
IMPROVED TEXTURES FOR 3D VIRTUAL RECONSTRUCTION AND
VISUALIZATION BY A MODIFIED MULTISCALE TEXTURE SYNTHESIS APPROACH

A. Hast a, *, M. Ericsson b, T. Reiner c

a Creative Media Lab, University of Gävle. Gävle, Sweden - aht@hig.se

b Uppsala University, Uppsala, Sweden - martin.ericsson@it.uu.se
c University of Stuttgart, Stuttgart, Germany - reinertm@vismail.informatik.uni-stuttgart.de

KEY WORDS: Virtual reconstruction, Multiscale texture synthesis, Aliasing, HSV-colour space

ABSTRACT:

When photos of walls are used in urban 3D visualizations they are often of limited quality due to the fact that it can be very hard, or
even impossible, to take close up photos of the whole part of walls, especially for buildings with several floors. Thus walls will
appear either pixelized or blurry when the viewer comes close to them. The latter if some kind of interpolation technique is being
used to reduce the pixelization. In any case it his has a big impact on how the viewer perceives the 3D environment as it will look far
from real. We present how a modified multiscale texture synthesis approach can be used to create highly detailed textures from
photos with different levels of detail and scale. The novel idea is to switch colour space in order to improve both quality and speed.
By using the HSV space it is possible to maintain colours, especially when the examplar image does not contain all colours present
in the target image.

* Corresponding author

1.1.1.1. INTRODUCTION

1.1 Motivation

In the process of 3D virtual reconstruction and visualization of
buildings it is necessary to acquire textures of walls, etc and
often photographs are used in order to obtain the highest quality
possible. Aliasing problems will occur when these textures are
used for the 3D models and different interpolation techniques
can be used to minimize the aliasing effect when one moves
close to the walls. One drawback with antialiasing (Foley, 1997)
is that it will make the texture look blurry, however this is
preferred over having the pixels appear like big homogeneous
square blocks, which makes the texture look pixelized.

One way to handle this problem is to take close up photos of all
parts of the wall in order to obtain highly detailed textures that
will look good on close distances. Nonetheless this is often not
feasible or even possible for buildings with more than one floor,
unless there is a ladder, mobile crane or similar available.

This paper propose a novel approach where one photo (the
target texture) is taken of a large part or even the whole wall
and will therefore have relatively low details. Next a so called
exemplar image is taken on close range, which will contain high
amount of details, however only for that particular part of the
building. The main idea is to use the exemplar texture to insert
details in the target texture using a modified multiscale texture
synthesis technique that will be further explained in the paper.

The main contributions of this paper are, first to use multiscale
texture synthesis for improving 3D virtual reconstructions of
walls, second the novel idea to use the HSV colour space in
order to maintain colours as they appear in the target texture.
The latter will also speed up the time consuming process of

texture synthesis considerably. Moreover an implementation
using High Performance Computing (HPC) resources like the
Graphics Processing Unit (GPU) will be discussed.

1.2 Related Work

Texture synthesis is the process of taking one smaller texture
and then make it larger in size, not by tiling, but by synthesizing
it. (Efros, 99; Wei, 2000) Several approaches exist and the
hierarchical texture synthesis method (Heeger, 1995) builds a
tree of the smaller texture with different sizes very much like in
the mipmapping method. The smallest texture (on the lowest
level) is used in the first step and texels are randomly taken
from it and randomly inserted into the new synthesized texture
of corresponding size. Then follows a process where a mask
with a specific shape is scanning the synthesized texture in a
scanline order fashion while copying texels from the original
texture which has the best matching neighbourhood (Wei,
2002). In the same time as the texture is synthesized on this
level, another texture is synthesized on a higher level by
copying a 2x2 neighbourhood into that texture, which
accordingly will be twice as large in both directions, i.e.4 times
larger in total.

In multiscale texture synthesis (Lee, 2008) there already exists a
texture version available of the otherwise initially randomized
and then synthesized texture, namely the target texture. Then a
number of examplar textures are taken so that they will contain
similar details like the target texture but on a higher level, and
they can be used to build a more detailed version of the target
texture. An examplar graph is built for this purpose and the
target texture is placed in the root and textures with higher
details are placed on the next levels depending on their
resolution. One texture on one level can thus depend on several
exemplar textures on the previous higher level. Since the

colours can differ on different levels it has been proposed to use
a colour transfer function (Han, 2008)

2.2.2.2. METHODS

2.1 Considerations

It is proposed that a similar technique like multiscale texture
synthesis is used with some important differences. First of all it
is desirable to make the procedure work for a small number of
exemplar images, often only one. The main reason for this is
that we want to keep the initial process as well as the synthesis
step as simple and fast as possible with a minimum amount of
user guidance as possible. Therefore the time consuming
process of building an examplar graph is avoided. As shown
later in this paper, the synthesis step requires HPC resources
and every simplification in the process, especially in the inner
loops, will have a great impact of the total computation time
needed.

While using these simplifications it can be supposed that the
target image will contain colour information that is not found in
the examplar images and it will be shown how this problem can
be handled efficiently by switching to the HSV colour space.

Second it would be optimal if the resulting highly detailed
texture would have the same properties as the target image has,
i.e. when the upscaled texture is down sampled, it is desirable
that the resulting texture will be equal to the original target
texture. The proposed method comes very close to this
requirement.

Furthermore the examplar texture is taken in such a way that
when the multiresolution (Wei, 2002) tree is built, the lowest
level will have approximately the same size in captured details,
i.e., the same scale, as the target texture. Hence for a brick wall
this means that the bricks will cover approximately the same
area (number of texels) in both the target and the examplar
texture on the lowest level.

Now it is possible to proceed in a similar manner as for
multiresolution texture synthesis, however we do not need to
change the synthesized texture on the same level as the
algorithm proceeds, since we already have a structure in details
on this level. Actually, it is undesirable to change the
synthesized texture since the target texture should be
unchanged, while details are added to the synthesized textures
on higher levels. Hence, only the synthesized textures will be
changed by adding new details. Moreover it is not necessary to
have a mask that is adapted to scanline order traversal. It turns
out that a simple 3x3 mask will yield a satisfactory result quality
wise. It is preferable to have as small mask as possible when it
comes to speed. Generally smaller masks will yield sharp
undesirable noisy details while larger masks will smear out the
details.

2.2 Changing to HSV Colour Space

The proposed method produces textures that look very realistic
and often it is very hard to tell if it is a real photo or not.
However, there are some problems when the examplar texture
does not contain similar information as in the target texture, i.e.
when the matching is bad. One example that often is apparent
on brick walls is when a single brick has for an example a
greenish tone in the otherwise red wall. It is proposed to handle

this problem by converting the colours into the Hue, Saturation
and Value (HSV) colour space (Sonka, 2008). The HSV colour
model separates the colour into three channels, similar to the
more common red, green and blue colour model (RGB) but
instead it uses a measurement of hue, saturation and value also
called brightness.

One of the benefits of this colour model is that it corresponds
better to human perception where the brightness is decoupled
from hue and saturation, in comparison to the RGB model
where the brightness is encoded in all three colour channels.
Actually, one advantage of using this colour model in the
approach taken here is that the matching can be done using the
V element only, instead of R, G and B. This will make the
algorithm faster, which of course is a big advantage since
texture synthesis is a heavily time consuming process, including
four nested loops.

The synthesized textures on higher levels are constructed using
the synthesized V elements and the H and S elements are taken
from the target texture, which ensures that the original colours
of the bricks are maintained. However it is important that the H
and S elements are bi-linearly interpolated in the upscaling
process, otherwise the colour will be visible as blocks. It should
be said that there exist a number of interpolation techniques that
could be used for this purpose (Gonzales, 1993)

2.3 Proof of Concept

A picture was taken of a wall and then it was down sampled so
that the width and height was halved in each step, thus making
it 4 times smaller (our target texture). This process was repeated
four times and the final image was 256 times smaller in total.
The result is shown in figure 1. Note that this image is heavily
down sampled and some bricks are almost touching each other,
hence it will really put the different synthesis approaches on the
test.

Figure 1. A brick wall in low resolution: 204x153 pixels

The upper left corner of the original image (96x96 pixels) was
chosen as the examplar image on the same level of details. In
figure 2 we see the examplar on the previous level containing 4
times more details (192x192 pixels). In a real application we
would probably choose to take images using the highest
resolution possible with for an example a 10 Megapixel camera.
However, for the initial tests it was necessary to limit the
textures to be rather small for reasons that will be discussed in
the next section.

Figure 2. An examplar containing 4 times more details,

192x192 pixels

Initially the ordinary multiscale approach was examined. Since
only one examplar is used it is likely that it will not contain all
colours present in the target texture. It turned out that a brick in
the upper right corner had a greenish tone that was not properly
represented. In figure 3 the resulting texture in the right is
compared to the target image on the same level of details to the
left. It is obvious that the colours are not represented correctly.

Figure 3. The target image to the left and a synthesised version
to the right using ordinary multiscale texture synthesis yielding

colours, which are far from correct.

Using the proposed approach, by converting to HSV space and
synthesizing the V part while interpolating H and S, will give a
much more accurate result. In figure 4 it is shown how the
problematic brick is synthesized while still keeping the greenish
tone.

Figure 4. The proposed approach produces colours as expected.

It should be noted that the result in figure 4 cannot be exactly
equal as the left image in figure 3 since a texture synthesis
approach is used. However it is required that the colours in the
target texture are kept as intact as possible in the upscaling
process while details are added from the examplar image.

Another experiment was performed by inserting the text ”3D-
ARCH”, changing just the H element to green in the brick wall
as shown in figure 5.

Figure 5. “3D-ARCH” was written on the wall.

Then ordinary multiscale texture synthesis as well as the
proposed method was used to produce the images in figure 6. It
is obvious that the proposed method performs much better in
reproducing the colours. Since previous methods work in RGB
space, the matching will be poor as there are no green colours in
the examplar image. Hence the texels will be taken from areas
that are as similar as possible, i.e. giving the best match. In this
case some grey colours are inserted and the text is barely
visible.

Figure 6. Ordinary texture synthesis fails in representing the

colour as shown in the upper image while the proposed
approach in the lower image produces colours as expected.

2.4 Implementation

The images were produced by implementing the algorithm in
MATLAB since it has excellent tools for image processing.
However it is quite impractical to run texture synthesis on a
single CPU because it is heavily time consuming due to its
O(n4) complexity. For the proof of concept tests a target image
of 204x153 texels and an examplar image of 192x192 texels
were used. That adds up to more than 1150 million iterations.
For each scale up the synthesized image becomes 4 times larger
and an examplar image that is also 4 times larger will be used,
thus the total number of iterations will increase with a factor of
16. That is why it is important to decrease the work done in the
inner loop and the proposed approach that work on the V
element instead of RGB decreases the work by a factor of 3.

Today when 3D architectures are captured using a digital
camera a resolution of at least 8-10 Megapixels would be used
and it can be expected that this size will continue to increase in
the future, just as it has done in the past. This calls for efficient
texture synthesis methods and fast hardware becomes more
important.

Let us assume that the examplar is taken so that the details can
be upscaled 4 times, then the target image will be 256 times

smaller than the final synthesized image. This will end up in
almost 250 billion operations and each new upscale will yield
16 times more operations. Obviously some kind of HPC
implementation is needed, either on a cluster of CPU's, on a
multicore CPU or on a GPU. So far we have implemented the
algorithm on a GPU and the performance increase is
considerable. Of course the MATLAB implementation is not
the fastest choice but very useful and the proof of concept test
took a couple of minutes for the first upscale step. On the GPU
the same computation took just a couple of seconds.

Method \ Step 1 2 3
A 1.2s 7.3s 106.3s
B 1.2s 2.8s 9.1s

Table 1. Timing of two different examplar approaches in three

upscaling steps on the GPU.

Table 1 shows the timing in seconds of three upscaling steps.
Method A used a 4 times larger examplar in each step, while
method B used the same size for every step. Theoretically
method A would require 16 times more time to finish while
method B would require 4 times more time. Keeping in mind
that we must subtract about 0.6-0.8s for the initializing,
reconstruction, colour space conversion, etc, then we obtain
numbers that are according to the theoretical values.

The implementation of our algorithm was made to run on the
GPU of a modern graphics card. The OpenGL Shading
Language provides data structures and functions that are very
suitable for our texture-based task. A fundamental concept of
general-purpose computing on GPU’s is to set up a 1:1 mapping
between the input pixels and framebuffer elements in order to
render a full-sized quad that stretches out over the entire
viewport. The fragment shader then processes this input stream
and the results are eventually stored in the framebuffer.
Nonetheless we are facing a difficulty here: our intention is to
upscale a texture, so we lose a 1:1 mapping between input and
output pixels. If both the texture's width and height are being
doubled, one incoming texel generates four texels of the final
output texture. In order to preserve a 1:1 mapping, we split our
procedure into two separate tasks.

Figure 7. An atlas map where the x and y values are decoded in

red and green colours.

First, a viewport-sized quad is rendered, textured with the input
texture. The fragment shader tries to find a best match of the
neighbourhood of every incoming texel from the examplar
texture. As a result, the colour values will not be stored, instead
the position of the best match in the framebuffer is stored and
the resulting image can be used as an index map or an atlas as
shown in figure 7, where the red channel encodes the x position
and the green channel encodes the y position of the best match.

One can clearly see the smooth region in the upper-left part of
the index map, which is the result of the fact that the reference
texture was taken out of this part from the original image and
therefore fits exactly back into its former position. With the blue
and alpha channels included, positions up to (65536, 65536)
can be encoded in an index map which is easily sufficient even
for very large examplar textures. Using framebuffer objects, the
index map can be rendered off-screen and directly into a
texture.

Finally, we can access the high-resolution texture at the
positions stored in the index map to synthesize and reconstruct
a detailed upscaled version of the input texture. This task can be
finished on the CPU using system memory as it is quickly done.

3.3.3.3. RESULTS

3.1 Comparison of Quality

When the target texture is zoomed in so that each texel is 64
times larger, the texture looks pixelized as shown in figure 8.

Figure 8. Zooming without filtering makes the texture look
pixelized.

Note that since the original texture was heavily down sampled,
it is difficult to see the mortar between the bricks in the upper
left corner. This will yield artefacts in the synthesis step. Such
shortcomings can be avoided by taking an image with better
resolution.

 Usually some filtering techniques are used in order to avoid the
pixelization apparent in figure 8. This will make the texture
look blurry and the details will appear as if they are out of focus
as shown in figure 9. In this image a simple linear interpolation
was used. Different interpolation kernels will give different
results, however the main impression still remains: the texture
appears to be out of focus.

Figure 9. Filtering makes the texture look blurry and ”out of

focus”, but is the usual method to avoid pixelization.

Finally the proposed texture synthesis approach gives a much
more appealing result as shown in figure 10.

Figure 10. The proposed approach gives a much more

appealing and realistic result.

The level of details is increased by the multiscale texture
synthesis and the colours are not drastically changed by using
the proposed approach.

When 3D reconstruction of buildings is used by the proposed
approach it is possible to use an image of the whole wall or
large parts of a wall using a high resolution camera. The
inserted details can be taken from an examplar image taken
from the same wall. This image will be taken on a close range
and will therefore cover a small part of the wall.

In order to test the algorithm further the same examplar was
used for new photos of other walls. In figure 11 a part of an
arch is shown that has been upscaled twice. One can see that the
non horizontal bricks are a bit jagged and that probably depends
on the fact that all bricks in the examplar are horizontal.
Anyhow, the algorithm does not completely fail for these cases
and it should also be noted that the bricks on the target picture
was a bit larger than on the previous target picture and the
algorithm still does a good job.

Figure 11. A part of an arch has been upscaled in two steps.

Figure 12. Artefacts are clearly visible.

In figure 12 yet another wall has been synthesized, still with the
same examplars. Some artefacts are clearly visible. Not

surprisingly is the rusty iron bar in the bottom-right corner quite
jagged. However, worse is that the bricks have repeated patterns
that do not look good. In this case the original image is taken
from a greater distance than for the first target image and thus
makes the bricks smaller. This might be the reason for these
artefacts and this underlines the need for having the target and
examplar images in approximately the same scale of details. It
can also be shown that these artefacts depend on the fact that
the details are too small since they will disappear almost
completely if the resolution is 4 times larger for the target image
as shown in figure 13.

Figure 13. The artefacts disappear when a 4 times larger target
image is used.

Both target images cover exactly the same part of the wall,
however for figure 13 it has 4 times higher resolution (number
of pixels). Both the bricks and the iron bar are clearly much
better synthesized and the tendency for bricks to grow into each
other is also diminished since there are simply more pixels
covering the mortar between individual bricks.

4.4.4.4. CONCLUSIONS

4.1 Speed and Quality

It has been shown how a modified multiscale texture synthesis
approach can be used to obtain highly detailed textures for 3D
virtual reconstructions. Only one examplar image is necessary,
which is the main difference between the proposed approach
and previous algorithms. The problem of not finding the same
colours is efficiently handled by switching to the HSV colour
space. Since the matching operation is performed in the
innermost loop, it will make the whole process faster when the
matching is done using only one element (V) instead of three
elements (RGB). The resulting texture with higher resolution
will have the same main properties as the target texture. The
synthesis process produces a visually plausible result with more
details. In order to obtain good images it is important that the
examplar is taken so that when it is down sampled it will cover
the same area of details as the target image. Furthermore it is
important that the target image has an adequate resolution to
start with, in order to avoid that details start to grow into each
other.

4.2 Future Work

There are still some things that can be both improved and
further examined. When using the HSV space the first two
colours where interpolated, while the V element was
synthesized. There are many different kinds of interpolation
techniques that could be examined. When a wall is built of
different materials, like a stone base with bricks on top then it
would be more efficient to use an examplar graph of at least two
textures, one for each type of material. Similarly it would be
preferable to mask out some details like windows and doors and
treat them differently. It should also be examined if the mask
should have weights or even increase in size for higher levels.
Furthermore it has not yet been investigated what is the
minimum size required for the examplar image in order to
produce good results.

REFERENCES

Alexei A. Efros and Thomas K. Leung , 1999, Texture Synthesis
by Non-parametric Sampling, In Proceedings of ICCV 99, pp
1033-1038.

Foley, J. D., van Dam, A., Feiner, S. K., Hughes, J. F., 1997,
Computer Graphics - Principles and Practice, Addison-Wesley,
pp. 617-646.

Gonzales, R. C., Woods, R. E., 1993, Digital Image Processing,
Addison-Wesley, pp. 300-302.

Han, C., Risser, E., Ramamoorthi, R. and Grinspun, E., 2008,
Multiscale Texture Synthesis. ACM Transactions on Graphics
(Proceedings of SIGGRAPH 2008), 27(3) pp. 51.

Heeger, D. and Bergen, J., 1995, Pyramid-Based Texture
Analysis / Synthesis. SIGGRAPH pp. 229-238.

Lee, S-H., Park, H-W., Lee, J. and Kim, C-H., 2008, Multi-
scale Texture Synthesis. Journal of KCGS (The Korea
Computer Graphics Society), 14(2).

Li-Yi Wei., 2002, Texture synthesis by fixed neighborhood
searching. PhD Thesis, Stanford University, Palo Alto, CA,
USA.

Li-Yi Wei, Marc Levoy. 2000, Fast Texture Synthesis using
Tree-structured Vector Quantization, Proceedings of Siggraph,
pp 479-488.

Sonka, M., Hlavac, V. and Boyle, R., 2008. Image Processing,
Analysis, and Machine Vision. Thomson Learning, USA. pp.38.

ACKNOWLEDGMENTS

The authors wish to thank UPPMAX for using its HPC
resources. All the images of walls were taken in the city of
Perugia in Umbria, Italy.

