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ABSTRACT:

3D laser scanners become more and more popular especially for measuring construction sites, in the field of architecture and for 
preservation of monuments. As these scanners can only record discrete data sets (point clouds), it is necessary to mesh these sets 
for getting closed 3D models and take advantage of 3D graphics acceleration of modern graphics hardware. The meshing process  
is a complex issue and in the last years there were lots of algorithms developed to solve this problem. In this work a continuous  
Level-of-Detail (LOD) algorithm will be presented, from which a simplified 3D surface model can be created, which uses only as 
much triangles as needed. The grade of simplification is user-defined by an error tolerance similar to the Hausdorff distance. This 
algorithm is not a dynamic (view-dependent) LOD mesh simplification, but a non-redundant approximation of point clouds. It is 
a simple and extendable meshing algorithm, which is made up of a mixture of some techniques adapted from popular terrain LOD 
algorithms. The algorithm has been implemented in an OpenGL based editing tool for 3D point clouds called PointMesh, which 
will be explained in detail. We present examples from an excavation site (church rest of Lorsch Abbey, Germany), the inner part  
of the Heidelberg Tun (German: Großes Fass, an extremely large wine vat) and the Old Bridge gate, Heidelberg. For different 
cut-outs a performance comparison of the regular mesh to various adaptive 4-8-meshes with different error tolerances is given in  
terms of frame rates.

1. INTRODUCTION

All  digital  measures  can  only  record  discrete  data  sets  of 
reality. As the hardware gets more accurate and the amount of 
data  gets  even  larger,  it  is  more  and  more  necessary  to 
visualize the measurement for a better understanding.
Measuring  construction  with  reflection  light  laser  scanners 
become more and more popular  in the fields of architecture, 
urban planning, navigation, as well as for documentation and 
preservation of monuments.  The process  of visualizing large 
data  sets  in  3D  costs  enormous  computing  power.  In  the 
process of laser scanning it is necessary to directly display the 
data  sets  in  3D  on  non-high  performance  computers  like 
laptops.
Our  solution  is  to  automatically  generate  a  textured  closed 
surface  model  from  a  user-selected  projected  rectangular 
region of the existing point cloud data.  While the amount of 
data  will  be  significantly  reduced,  the  properties  of  the 
scanned object,  particularly  the shape and color,  will  still  be 
preserved.

The  meshing  of  approximated  data  in  such  rectangular  cut-
outs  with  an  automated  texturing  with  surface  details  is 
especially useful for documentation purposes in e.g. medieval 
archaeology where the user wants to keep track of the details 
of brickwork without generating a grid for each of the bricks.
The presented algorithm is implemented in our OpenGL based 
editing  tool  for  3D  point  clouds  called  PointMesh.  After 
meshing,  it  allows  to export  the  generated  surface  model  in 
VRML-format for further editing.

2. DATA ACQUISITION

We  deal  with  data,  which  is  combined  from  up  to  ten  or 
twenty sets of 360-degree full scans in order to avoid shadows 
in  complex  buildings  and  archeological  excavations.  Due to 

simultaneously  taking  photos  while  scanning  the scene,  true 
color RGB-values can be assigned to the geometric XYZ-data. 

Each  of  the  360-degree  full  scans  has  a  local  coordinate 
system. These local systems fit into a global one adjusted to a 
geodesic grid. Thereby a global orientation due to the point of 
the compass is given. Furthermore the data of each single scan 
has a functional relation to a spherical domain. By referring to 
adjacent  points  while  scanning,  normal  directions  for  virtual 
surfaces are determined. These normal vectors are encoded as 
so-called compass colors at each point in the cloud. Literally 
the compass color indicates the orientation of a virtual surface 
at each point and provides this information otherwise lost in a 
combined 3D data set.  This loss of information about surface 
orientation is due to the  process of matching, which leads to a 
mergence of point data from all scans and therefore results in 
an  unordered  final  data  set.  Another  advantage  of  compass 
colors  is  a  better  perception  in  comparison  to  a  true  color 
representation especially in shadow regions, where true colors 
do not differ so much.

Our data shows two major characteristics:
1. The data points are not distributed uniformly. Their density 
lowers  with  higher  distance  to  the  scanner  position  and  is 
dependent on the total number of scans.
2.  Point  clouds  exhibit  holes,  which  means  areas  of  abrupt 
change  in  point  density  of  imaginary  surface.  They  result 
either  from  shadows  with  respect  to  the  scanner  location, 
specular reflections or exceeding the maximum distance along 
the laser beam. 
For an example of a merged point cloud of several 360-degree 
full scans of a complicated environment see figure 1. It shows 
the interior  view of  the  Heidelberg  Tun,  an extremely  large 
wine vat with a lot of shadowing due to the inner construction. 
The  circular  white  spots  on  the  ground  show  the  various 
positions of the scanner.



3. APPROXIMATING A MESH

The meshing process is a complex issue and in the last years a 
lot of algorithms were developed to solve this problem (Alliez 
et al., 1999; Ivrissimtzis et al., 2004). In this paper, we present 
a two-step approximating algorithm for data reduction, which 
is based on a quadrilateral grid.

3.1 First Step - Regular Meshing

The simplest  approach  to  mesh  a  surface  represented  by  an 
unordered point cloud is to approximate it with a regular grid 
of a fixed mesh size. In our solution the user has to select an 
area  to  mesh  and  defines  the  aperture  size  given  in 
centimeters.  Afterwards  the  selected  points  are  projected 
orthographically from their respective position to a horizontal 
plane through the surface (top-view projection).

Figure 1: Heidelberg Tun (German: Großes Fass, an extemely 
large wine vat).

The algorithm starts with detecting all points in a small region 
(called patch) of a certain mesh size and calculates the mean 
height and mean color value.  These mean values are used to 
align a colored triangulated square onto the region.  Then the 
patch is moved step by step about its size horizontally on the 
cloud.  To  fill  out  holes,  regions  of  low  point  density  are 
simply filled with patches of the mean height and color from 
their predecessor.  The calculation is repeated until  it  reaches 
the border of the point cloud cut-out. This eventually results in 
a multi-colored  triangle  strip.  If  the  border  limit  is  reached, 
the algorithm starts adjacent to the first patch of the first strip 
for the next column,  so the next  strip  can be built  up.  After 
each strip  was created,  its  triangles  get connected with their 
adjacent ones on the previous strip. Therefore the mean value 
for the height of two super-imposed vertices respective to the 
orthographic  projection  area  is  being  used  to  rearrange  the 
vertices according to this value, which closes the vertical gaps 
between two adjacent strips (see figure 2).

Figure 2: Regular meshing by approximating triangle strips.

The  whole  process  is  repeated  until  the  preselected  area  is 
completely covered with triangles.

The  most  time-consuming  part  of  this  algorithm  is  the 
identification of the points within the square regions necessary 
for the calculation of the mean height and color, such that the 
triangles can be aligned to the surface of the point cloud. It is 
necessary  to  divide  the  given  data  set  into  several  parts  to 
achieve  a  good  performance.  The  separation  algorithm  is 
based on sorting the points according to the Euclidian distance 
to the starting point.  The space then gets partitioned into ten 
equidistant spherical shells. This simple partitioning results in 
a remarkable speed advantage because not the whole array of 
all points has to be traversed in order to find the points lying 
in  the  square.  Currently  we  are  developing  an  even  faster 
solution based on kd-trees.

In general, the cut-out of the surface represented by the points 
should  be  chosen  carefully.  Because  the  height  field  is 
generated from the mean height, it should not show too large 
height  differences,  otherwise  there  is  too  much  loss  of 
information.  Nevertheless  our  method  implies  a  good 
reduction of the measuring noise.

3.2 Adaptive Meshing

Height Field

A fine  regular  meshing  actually  delivers  an  ordered  height 
field  as  displayed  on  the  right-hand  side  of  figure  3.  This 
ordering is essential for adaptive meshing when using terrain 
Level-of-Detail (LOD) techniques (Luebke et al., 2003).

Figure 3: Unordered point cloud in compass colors (left) and 
generated ordered height field (right) from fine regular 

meshing.

An  early  real-time  LOD-algorithm  is  the  SOAR  (Stateless 
One-pass Adaptive Refinement), a view-dependent out-of-core 
visualization  of  large  terrain  surfaces.  This  algorithm  was 
developed by Lindstrom and Pascucci  and is widely used in 
game engines (Lindstrom, Pascucci, 2002). The ROAM (Real-
time  Optimally  Adapting  Meshes)  algorithm  was  developed 
shortly  thereafter  by  Mark  Duchaineau  (Duchaineau  et 
al.,1997)  and is even more popular in game industry.  It uses 
two priority  queues to  drive  split  and merge  operations  that 
maintain  continuous  triangulations  built  from  pre-processed 
bintree triangles (see also Pajarola, 1998).

4-8 Mesh

For adaptive meshing we use a semi-regular  grid  called  4-8 
mesh.  Every  vertex  in  such  a  triangulation,  except  the  ones 
lying  directly  onto  the  border,  may only  have  four  or  eight 
neighbors.  A  4-8  mesh can  be  generated  bottom-up  (from 
coarse to fine) recursively out of two initial triangles. This is 
done  by  successively  splitting  all  triangles  on  the  center  of 
their  hypotenuses.  At this  point,  the  height  field  comes  into 



play:  If  we would just  refine a mesh  without  using a height 
field, the result would be completely flat. Using a height field 
the height of the new vertex at the split point is determined by 
the nearest point in the height field.
In  comparison  to  other  triangulation  methods  (face  split  / 
vertex split)  a  4-8 mesh offers the great advantage of a valid 
4-8 mesh after every step of refinement (see figure 4).

Figure 4: The first four refinement steps of a 4-8 mesh. The 
numbers indicate the newly inserted vertices in the 

particular steps.

In such an unrestrictive refinement the mesh is refined equally 
at all places. But our aim is to mainly refine the mesh only at 
places  where the surface is uneven,  i.e.  where the difference 
between  the  surface  represented  by the  height  field  and the 
present triangulation is too high.

Error Calculation - Establishing a Restriction 

To reach this aim, we need an effective limitation to decide a 
further  subdivision  of  a  triangle.  That  means  we  need  to 
estimate  the  difference  between  the  current  and  an  optimal 
triangulation.  In  an  optimal  triangulation  every  point  in  the 
ordered  height  field  would  be  directly  connected  to  its 
neighbor  points,  so every point  not  lying on the edge would 
become a new vertex for four triangles.
There  are  several  possibilities  to  calculate  this  difference, 
which  is  commonly  called  error.  One  of  the  more  popular 
variants is the Hausdorff distance.

Hausdorff Distance

For two given sets of points A and B, the Hausdorff distance 
H(A,B) is  defined as the maximum of the minimal  distances 
between both sets. In other words: for every point in set A we 
search the nearest neighbor in B and vice versa.
Afterwards,  we  calculate  the  distances  between  all  those 
points and take the maximum. 

Expressed in formulas it reads

H(A,B) = max (h(A,B), h(B,A)) (1)

where 

  h(A,B) = maxa  ∈A min b  ∈B || a – b || .   (2)

Figure 5: Hausdorff distances between two point sets.
The one-sided Hausdorff distances are 

h(A,B) = ||v|| and h(B,A) =  ||w||. 
The two-sided Haussdorff distance is

H(A,B) = max (||v||, ||w||) = ||v||.

The function h(A,B), also called one-sided Hausdorff distance, 
is not symmetric. Every point in A is allocated a single point 
in B, but there cannot stay allocated (and thereby be multiply 
allocated)  points  in  set  B.  Thus  h(A,B)  ≠  h(B,A).  This  is 
illustrated in figure 5.
However,  the  both-sided  Hausdorff  distance  H(A,B) is 
constructed in such a way that it gets symmetric, by looking at 
both  one-sided  Hausdorff  distances  and  returning  the 
maximum value of both.
For  error  estimation  in  PointMesh we  only  use  an 
approximation  of  the  Hausdorff  distance.  If  we  would 
calculate  the  exact  Hausdorff  distance,  we  would  need  to 
calculate the distance between the including height points and 
all  intersection  points  with  the  current  triangulation.  To 
simplify  and  speed  up  the  process,  we  just  compare  the 
heights of the vertices and the center point of the triangle with 
all  height  field  points  overlapped  by  the  triangle.  If  this 
difference  goes  below  a  user-defined  threshold  (given  in 
centimeters) the refinement of the triangle is stopped.

3.3 Topological Inconsistencies: Cracks and T-Junctions

If we examine a mesh generated in such a way more closely, 
we notice cracks at certain places.
Cracks develop at such places, where triangles of detail levels 
differing in more than one level are adjoined (see figure 6). In 
this case it is possible that the higher detailed triangles insert  
an additional vertex on the edge of the lower detailed triangle. 
Because  the  vertex  is  using  another  height  field  point,  its 
height  is  different  to  the  edge,  so  the  background  peaks 
through in the finally rendered image.
Another  unwanted artifact  is  the  T-junction.  It  is  almost  the 
same as a crack,  with the slight  difference that the height of 
the inserted vertex does not differ visibly from the height of 
the edge of the lower detailed triangle.

Figure 6: Cracks and T-junctions occur at places where the 
mesh resolution changes.

As a simple solution, we could say we just move the inserted 
vertices  to  the  height  of  the  edge  and  we  would  be  fine. 
However,  this  rather  unaesthetic  solution  is  only  applicable 
for static  images.  If we rotate the view around the mesh,  we 
see bleeding edges at such places, due to a kind of flickering 
between the edges, caused by minimal floating point rounding 
differences.
The  most  popular  solution  for  getting  a  continuous  surface 
mesh is to recursively split all triangles lying directly next to 
the crack. Though the mesh gets additional triangles, which do 
not  account  for  more  detail,  this  method  eventually  delivers 
the most pleasing results.
A  consequent  recursive  splitting  can  be  quite  complex,  as 
every  split  operation  may  insert  a  new T-junction  at  which 
another triangle needs to be split again and so forth. In other 
words after  every split  we would need to check the adjacent  
triangles again for inconsistencies.
Another more simple method to solve this problem would be 
to merge the two triangles causing the T-junction to a single 
larger  one.  The clear  downside of this  procedure is that  this 
results in a significant loss of detail. 



In the following,  we present a combination of both,  the split 
and merge methods.  Then with the so-called  tree pruning an 
effective speed-up can be achieved (see Balmelli et al., 2003).

Creating Order From Chaos - Vertex Set and Triangle Set

While  the  4-8  mesh  is  being  built  up,  the  triangles  get 
structured in a dynamic vector called Vertex Set. In this vector 
there is no redundancy, i.e. a vertex of a triangle is only stored 
once although it is generally used by more than one triangle. 
To  take  all  these  triangles  into  account  and  to  create 
connections  between  them,  the  Vertex  Set entries  are 
consecutively updated during the meshing process. All of the 
three  triangle  points  get  stored  in  a  separate  array  called 
Triangle  Set.  The  Triangle  Set indices  of all  triangles  using 
the same vertex are added to the Vertex Set. Furthermore, we 
store two types of special  points in the  Vertex Set, which we 
call Split Points and Forbidden Points.

Split Points and Forbidden Points

Already  during  the generation  of the  mesh  for  every  finally 
drawn triangle additional data is being saved. A Split Point of 
a triangle defines the midpoint of the hypotenuse, at which the 
triangle would be subdivided further,  even though if it is not 
always necessary to do this.
Moreover, the midpoints of each cathetus are stored. At these 
points there should not be placed a vertex of another triangle,  
otherwise  this  would  induce  a  T-junction.  Therefore,  we 
decided to call these points Forbidden Points.

Figure 7: Forbidden Points and Split Points.

In figure  7 these points  are shown exemplarily.  The smaller 
pale triangles  are in a two times higher refinement  step than 
the  dark  gray  triangles.  On  the  left  drawing,  two  shared 
vertices of the pale triangles are located at a Forbidden Point 
of the gray triangle  marked in white.  In this  case  we would 
merge  both  triangles  to  a  triangle,  which  is  located  one 
refinement step lower in order to prevent the T-junction. Even 
though we are dealing here with a loss of detail,  we save the 
multiple  subdivision  of  the  gray  triangle  and  its  possible 
neighbors.
On the right side of the drawing,  two vertices of the smaller 
triangles are located at a Split Point of the gray triangle. Here 
we split  the gray triangle along the dotted line into two new 
triangles  of  one  refinement  step  higher  to  eliminate  the  T-
junction.
In  both  cases,  the  merge  and  split  operations,  the  newly 
created (or restored) triangles  are checked again in the same 
way as the gray triangles in order to secure their  integration 
with respect to their other neighbors.

4. GENERATING TEXTURES

To gain a more realistic impression of a surface, textures are 
commonly  used  to  replace  the  loss  of  detail  due  to 
simplification. As we already have true color information for 

every measurement point in our input data, we basically have 
two options for generating a texture.
The first  would be to display the point cloud directly on the 
screen and take a screenshot from user-defined direction and 
section.  As we firstly  implemented  this  solution  we quickly 
figured  out  its  drawbacks.  It  is  only  applicable  with  an 
expanded  point  size,  so  that  holes  between  the  points  get 
eliminated,  as  now most  of  the  points  are  overlapping  each 
other.  Which point is  visible  in front  is defined by its  offset 
from  the  surface  and  the  current  viewing  angle.  Although 
points  with  high  offset  are  often  outliers,  they  still  get 
preferred.  So the overlapping  reduces  the  number  of  points, 
which get into account  to the final  image and it  can still  be 
strewn by holes. We can surely say that this solution is rather 
unaesthetic and only for provisional use.
As  we  already  use  the  point  colors  in  our  regular  meshing 
step, we can just perform a very fine meshing (e.g. see  figure  
8 with a fine regular grid in white (for demonstration purposes 
only) on top of a Gouraud-shaded surface). The triangle colors 
are in fact local mean colors of all points within the meshing 
square.  We finally  create  the  texture  by saving  the  triangle 
colors  in  a  certain  order  as  pixels  into  a  bitmap  file. 
Afterwards, we continue with the adaptive meshing to create a 
coarser mesh and map the texture onto it.

Figure 8: Arcades of Lorsch Abbey - textured regular mesh.

4.1 Mapping a Texture

As we are able to create suitable textures for our model in the 
BMP format, we need to map them on our model.
In a mapping pixel coordinates of an image are mapped onto 
the triangles of a 3D-model. For this linear mapping a texture 
coordinate  list  (UV coordinates)  needs  to  be  supplied.  It  is 
rather easy to create such a list for a regular mesh, because all 
triangles are of the same size. In a 4-8 mesh the sizes of the 
triangles  differ  dependent  on  their  refinement  level.  This 
poses a problem, which we have not addressed by now.
The texturing can be done manually by importing the model to 
a 3D rendering software.  We used a popular open source 3D 
modeling and rendering software called Blender.



The mapping  is  done here  in  the  way by firstly  loading  the 
mesh and the according image to be uses as texture.  By the 
UV-image editor  one can match the image to the surface by 
simultaneously viewing the result in a separate viewport.
The according  texture  coordinate  list  is  calculated  internally 
by  Blender,  so  that  the  user  doesn't  need  to  complain  with 
that.

Figure 9: Arcades of Lorsch Abbey as a textured adaptive 
meshed model.

 
The final model appears as complex as a fine regular meshed 
one, such that there is almost no loss in information during the 
grid simplification step while the number of triangles reduces 
by a factor  of  five. Figure  9 shows the result  with a coarse 
adaptive grid in white (again for demonstration purposes only) 
on top of a textured surface.

5. EXPORTING THE MODELS

To use the complete  meshed  model  outside  of  PointMesh it 
has to be saved in an appropriate format. We chose to use the 
VRML format. Because it is ASCII-format, it offers the great 
advantage  to  be  easily  usable  and  extendable.  Besides  that, 
models can be displayed online in all common web browsers 
by installing a browser-plugin.
The  big  disadvantage  is  the  high  memory  usage  and  the 
relatively low read and write performance compared to other 
(mostly binary) formats.
For saving the model it is possible to choose between VRML-
1.0  and  VRML-2.0  (VRML97)  formats  via  the  GUI.  For 
future  versions  we  plan  to  implement  our  own  binary  file 
format,  which  stores  the  data  more  compact  and  may  save 
additional  information,  such  as  different  adaptive  meshing 
levels.

6. COMPARISION BETWEEN REGLUAR AND 
ADAPTIVE MESHES

As  we  are  able  to  save  both,  the  regular  and  the  adaptive 
meshed  model  as  VRML file,  we can compare  the different 
results directly. The comparison of both techniques should not 
be  focused  on  the  visual  impression  only.  The  adaptive 

triangulation  by  4-8  meshes  also  saves  memory  and  is 
displayed faster by the graphics hardware.
In the presented cut-outs (see figures 9, 10 and 11) we used a 
fixed patch size of 4 cm for both meshing methods. The error 
threshold is varied between 2, 4, 6, 8 and 10 cm. Additionally,  
we  took  a  measure  of  the  mean  frame  rate,  to  get  a 
comparison of the display speed. Here it is important to notice 
that, in contrast to the regular meshing, the results of the 4-8 
meshing are still not optimal,  because we do not use triangle 
strips  or  triangle  fans  here  to  speed  up  the  display 
performance.

Figure 10: Cut-out from the towers of the Old Bridge 
Heidelberg. Regular mesh (left) and adaptive mesh (right) 
in wireframe graphics (above) and textured view (below).

Our testing platform:
• Intel(R) Pentium(R) Dual  CPU  T2330  @1.60GHz, 

3GB RAM
• NVIDIA G86GL-850 Graphics Card

All  FPS  values  are  rounded  mean  values  taken  over  60 
seconds.  They have been captured by the application FRAPS 
(beepa,  2008)  and  VRMLView (Kongsberg,  2009)  running 
under MS Windows Vista. The results are shown in table 12 
and  graphically displayed in figures 13 and 14.

Figure 11: Small cut-out from an excavation site at Lorsch.

7. CONCLUSION

According to the true color values  a texture is automatically 
produced on the basis of the finest grid. Coarser grids use the 
same texture and appear as complex such that there is almost 
no  loss  in  information  during  the  grid  simplification  step 
while the number of triangles reduces by a factor of five. As 
an  outlook,  automated  texturing  even  for  extremely 
complicated surfaces  will  be possible  due to the color-coded 
normal  field  stored  in  the  so-called  compass  colors.  They 
allow for  a meaningful  projection  of  curved surfaces  onto a 
plane. This forms the basis for a screenshot of the texture to 
be  mapped  onto  this  part  of  the  surface  via  classical  UV-
mapping.  In  the  future  an  implementation  of  the  algorithm 



directly  on  the  GPU  is  promising  (see  Schneider, 
Westermann, 2006) due to the highly parallel tasks within our 
algorithm.

Table 12: Comparision in terms of frame rates and number of 
triangles.

Figure 13: Comparision of number of triangles for different 
cut-outs.

Figure 14: Comparision of frame rates for different cut-outs.
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Large Cut-out „Arcades“

Mesh Type Error tol. [cm] # Triangles FPS

regular n/a 70295 24

4-8-mesh 2 9060 35

4-8-mesh 4 6003 37

4-8-mesh 6 4999 40

4-8-mesh 8 3287 44

4-8-mesh 10 3130 45

Cut-out „Old Bridge“

Mesh Type Error tol. [cm] # Triangles FPS

regular n/a 24049 70

4-8-mesh 2 6823 69

4-8-mesh 4 5245 82

4-8-mesh 6 4284 94

4-8-mesh 8 3770 99

4-8-mesh 10 3281 121

Small Cut-out „Excavation“

Mesh Type Error tol. [cm] # Triangles FPS

regular n/a 3677 167

4-8-mesh 2 1677 151

4-8-mesh 4 967 136
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