite

thoughtless in processing real noisy laser datasets

A strategy to find the optimal bandwidth radius Icbie to start
with a rather large valué able to classify at least 50% of
points, and to reduce it until the Chi-Square te#s$ frejecting
points belonging to surfaces already classifieth aitargerb.
Summarizing, a large part of real laser points bf/Ahthony
Church apse have been directly classified by mednthe

proposed method: for unclassified points, i.e. whewon
parametric model results are not reliable, the mat@
classification can be done by a robust parametadeting, as
described in Crosilla, Visintini and Sepic (200802D

8. CONCLUSIONS

The paper proposes a procedure based on a stdtistialysis
able to automatically detect reliabl&aussian and mean
curvature values for laser point clouds, computeayplying a
local surface non parametric Taylor's expansion.

First, the fulfilment of the analytical model apgliis verified
by a Chi-Square test comparison of the a priori apadsteriori
variance factors. A second test considers the megia
covariance propagation law applied to the estimatagor’s
terms, in order to compute the covariance matrix ttodé
Gaussianand meancurvature values. If the null hypothesis of
the appliedF test is rejected, at least one curvature value is
significantly different from zero and the sign arss allows to
classify the geometrical shape of each object serfit.

A fascinating procedure to automatically detectcaliginuity
lines is then presented. By the analysis of highdemterms of
a Taylor's expansion expressed in the Monge frainds
possible to detect points characterized by thedsghalues of
principal curvature directional derivatives.

The carried out numerical experiments on real lasga of a
complex surface show the capabilities of the preganethod.
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