
COMBINING GENETIC ALGORITHMS WITH IMPERFECT AND SUBDIVIDED 
FEATURES FOR THE AUTOMATIC REGISTRATION OF POINT CLOUDS 

(GAREG-ISF) 
 
 

Stefan Schenk *, Klaus Hanke 

 
Surveying and Geoinformation Unit, Technikerstrasse 13, A 6020 Innsbruck, Austria 

University of Innsbruck, Austria 
stefan.schenk@student.uibk.ac.at, klaus.hanke@uibk.ac.at 

 
 
KEY WORDS:  Terrestrial Laser Scanning, Registration, Point Clouds, Genetic Algorithms, Imperfect and Subdivided Features 
 
 
ABSTRACT: 
 
Terrestrial laser scanners have achieved a great popularity in the last decade. Their easy on-site application and the possibility of a 
flexible and high quality post processing added to their success also in architectural, archaeological and heritage documentation. We 
present a method for handling the automatic registration of point clouds which are characterized by a significant noise level, 
generally imperfect geometry and occlusions. Hereby we combine and extend already existing and established methods to facilitate 
the registration of point clouds without prior pre-processing. Our approach consists - similar to other methods - of three steps which 
are scan analysis, pair-wise matching and multi-view matching. To handle the above mentioned datasets we propose to use imperfect 
and subdivided features, and to implement Genetic Algorithms (GAs). At the same time our approach can be seen as extension to 
already known Genetic Algorithms used for the registration of point clouds. By implementing an adapted version of a Genetic 
Algorithm in the classical registration process between coarse and fine registration we are able to maintain robustness and 
computational performance also when registering scans of bigger objects characterised by a notably increased number of points, a 
significant noise level and occlusions. We show and discuss the successful application of the algorithm also on scenes which do not 
consist of classical geometric primitives such as planes. 
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1. INTRODUCTION 

Laser scanners are able to capture real-world surroundings in a 
fairly short amount of time (Hanke et al., 2006). The growing 
amount of collected data does not only increase the quality of 
the results and the areas of applications but also the necessary 
time needed for planning, performing and elaborating the on-
site measurements. In order to avoid hidden or missing parts, 
generally several scanning stations have to be used and the 
resulting point clouds have to be registered to each other. 
 
The common and robust geodetic way of using artificial 
(spherical, cylindrical or plain) targets is time-consuming and 
needs at least three of these targets to be inside the 
measurement range of the laser scanner. This can be avoided by 
using robust and automated algorithms for the registration 
process working with the object’s shape itself as long as it is 
guaranteed that a comparable accuracy of the registration will 
be achieved. A first study of the here proposed algorithm is 
found in Schenk and Hanke (2009).  
 
An overview of different registration methods can be found in 
Salvi et al. (2007). Herein registration methods are classified 
either as coarse or fine registration; for a complete matching 
both have to be applied to identify and refine the global 
optimum. 
 
Several methods exist to perform the coarse registration of point 
clouds. Bae and Lichti (2004) proposed to use local surface 
attributes such as normal vectors or geometric curvature, 
whereas Johnson and Hebert (1997) used spin images for the 

successful registration of point clouds. Von Hansen (2007) and 
Brenner et al. (2008) successfully used planar patches for the 
registration of urban environments, and Rabbani et al. (2007) 
worked with different objects as targets for the registration of 
industrial areas.  
 
Fine registration is typically done with the well-known iterative 
closest point (ICP) algorithm, proposed by Besl and McKay 
(1992) as well as by Chen and Medioni (1992). An overview of 
efficient variants of the ICP algorithm can be found in 
Rusinkiewicz and Levoy (2001). 
 
Genetic Algorithms (GAs) are able to solve problems where 
search space is large or poorly understood and no simple 
mathematical analysis of the solution is available. Brunnström 
and Stoddard (1996) used a GA to find an initial guess for the 
free-form matching problem that is finding the translation and 
the rotation between an object and a model surface. An 
advanced evolutionary algorithm, CHC, was used by Cordón et 
al. (2003) for 3D image registration. They used both a coding 
scheme with 7 parameters representing the translational and 
rotational components and a factor for uniform scaling; they 
also compared binary coding to real value coding. A 
comprehensive description of using GAs for the alignment of 
multi-view range images has been presented in Silva et al. 
(2005). They also introduced the so-called “Surface 
Interpenetration Measure” that allows a more precise evaluation 
of the registration results. Lomonosov et al. (2006) proposed to 
use a GA for the pre-registration of arbitrarily oriented 3D 
surfaces, also including the surface overlap as unknown 
parameter in the search process.  



 

2. BACKGROUND 

2.1 Genetic Algorithms  

Genetic Algorithms (GAs) represent a computer-based 
simulation of natural evolution where the principles of 
biological processes are used as heuristic search strategy. They 
achieved a great popularity through the work of Holland (1975) 
and are typically used for problems with a large and complex 
search space with an increased number of local optimums. 
 
GAs are known to have a clear and simple structure and can be 
used for a variety of applications. The here proposed Genetic 
Algorithm was developed by Reed et al. (2005) for the 
optimisation of tunnel shapes and was adapted for terrestrial 
laser scan registration with only a few modifications; a proof of 
the great flexibility of GAs. 
 
Charles Darwin characterised natural evolution mainly by one 
keyword: natural selection, also known as “survival of the 
fittest”. This means that individuals with higher quality - called 
fitness - have a higher probability to survive and to reproduce 
themselves than others. The fitness function evaluates all 
individuals of a population and calculates their fitness. Each 
individual is represented as a chromosome and its subparts 
named genes. Hereby a single individual corresponds to a single 
mathematical solution, whereas a population is equal to a group 
of possible solutions. 

 
Figure 1.  Structure of a Genetic Algorithm (GA) 

 
Similar to natural evolution, also GAs have an iterative 
structure (figure 1), where the single steps are known as 
generations. Typically GAs are initialised by creating a start 
population. This can be done either by random or by using a 
given set of rough solutions. In the iterative process new 
individuals are reproduced by mutation (substitution of single 
gene parts) and cross-over (merging of two or more genes). 
Finally they are evaluated by the fitness function and only a 
certain amount of them is selected for the next generation. This 
is done until either a certain number of generations or a pre-
defined termination condition is reached. 
GAs are known to be “computationally expensive” and as in 
nature, also GAs usually can’t provide neither perfect nor exact 
results, but good approximations. This means, that despite GAs 
are a good choice for complex or unknown problems where 
other approaches may fail, their application has to be well 
aimed to benefit from their advantages while minimizing their 
drawbacks.  
 
2.2 Imperfect Features  

Laser scanners are able to create a quite detailed representation 
of scenes in a fairly short amount of time. However, when 
working with real-life scenes it might be the case that we need 
to handle datasets where point density is partly very low or 

point clouds contain a significant noise level because of the 
roughness of the surface and/or the limited instrument 
precision. In other cases datasets can even be fragmentary or 
partly missing due to unpredictable situations.  
 
Generally a number of scanning stations has to be used to 
gather a fairly complete representation of an object or a scene. 
Nevertheless it is useful to keep the number of scanning stations 
low to safe precious time. By doing so, occlusions - which 
generally can’t be avoided - will arise in an increased quantity 
either due to the object itself or obstacles between the laser 
scanner and the object. At the same time also edges and borders 
which often have a round, bevelled or rough shape may emerge 
differently when scanning from different stations. Figure 2 
shows typical problems in data acquirement which might 
continuously be encountered during on-site measurements.  
 

 

 
Figure 2.  Typical problems in data acquisition 

 
One way to perform the registration of such point clouds is to 
detect robust features (i.e. planes) inside the scans as they 
represent a more usable way of handling the original millions of 
points. But even when using robust features these datasets can 
still contain a certain amount of inaccuracy; such datasets are 
referred to as “imperfect” which means that we are able to work 
with them, but we have to be aware that they might be noisy or 
in the worst case even misrepresent the original scene. 
 
2.3 Subdivided Features  

When working with real-life scenes generally a high number of 
features can be detected. It can however happen that due to 
unfavourable circumstances the number of valid feature-
correspondences - i.e. when working with larger features such 
as planes - between the single scans can get rather poor for a 
correct registration. This might happen if only a small number 
of features is detectable and matchable in both scans, or 
features are influenced in some way either by occlusion and 
noise or simply by imperfect geometry. We propose to 
subdivide features into smaller subparts and work with those 
which are not influenced by occlusion and other effects 
anymore.  
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In the following the principles of subdivided features are 
exemplarily demonstrated by using planes; other subdivided 
features such as cylinders or lines are under development. 
Basically we are evolving the idea of raster cells (von Hansen, 
2007) during coarse registration, and propose further to use the 
principal directions of the complete planes for their subdivision. 
We first detect the whole planes and calculate their principal 
directions. Next we establish a local coordinate system for each 
plane according to its principal directions and using its 
barycentre as origin. This coordinate system is then used to 
subdivide the planes into smaller subparts (figure 3). 
 

 

 
Figure 3.  Subdividing and matching the acquired features 

 
One of the main advantages of our approach is that those planes 
that are fully visible and detectable equally in two or more 
scans will have corresponding values and barycentres. In other 
cases, when a plane is not fully visible, partly occluded or 
contaminated with noise, and also in cases where the principal 
directions are ambiguous, the subdivision may result in a 
differing grid. In those cases the sub-planes can be handled the 
same way as imperfect features (“imperfect correspondence”). 
 
 

3. REGISTRATION STRATEGY 

The here proposed registration method combines and extends 
the positive aspects of different, already existing and well 
established methods, and works without artificial targets. It 
consists of three steps, namely scan analysis, pair-wise 
matching and multi-view matching.  
 
In the first step all scans are analysed and region growing is 
used to detect characteristic features (planes) which are then 
subdivided into smaller sub-features. 
 
Afterwards the pair-wise registration of the single scans is 
initiated, whereby three steps are subsequently executed. First 
feature matching with an extension for imperfect and 
subdivided features is used to find auspicious regions in search 
space, whereas in the second step a Genetic Algorithm is 
applied twice: first to reduce and refine the possible solutions 
using imperfect and subdivided features and in the second run - 

using the original, but reduced point clouds - to include as much 
geometric information as possible in the early registration 
process. The refinement of the solution is done with a classical 
iterative closest point (ICP) algorithm. 
 

 

 
Figure 4.  Automatic registration strategy 

 
Finally the so-called multi-view matching is applied to combine 
the pair-wise matching results to a globally consistent solution. 
Figure 4 shows the three main steps of our algorithm which was 
successfully used to register the church of Seis, Italy, captured 
with a Trimble GX laser scanner.  
 
3.1 Scan analysis 

The input datasets for registrations generally consist of an 
unsorted list of single points and commonly also of intensity or 
colour information. Our algorithm is applied directly on the 
point cloud and no additional structure such as a triangulated 
mesh is necessary. To ensure that the algorithm works almost 
independently of the object’s size, we adopt the idea stated in 
Gelfand et al. (2003). The point clouds are scaled uniformly so 
that the average distance of the points from the mass centre is 1; 
hereby the global scaling factor is set according to the first 
analysed scan. This helps to make sure that the registration 
thresholds are within a certain range. A kd-tree structure is used 
to efficiently gather the neighbours of each point on the surface, 
and a principal component analysis (PCA) is used to find the 
tangent plane and the normal vector in each point. Afterwards 
the resulting eigenvalues are used for the estimation of the 
change in geometric curvature called surface variation (Pauly et 
al., 2003). The surface variation is now used to identify seed 
points for the surface extraction (planes) through region 
growing as seen in Vieira and Shimada (2005). Finally the 
principal directions and the barycentre of each plane are used to 
create a local coordinate system and to divide the planes into 
smaller subparts. 
 
3.2 Pair-wise matching 

The pair-wise registration of two laser scans can be seen as 
search problem in six-dimensional space which is typically 
handled by using a coarse registration method first and an 
algorithm for fine registration afterwards. As we are working 
with imperfect features, this classical separation between coarse 
and fine registration is not recommended; actually in many 
cases the coarse registration cannot provide the results needed 
for the following fine registration. Therefore we suggest 
implementing a third step - in between coarse and fine 
registration - consisting of Genetic Algorithms (see figure 5). 
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Our pair-wise matching algorithm starts off with the coarse 
registration of the point clouds. As Brenner and Dold (2007) 
show, the number of possible combinations during feature 
matching can be very high when working with planar surfaces. 
Generally three pairs of corresponding features with linearly 
independent normal vectors are necessary to form a solution 
when working with planes. Sometimes it can be hard to find 
three planes satisfying these requirements. As mentioned in He 
et al. (2005) the barycentres of a pair of matching planes can be 
used for the registration so that only two feature pairs are 
necessary.  
 

 
Figure 5.  Pair-wise matching strategy using GAs 

 
To keep running times low also when comparing and matching 
the subdivided features, we apply different checks in the 
following order: We first use the complete and not subdivided 
planes to calculate their bounding boxes and the angles between 
their normal vectors; these are then compared with the planes of 
the other scan. By doing so a great part of wrong matches can 
be eliminated before starting to process the subdivided features. 
In the next step the sub-planes of the remaining possible 
combinations are compared using the following four invariants 
(Brunnström and Stoddard, 1996): the barycentres’ distances, 
the pair-wise relative orientations of two normals and an 
additional twist angle. Further the mean intensities and the 
surface variations of the sub-features are used to filter 
combinations with excessive differences. Next we use the idea 
of topology by Huang (2006) to compare the neighbourhoods of 
the sub-features. This filtering is especially effective near the 
borders of complete planes as it enables to roughly check the 
rotational component of the possible solution. By applying 
these filters consequently during feature matching, the number 
of possible solutions can be hold relatively low. 
 
In the next step the possible solutions - resulting from the 
feature matching process - are supplied as start population to a 
GA which reduces and refines the results at the same time. Both 
steps - the feature matching and the GA - profit from each 
other: the GA is able to correct possible misalignments of the 
feature matching, whereas the feature matching identifies 
possible optimums which can then be explored in a more 
efficient and targeted way by the GA. Following this first GA, 
we propose to use a second GA doing free-form matching on a 
reduced form of the original point cloud. Although this step 
could already be seen as fine registration - i.e. when 
implementing the Surface Interpenetration Measure as proposed 
by Silva et al. (2005) - its main aim here is only to include as 
much geometry as possible in the early registration process to 
enable the later application of the ICP algorithm.  
 
Typically our GAs run for 50 generations, but both algorithms 
will terminate earlier if no improvement of the results can be 

achieved within the last 5 generations. The quality of the 
solutions is determined by the robust fitness function of Silva et 
al. (2005); this minimizes the sum of the squared distances 
between the corresponding points while maximizing the number 
of inliners. We store a single individual (solution) Xi in the real-
coded form of Xi = (Qi, Tix, Tiy, Tiz), whereby Qi represents the 
quaternion of the rotation and Tix, Tiy, Tiz are the components of 
the displacement vector.  
 
In each generation new individuals are formed either by 
creating a mutant (with a 10% probability) or through a cross-
over (90% probability). Additional mutation is applied on all 
new individuals with a 5% probability. These values were 
selected according to Silva et al. (2005) and according to our 
own test results. While mutants and mutation force the 
population to spread out and explore the search space, cross-
over is mainly used to concentrate the population in auspicious 
regions and improve existing solutions. After evaluating all 
individuals with the fitness function we use a binary 
tournament, where repeatedly two individuals are randomly 
selected from the population and - according to their fitness - 
the better one is selected for the next generation.  
 
In some cases - i.e. when working with symmetric point clouds 
- more than one correct solution is possible. To handle such 
cases we combine the first GA with a tabu search. The GA is 
restarted iteratively with the same start population, but those 
areas in search space close to the results of previous iterations 
are banned (tabu). This is repeated as long as solutions with a 
high quality - determined by the GA’s fitness function - can be 
found or a user-defined maximum of solutions is reached; in our 
examples that search was limited to five solutions. 
 
Our pair-wise matching algorithm ends with the refinement of 
the gathered solutions based on the well-known iterative closest 
point (ICP) algorithm proposed by Besl and McKay (1992), and 
by Chen and Medioni (1992). To improve robustness and 
stability of the algorithm we use the geometrically more stable 
version of Gelfand et al. (2003).  
 
3.3 Multi-view matching  

A lot of research has been done in multi-view matching, also 
known as multi-piece matching (Huang et. al, 2006). Similar to 
Pulli (1999), we take the pair-wise matching results and order 
them according to their quality. To improve the search for a 
globally correct solution we further apply the visibility-
consistency approach of Neugebauer (1997); this approach is 
also used by Huber and Hebert (2003) to ensure that only 
globally consistent pair-wise matching results are used for the 
final reassembling. The best matching pair is fixed and 
iteratively another view is added to the fixed set. In every 
iteration step the already fixed views are realigned to ensure a 
globally consistent solution.  
 
 

4. EXPERIMENTAL RESULTS  

To prove the potential of our registration strategy (GAReg-ISF) 
we processed a number of real-life scenes. In this paper we 
mainly focus on the automatic registration of terrestrial laser 
scans in the fields of archaeology as they typically do not 
consist of classical geometric features such as planes. Other 
examples such as the pair-wise registration of Agia Sanmarina 
church in Greece can be found in Schenk and Hanke (2009).  
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The scans were neither pre-processed nor ordered accordingly 
to their neighbourhood relationship. Feature detection, feature 
subdivision and the final ICP were carried out with a random 
subset of 100,000 points which increased the effect of 
“imperfectness”; 3,000 points were used in the second Genetic 
Algorithm for free-form matching. Since archaeological scans 
generally do not consist of “perfect” planes we increased the 
thresholds in plane detection. In both our test datasets we tried 
different sizes of subdivided planes. The tests however showed 
that the size of the subdivided features does not directly 
influence the results as long as at least some corresponding 
imperfect and subdivided features can be found; the quality of 
the final solution rather depends from the ICP used in the pair-
wise and multi-view matching.  
 
4.1 Archaeological excavation in Austria 

To test the capabilities of our algorithm we applied it to a 
dataset documenting an archaeological excavation in Austria; 
the dataset includes four scans captured with a Trimble GX 
scanner (see figure 6).  
In 2007 and 2008 - in the frame of the Special Research 
Program HiMAT (an interdisciplinary research project 
dedicated to the history of mining in Tyrol and adjacent areas, 
sponsored by the Austrian Science Found) - archaeological 
investigations have been conducted in a prehistoric mining 
landscape in the lower Inn Valley, Austria. In this region 
intensive copper ore mining took place during the Middle 
European Late Bronze Age (1200 - 800 BC). From this period 
numerous traces of underground mining, mineral processing 
and ore smelting have been located by archaeological 
prospection (Hanke, 2007). 
The approach was to provide a kind of “permanent care” 
surveying team in place at the excavation for about 5 weeks to 
guarantee a 3D documentation of the process at any time. In 
summer 2007 a first field was excavated and in 2008 the 
neighbouring four places followed. The size of a single 
excavation field varied from about 4 to 5 m by 3 to 4 m with a 
depth of 0.5 to almost 2 m. The data acquisition was realized by 
a Trimble GX laser scanner with at least 4 stations for a single 
field. The average density of the point cloud was about 5 mm at 
a distance of 4 m. Up to 3 different archaeological layers per 
field have been recorded.  
 
 
 

  

 

Figure 6.  Four single scans of the excavation (meshed) 

 

Figure 7.  Subdivided features of one single scan  
 

Figure 8.  Multi-view matching result (meshed) 
 
As seen in figure 7 the single scans were analysed, and the 
detection and subdivision of features were used to describe 
characteristic areas in each scan. Afterwards pair-wise and 
multi-view matching was applied to reassemble all scans as 
shown in figure 8. 
 
We compared the results of the target referencing method - 
using artificial target spheres - with our registration method 
(GAReg-ISF) which utilises the geometric information of the 
point clouds itself. The first method directly uses the known 
centres of the artificial target spheres for a registration, whereas 
in the second approach the best transformation parameters were 
calculated by the GAReg-ISF algorithm - relaying on the point 
clouds itself - and were only afterwards applied to the same 
spheres as in the first approach.  
 
Table 1 shows the centres’ coordinates of the used spheres after 
the registration as well as their mean values and the standard 
deviation of each method. Further the spatial discrepancy 
between the mean sphere centres of both methods was provided 
to give quantitative information about their actual difference. It 
is important to mention in this context that the results are 
correlated; the scanned (unregistered) spheres contain already a 
certain amount of error due to the measurement itself and/or the 
limited instrument precision (see deviation in column “target 
referenced”). Although the registration parameters of GAReg-
ISF are not influenced directly - as the algorithm works on the 
object’s point clouds and not on the spheres - the mentioned 
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error is introduced when applying its results to the unregistered 
sphere coordinates for comparison.  
 

Centre of sphere 1 
 target referenced GAReg-ISF 

Scan X 
[mm] 

Y 
[mm] 

Z 
[mm] 

X 
[mm] 

Y 
[mm] 

Z 
[mm] 

1 7489.7 -4271.5 3744.9 7489.7 -4271.5 3744.9 
2 7490.4 -4272.2 3745.0 7489.0 -4272.6 3746.9 
4 7490.4 -4271.7 3745.8 7488.8 -4273.0 3745.5 

mean 7490.2 -4271.8 3745.2 7489.2 -4272.4 3745.8 
std. dev. 0.4 0.4 0.5 0.5 0.8 1.0 
sphere 1:   spatial discrepancy of the solutions:  1.3 mm 

Centre of sphere 2 
1 7902.3 -1688.0 3877.8 7902.3 -1688.0 3877.8 
2 7901.4 -1687.9 3878.8 7900.5 -1688.4 3881.7 
3 7904.4 -1686.4 3879.6 7905.4 -1684.0 3882.7 
4 7902.0 -1688.2 3878.4 7900.2 -1689.6 3880.4 

mean 7902.5 -1687.7 3878.6 7902.1 -1687.5 3880.6 
std. dev. 1.3 0.8 0.8 2.4 2.4 2.1 
sphere 2:   spatial discrepancy of the solutions:  2.1 mm 

Centre of sphere 3 
1 6264.9 -7304.0 2930.7 6264.9 -7304.0 2930.7 
2 6266.0 -7304.2 2929.7 6263.8 -7303.9 2930.5 
4 6265.1 -7303.1 2929.4 6264.5 -7303.9 2925.5 

mean 6265.3 -7303.8 2929.9 6264.4 -7303.9 2928.9 
std. dev. 0.6 0.6 0.7 0.6 0.1 2.9 
sphere 3:   spatial discrepancy of the solutions:  1.4 mm 

Centre of sphere 4 
1 -1087.4 -8361.4 -888.3 -1087.4 -8361.4 -888.3 
2 -1087.4 -8361.0 -887.1 -1090.0 -8357.5 -886.7 
3 -1089.1 -8360.0 -888.6 -1087.7 -8357.6 -886.1 

mean -1088.0 -8360.8 -888.0 -1088.4 -8358.8 -887.0 
std. dev. 0.9 0.7 0.8 1.4 2.2 1.1 
sphere 4:   spatial discrepancy of the solutions:  2.2 mm 

Centre of sphere 5 
3 4271.1 1969.7 1874.1 4273.2 1972.1 1875.2 
4 4272.4 1971.6 1874.5 4272.8 1971.6 1875.1 

mean 4271.8 1970.7 1874.3 4273.0 1971.8 1875.2 
std. dev. 1.0 1.3 0.3 0.2 0.4 0.1 
sphere 5:   spatial discrepancy of the solutions:  1.9 mm 
 

Table 1.  Comparison of target referencing and GAReg-ISF  
 

The resulting values of table 1 show that the spatial discrepancy 
between both solutions reaches a maximum of 2.2 mm. GAReg-
ISF generally produces slightly higher standard deviations but 
sometimes also lower values (see target sphere 5) compared to 
the target reference method. One possible explanation for the 
higher standard deviations is the fact that only the limited 
amount of 100,000 points was used during the whole 
registration process (including the ICP algorithm) with GAReg-
ISF. This corresponds approximately to 1/5 - 1/13 of the 
original number of points. Despite - or perhaps because of - that 
the results can be considered remarkable and encourage further 
researches. 
 
4.2 Part of the cave in Mauken, Austria 

Another dataset (see figure 9) we tested GAReg-ISF on is the 
dataset of a 30 meters deep prehistoric mining cave in Mauken, 
Austria, originating from the same project as the one above. 
The aim was on the one hand to document the geometric form 
of the cave, its development and the outstanding mining traces 
on its surface. On the other hand the archaeologists again 

needed a continuous multi-layer documentation about their 
excavation process of the underground mining procedure. 
 
As for the limited vertical field of view of our Trimble scanner 
and the constrictive space available in the cave we faced the 
challenge to have at least 3 to 4 target spheres within each scan 
to guarantee the registration between them. This cost us a lot of 
additional time working in a dark, demanding and hostile 
environment. 
 
 

 
 

Figure 9.  Five single scans of the cave (meshed) 
 
 

Figure 10.  Subdivided features of scan 3 
 
Contrary to the above presented excavation, the cave does only 
provide limited possibilities for the application of feature 
subdivision but the more for the use of imperfect features (see 
figure 10). Although the rough surface of the cave would 
suggest decreasing the size of subdivision we - on the contrary - 
increased the size to test the capabilities of the algorithm. 
 
For sure the here presented algorithm is mainly suited for 
architectonical environments and objects consisting of classical 
features such as planes. Nevertheless also the comparison of the 
cave’s results suggests that the algorithm has great capabilities - 
especially when implementing more and different kinds of 
features such as cylinders or even quadrics. 
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Centre coordinates of sphere 1 
 target referenced GAReg-ISF 

Scan X 
[mm] 

Y 
[mm] 

Z 
[mm] 

X 
[mm] 

Y 
[mm] 

Z 
[mm] 

1 -3784.5 -1180.6 504.7 -3784.5 -1180.6 504.7 
3 -3782.8 -1180.9 505.4 -3784.0 -1181.3 505.5 
4 -3783.2 -1181.6 505.2 -3783.8 -1182.1 505.0 
5 -3782.4 -1181.9 505.5 -3784.4 -1182.2 505.9 

mean -3783.2 -1181.2 505.2 -3784.2 -1181.6 505.3 
std. dev. 0.9 0.6 0.4 0.3 0.8 0.5 
sphere 1:    spatial discrepancy of the solutions:  1.0 mm 

Centre coordinates of sphere 2 
1 -3051.3 1630.2 1097.7 -3051.3 1630.2 1097.7 
2 -3051.1 1632.1 1097.6 -3049.9 1633.0 1096.9 
3 -3050.4 1627.6 1097.6 -3051.5 1626.9 1099.4 
4 -3050.1 1628.2 1097.8 -3051.3 1627.5 1098.7 

mean -3050.7 1629.5 1097.7 -3051.0 1629.4 1098.2 
std. dev. 0.6 2.1 0.1 0.8 2.8 1.1 

sphere 2:    spatial discrepancy of the solutions:  0.6 mm 

Centre coordinates of sphere 3 
1 2178.6 -1543.4 1067.8 2178.6 -1543.4 1067.8 
2 2175.3 -1542.9 1067.9 2175.8 -1543.1 1069.3 
5 2173.6 -1544.2 1068.1 2171.3 -1546.8 1070.3 

mean 2175.8 -1543.5 1067.9 2175.2 -1544.4 1069.2 
std. dev. 2.6 0.7 0.1 3.7 2.0 1.2 

sphere 3:    spatial discrepancy of the solutions:  1.6 mm 

Centre coordinates of sphere 4 
1 -1636.0 -2662.0 1226.3 -1636.0 -2662.0 1226.3 
2 -1635.2 -2663.3 1226.0 -1634.9 -2662.6 1227.5 
3 -1636.4 -2659.6 1225.8 -1638.6 -2660.7 1227.2 
4 -1636.3 -2659.5 1225.9 -1637.2 -2660.0 1226.2 
5 -1635.1 -2660.0 1225.6 -1637.9 -2661.0 1227.0 

mean -1635.8 -2660.9 1225.9 -1636.9 -2661.3 1226.8 
std. dev. 0.6 1.7 0.3 1.5 1.1 0.6 

sphere 4:    spatial discrepancy of the solutions:  1.5 mm 
 

Table 2.  Comparison of target referencing and GAReg-ISF  
 
Table 2 reveals that the discrepancy between the target 
reference method and GAReg-ISF reaches a maximum of 1.6 
mm in this example. The close results show that the concept of 
combining Genetic Algorithms with imperfect and subdivided 
features for the coarse registration of laser scans is well 

working; further improvements may be achieved by enhancing 
the multi-view matching and using the complete point cloud for 
the refinement. Figure 11 shows an external view of the cave 
after the multi-view matching as well as a horizontal and a 
vertical section. 
 
 

CONCLUSION 
 
A method for the automatic registration of point clouds without 
artificial targets was proposed in this paper. Our approach can 
be seen as improvement to the state of the art as it combines the 
positive aspects of different already well studied methods such 
as feature matching and the application of Genetic Algorithms 
(GAs). By combining their positive aspects and using them in a 
targeted and efficient way we were well able to perform the 
automatic registration of partially occluded point clouds 
characterized by a significant noise level and imperfect 
geometry. 
 
Among our key concepts is the idea to strictly accept a certain 
amount of inaccuracies (“imperfectness”) in our datasets and 
features, and to generate a registration framework capable to 
handle them. The subdivision of features into smaller sub-
features allows overcoming occlusion and, together with the 
implementation of GAs as clearly targeted steps in between 
classical coarse and fine registration, increases both robustness 
and computational performance also when registering objects of 
bigger size. 
 
Our examples show that the approach of subdivided features is 
not only applicable to scenes consisting of classical geometric 
primitives such as planes (as in most architectural applications); 
due to the extension to imperfect features also scenes consisting 
of approximated features are handable. We are currently 
working on implementing more features such as spheres, 
cylinders and lines. 
 
Even though the presented method is still under development, it 
again showed a great potential in all our tested datasets. 
 

 
Figure 11.  External view of the registered scans (meshed) and a horizontal and vertical section 

 

Horizontal section 

External view  
(W; L; H) ≈ (11.6m; 11.6m;  4.7m) Vertical section 
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