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ABSTRACT: 
 
In recent years, three-dimensional (3D) data has become increasingly available, in part as a result of significant technological 
progresses in Light Detection and Ranging (LiDAR). LiDAR provides longitude and latitude information delivered in conjunction 
with a GPS device, and elevation information generated by a pulse or phase laser scanner, which together provide an effective way 
of acquiring accurate 3D information of a terrestrial or manmade feature. The main advantages of LiDAR over conventional 
surveying methods lie in the high accuracy of the data and the relatively little time needed to scan large geographical areas. LiDAR 
scans provide a vast amount of data points that result in especially rich, complex point clouds. Spatial Information Systems (SISs) 
are critical to the hosting, querying, and analyzing of such spatial data sets. Feature-rich SISs have been well-documented. However, 
the implementation of support for 3D capabilities in such systems is only now being addressed. This paper analyzes shortcomings of 
current technology and discusses research efforts to provide support for the querying of 3D data records in SISs.  
 

1. INTRODUCTION 

1.1 Motivation 

True three-dimensional (3D) support for spatial data has only 
recently been addressed in Spatial Information Systems (SISs). 
Examples include ESRI’s ArcGIS geo-database with its support 
for two-and-a-half dimensions (2.5D) in its Digital Elevation 
Model (DEM) and Triangular Irregular Network (TIN) and the 
more recent development of a Terrain feature class and support 
for 3D objects and buildings with its multipatch feature class. 
These new achievements towards multi-dimensional data 
representation allow for a high level of accuracy, with regard to 
feature visualization, as well as empowering applications that 
employ this enhanced information level. 
 
However, current technology has only begun to exploit the 
potential richness, because true 3D support is presently rather 
static, as current SISs only offer capabilities for hosting of 3D 
data and fall short of supporting meaningful analysis of these 
vast data sets. For example, although most SISs provide the 
functionality to create TINs from LiDAR point clouds, these 
TINs cannot be updated or manipulated efficiently. This 
limitation significantly restricts the potential for harnessing 
these data sets for integrated and dynamic urban planning, as 
changes cannot be easily implemented on the environment, and 
subsequently, they cannot be analyzed for decision making.   
 
In addition to the inflexibility of TIN creation, 3D indexing 
techniques have yet to be fully incorporated. The original R-
tree, for instance, is based on a hierarchical structure of 
minimum bounding rectangles (MBRs) that divide the space 
along the x- and y-axes. Important height information provided 
by 3D data is, thus, ignored. This paper analyses and discusses 
efforts to date made in the area of indexing of 3D data sets in 
SISs.  
 

1.2 Related Work 

Recently, some Geographic Information Systems (GISs) and 
Spatial Database Management Systems (SDBMSs) vendors 
have extended their technologies to integrate true 3D features. 
This is largely driven by the increased availability of 3D data 
(e.g. from aerial and terrestrial LiDAR). A 3D spatial system 
must support 3D data types, such as point, line, surface and 
volume in 3D Euclidean space. Such data types are based on a 
3D geometric data model (i.e. vector and/or raster data with 
underlying geometry and topology). A 3D spatial system must 
also offer operations and functions embedded into its query 
language that can operate with its 3D data types (Bruening et 
al., 2004). In order to query data efficiently, it is crucial to apply 
a suitable index as the entire database record would otherwise 
have to be traversed during even the most rudimentary of 
queries. Considering that aerial LiDAR data, for instance, easily 
produces approximately 280,000,000 data points per square 
kilometre (Hinks et al. 2007), any query would take a 
considerable amount of time. 
 
Support for two-dimensional (2D) feature types and indexing 
techniques in systems dealing with spatial data sets has been 
well documented and exploited commercially. The most popular 
and enduring indexing technique in this context is Guttman’s R-
tree (Guttmann, 1984), which finds application in most SDBMs, 
such as PostGIS and Oracle Spatial. R-tree is based on MBRs 
and the 3D extension consists of minimum bounding boxes 
(MBB). However, R-tree techniques are often low in efficiency, 
as sibling nodes might overlap. Additionally, nodes are 
generally uneven in size (Qing et al., 2007).  
 
Another popular spatial index is the so called quadtree (Samet, 
2006), which aims to decompose the space into 2D cells and is 
implemented, for example in Oracle Spatial. Octrees are a 3D 
extension of quadtrees. 
 



This paper discusses these and other relevant indexing 
techniques, as well as their implementation in current SISs. As 
our focus is on LiDAR data manipulation, we investigate the 
challenges imposed by the desire to harness the full potential of 
3D data.  
 
1.3 Overview 

This paper first presents how spatial data is hosted in SISs 
(section 2) and illustrates how new developments, specifically 
how the ISO standard SQL:1999 led to new improvements 
towards 3D support in GISs and SDBMSs. Additionally, new 
data types in GISs and SDBMSs are discussed. 
 
Section 3 discusses how spatial data have traditionally been 
employed for visualization through Digital Elevation Models 
(DEMs). Challenges that need to be solved in order to empower 
these structures in a true engineering context are discussed. 
 
Next, section 4 peresents the indexing of spatial data. Indexing 
is crucial in order to facilitate efficient querying of data stored 
in a SIS. Vendor solutions are presented as well as current 
research achievements for efficient data analysis.   
 

2. HOSTING SPATIAL INFORMATION 

Since the 1960s, GISs have been used for the hosting of spatial 
data. GISs consider both what an object is and where it is 
located. Early systems utilized a distinct file-based system for 
representing spatial features and the related attribute 
information in both vector and raster formats. These early 
systems did not easily integrate with external database 
components. GIS vendors have recently facilitated the 
integration with several commercial database tools but maintain 
a loosely coupled approach, where proprietary formats are used 
to store the geometry of geographical features. These are then 
linked to attribute information stored in external database tables.  
 
Later, an integrated approach was developed that stores the 
spatial component (the so called spatial extent) together with the 
attribute data within the same database table. This new approach 
resulted in the in so-called SDBMSs. 
 
Both GIS and SDBMS technologies have, to date, largely relied 
on 2D data manipulation. The advent of the ISO standard 
SQL:1999 (ISO/IEC，1999) facilitated the extensibility of 
relational Database Management System (RDBMS) (and their 
object-relational versions), through mechanisms that allowed 
new types and operations to be added. These were developed by 
adding new Abstract Data Types (ADTs). ADTs have the 
capability to include methods for storing the different types of 
geometry and object-relational database schemata to be 
modelled. Advances regarding support for 3D spatial data in 
GISs and SDBMSs that could be used for storing point cloud 
data are presented in the following sections. 
 
2.1 3D Geographic Information Systems 

Support for 2D feature types and indexing techniques in 
systems dealing with spatial data sets has been well 
documented. However, as a result of the increasing availability 
of 3D data, current systems aim for the better integration of 3D 
data types and offer support for features and queries. In the 
following, ESRI’s geo-database is presented as an example of 
developments towards 3D support in GISs. 
 
 

2.1.1 Multipatch 
 
The ESRI geo-database models support for 3D objects in a 
feature class called “multipatch”, which is a geometry type 
within the ESRI database (ESRI，2008). Multipatch is 
constructed much like the OpenGL 3D primitive triangle, in that 
it consists of strips and fans and defines an object’s boundaries 
through triangular faces.  
 
Multipatches can be used in a variety of applications, generally 
to represent geographic objects similar to cubes and spheres, or 
real-world features, such as buildings and trees, where the 3D 
capability is vital for the whole application. Real-life scenarios 
include, for instance, employing multipatch during a modelling 
framework for the representation of 3D archaeological intra-site 
research (Katsianis et al., 2007).   
 
Multipatch also finds application in areas, where 3D modelling 
is an important part of a project management workflow. Bansal 
and Pal (2008), for instance, describe a system that visualizes 
and reviews construction production schedules. Their system 
strives to provide a four-dimensional (4D) project management 
view that combines 3D models (constructed of multipatches) 
and a project management schedule in GIS. The representation 
of features in 3D is often crucial, in order to present a complete 
picture for decision-making. Ford (2004) presents a system that 
employs multipatch in a system designed for the oil company 
Shell. This system integrates both information about the 
surface, as well as subsurface of multiple petroleum datasets. As 
multipatch provides the functionality to store these features in a 
3D type, it facilitates further analysis for decision making. The 
following section discusses how SDBMS strive to provide true 
3D support for hosting and analyzing spatial data. 
 
2.2 3D Spatial Database Management Systems 

Traditional RDBMSs were not designed for the storage of 
spatial data. Recently, RDBMS have been enhanced with object 
oriented capabilities and generated the new object-relational 
DBMS (ORDBMS). Many were further extended to incorporate 
spatial functionality.  
 
The functionality to handle spatial data within the Oracle 
RDBMS was developed for the first time as an additional 
modification to Oracle 4 by the Canadian Hydrographic 
Service. Since Oracle 8i the spatial extension (Oracle Spatial) is 
integrated with the Oracle database package. Initially only 2D 
functionality was available (Kothuri et al., 2007). However, in 
Oracle Spatial 11g, true 3D types and a 3D spatial indexing 
mechanism are provided. In particular, support for LiDAR data 
storage has been incorporated. This will be further discussed in 
sections 2.2.1 and 4. 
 
Another popular SDMBS, which also provides 3D support, is 
PostGIS, which is an initiative to extend the open source 
RDBMS PostgreSQL with spatial functionalities. PostGIS is an 
implementation of the Open Geospatial Consortium’s (OGC) 
SQL specification for simple features (OGC, 2008). PostGIS 
follows the same approach as Oracle, which is to extend a 
traditional DBMS with functionalities to manage spatial data. 
PostGIS is a spatial extender for the open source DBMS 
PostgreSQL. Seven different geographic data types are 
implemented in PostGIS: POINT, LINESTRING, POLYGON, 
MULTIPOINT, MULTISTRING, and MULTIPOLYGON (a 
collection of different polygon objects), and 
GEOMETRYCOLLECTION (a collection of elements, such as 
points, lines and polygons). Each can be 3D, and users can mix 



data from different sources, as each record has its own Spatial 
Reference ID (SRID) (ISO, 2003). Additionally, PostgreSQL 
offers the opportunity to implement custom data types, as an 
extension to a native data type. The same mechanism 
theoretically works within PostGIS. However, little has been 
published on this issue. Furthermore, PostGIS does not natively 
support 3D indexing or a point clouds as a data type.  
 
Microsoft recently included mechanisms for the hosting and 
querying of spatial data by integrating spatial tools into their 
SQL Server 2008 (Microsoft, 2007). However, these efforts 
currently only support 2D spatial data and will, therefore, not be 
discussed any further within the scope of this paper. Other 
vendors have also provided spatial extenders for 2D spatial data 
to their database. Examples include MySQL Spatial Extensions, 
IBM’s DB2 Spatial Extender, and IBM’s Informix Spatial 
DataBlade module. 
 
The main advantage of storing attributional and spatial data 
together in one table, within the SDBMS, is that both data types 
can be queried in the Structured Query Language (SQL). SQL is 
commonly used in the area of DBMSs in order to access 
information about the data. An obvious choice would be to 
exploit this recently provided extended functionality for LiDAR 
data management in Oracle Spatial 11g.  
 
The next sections provide an overview of how the SDBMs 
Oracle Spatial 11g and PostGIS represent 3D spatial data. 
 
2.2.1 3D Spatial Data in Oracle Spatial 11g 
 
Oracle Spatial for Oracle 11g stores geometric vector data in the 
SDO_GEOMETRY data type. SDO_GEOMETRY supports the 
data types Point, Line String, Polygon (Area), Polygon with a 
hole, and Collection in both 2D and 3D. Those limited to 2D are 
Compound Line String and Compound Polygon. The 
exclusively 3D forms are Composite Surface, Simple Solid, 
Composite Solid, and Collection (Oracle, 2007).  

Within Oracle Spatial, the topology model also supports 
hierarchical features in a bottom-up manner (i.e. a new feature 
layer can be derived from a previous feature layer constructed 
from the primitive elements, such as nodes, edges and faces). 
Oracle facilitates this by setting a feature ID within the 
SDO_TOPO_GEOMETRY constructor. The first feature layer 
is called a Level-0 feature. The feature layer derived from it is 
called a Level-1 feature. In general terms, a Level-n feature is 
derived from a Level-(n-1) feature.  

Raster data is stored in Oracle Spatial 11g in the 
SDO_GEORASTER data type, which represents an n-
dimensional matrix of cells. The SDO_GEORASTER consists 
of RASTERTYPE, SPATIALEXTENT, 
RASTERDATATABLE, RASTERID and METADATA. 
Among other things, the RASTERTYPE specifies the 
dimension of the data, which currently only supports up to two 
dimensions.  

Within Oracle 11g, the Spatial extender provides a native type 
for the storage of point cloud data, called SDO_PC. As part of 
this, metadata associated with the point cloud is stored in a base 
table, whereas the actual point cloud data is stored in a different 
table. Individual points within the point cloud are divided into 
subsets and then loaded into multiple rows, with the points 
stored as a BLOB data type (Kothuri et al., 2007). 

Kothuri et al. propose to load the point cloud data first into a 
table of the following structure:  

Name Type 
RID VARCHAR2(40) 
VALUE1 NUMBER 
VALUE2 NUMBER 
VALUE3 NUMBER 
Table 1. Structure Source Table 

This table need not be a physical table, but could be an external 
table interface. The base table contains only one column, which 
contains the point cloud data type. The actual data is stored in 
the block table in the following format: 
 

Name Type 
ptn_id NUMBER 
point_id NUMBER 
rid VARCHAR(24) 
value1 NUMBER 
value2 NUMBER 
value3 NUMBER 
Table 2. Structure Block Table 

 
“pnt_id” in this set up points to a particular block and 
“point_id” refers to its offset for LiDAR data management. 
 
A crucial problem is how quickly a representative 3D set of 
point cloud data can be loaded into the database. As part of the 
on-going research in this area, the authors loaded a set of 
approximately 18 million points (approximately 700 MB) from 
a LiDAR point cloud. This required 20min13sec to load 
(computer configuration: Intel Duo CPU at 2.4GHz, 4GB RAM, 
64bit windows vista). However, a typical point cloud commonly 
is 1-3 orders of magnitude larger. Thus, this issue needs further 
investigation. 
 
2.2.2 3D Spatial Data in PostGIS 

The open source community developed PostGIS as an 
alternative tool for handling spatial data. PostGIS is an 
implementation of the OGC Simple Features for the SQL 
specification  (OGC, SFS 1.2 2006). PostGIS follows the same 
approach as Oracle, which is to extend a RDBMS with 
functionalities to manage spatial data. PostGIS is a spatial 
extender for the open source RDBMS PostgreSQL.  

Seven different geographic data types are implemented in 
PostGIS: POINT, LINESTRING, POLYGON, MULTIPOINT, 
MULTISTRING, and MULTIPOLYGON (a collection of 
different polygon objects), and GEOMETRYCOLLECTION (a 
collection of elements, such as points, lines and polygons). Each 
can be 3D, and users can mix data from different sources, as 
each record has its own Spatial Reference ID (SRID)  (Ramsey, 
2008). Additionally, PostgreSQL offers the opportunity to 
implement custom data types, as an extension to a native data 
type. The same mechanism theoretically works within PostGIS. 
However, little has been published on this issue. The challenge 
would be to register the new data type with the 
geometry_columns table that is used within PostGIS, in order to 
locate tables that contain geometry types. 

 
3. DIGITAL ELEVATION MODELS 

The previous section outlined how LiDAR data could be stored 
in GISs and SDBMSs, where spatial data can be represented by 



feature classes such as ESRI’s multipatch or new types, such as 
Oracle’s SDO_PC. This section discusses ways of representing, 
manipulating, and visualizing LiDAR data by means of DEMs.  

DEMs are a commonly used data representation, in the area of 
spatial research. They are particularly popular for visualization 
of 3D content and can be employed for the surface visualization 
of LiDAR data. DEMs are digital representations of surfaces. A 
DEM forms the basis for a DTM or a Digital Surface Model 
(DSM). A DSM contains both location and elevation 
information, as well as metadata information, about urban 
features. A DTM is generated by digitally removing all of the 
urban features within the DSM, in order to expose the 
underlying terrain. A DEM is usually a raster model (regular 
spaced grids) or a TIN. Each cell within the raster data model 
has a value that corresponds to its elevation.  

DEM data sets are commonly collected using remote sensing 
technologies. In addition to LiDAR, interferometric synthetic 
aperture radar is common, where two passes of a radar satellite 
produce a DEM with a resolution of approximately ten meters. 
DEMs can also be generated by using digital image correlation, 
where two optical images that are taken from different angles 
are correlated (Wilson and Gallant, 2000).  

3.1 Data Acquisition and DEM generation 

Technology such as LiDAR challenges SDBMSs, with respect 
to the sheer volume of data points referred to collectively as a 
point cloud. Point clouds raise the question of how to allocate 
these sets of points to feature types within a database. 
Additionally, point cloud data are collected by a scanner and 
then transferred into a format that is proprietary to the scanner 
manufacturer. Figure 1 presents an area in Dublin city centre, 
illustrated as raw point clouds. 
 

 
Figure 1. Point Cloud of a part of Dublin City Centre 

The image presents an aerial LiDAR scan of Dublin’s city 
centre in a resolution of 225 points per square meter and a 
vertical resolution of 15cm. Conventional aerial LiDAR data 
provided excellent coverage for roof data. Particularly in urban 
areas, aerial LiDAR provided only inferior surveying data 
points for facades. However, an  alternative flight pattern has 
been presented that significantly improves the quality of facades 
in urban aerial, through which LiDAR scans begin to rival 
terrestrial data quality at a fraction of the time and cost, thus 
providing further motivation for 3D data manipulation abilities 
(Hinks et al., 2007). 

The quality of a DEM is significantly determined by the 
roughness of the terrain, the sampling density that is determined 
by the data collection method, the resolution of the grid, the 
choice of interpolation algorithm, the vertical resolution, and the 
choice of terrain analysis algorithm. Figure 2 presents a DEM of 
a part of Dublin Ireland’s city centre created from a similar 
LiDAR point cloud dataset as figure 1. 
 

Another data model for the representation of spatial data, which 
is also appropriate for LiDAR data, is the TIN. TINs are 
discussed in the following section.  

 
Figure 2. DEM of Dublin's City Centre 

(adapted from Schön et al., 2009) 

3.2 Triangular Irregular Networks 

TINs are a vectorial representation of DEMs. A TIN is vector-
based digital, geographic model created by triangulating a set of 
vertices that are usually provided by a DEM (Pu, 2005). A TIN 
is also a network of vertices, the so-called mass points. Mass 
points each have coordinates in 3D and are connected via edges 
to generate a triangular tessellation.  
 

 
Figure 3. TIN of Dublin's City Centre 

(adapted from Schön et al., 2009) 

A TIN is constituted of irregularly distributed nodes and lines 
with 3D coordinates (x,y,z) that are arranged in a network of 
non-overlapping triangles. A major difference between a raster 
DEM and a TIN lies in the distribution of points. In a raster, 
DEM points are arranged regularly, whereas in a TIN, an 
algorithm determines the necessary points for terrain 
representation. Consequently, with a TIN fewer points need to 
be stored in a database than with a DEM (Franklin, 1994). 
Integrated TINs take this one step further and incorporate 
feature data into the tinning process (Stanzione and Johnson, 
2007). Like the DEM, a TIN offers support for 2.5D. A TIN is 
typically constructed using Delaunay triangulations, which 
generate triangles that are as equiangular as possible, in order to 
avoid long and thin triangles. This property reduces 
approximation problems. Three-dimensional visualization of 
TIN data is readily generated by rendering its triangular facets. 
The SIS vendors ESRI and Oracle both provide built in support 
for TINs. A TIN of a part of Dublin’s city centre is presented in 
figure 3. 



 
TINs only provide 2.5D support and, thus, triangulate surfaces. 
An interesting approach is to extend this principle into 3D space 
and, thereby, provide volumetric partitioning of space in 
Tetrahedral Irregular Networks (TENs) (Penninga and van 
Oosterom, 2008). In a TEN, the Delaunay triangulation is 
extended to another point in order to construct a 3D object. 
Features are represented by their boundaries through a TIN and 
added one after the other into the TEN. Overlap queries are, 
thus, supported by the TEN’s internal neighborhood search. The 
TEN is stored in this approach in a single column database 
table. Constraints and topologies are derived in views, which 
allows for relatively easy update functionality. Penninga and 
van Oosterom (2008) identify that the building of simplexes 
results in a lot of reference data to vertexes. Building a spatial 
index on top of this would cause a significant increase in 
storage utilization. They suggest using the geometry itself, 
instead, as a unique identifier in the form of a concatenated 
coordinate triple. Sorting this triple can be seen as a spatial 
index, while deleting the original table. However, due to very 
large data set, a secondary R-tree index would be useful and can 
easily be constructed as the code contains the geometry for 
which a Minimum Bounding Box (MBB) can be constructed. 
The principle of extending a 2D R-tree based on MBRs to 3D 
will be further explained in section 4. This structure is very 
efficient in terms of updates, as updates have to be applied only 
to the one column tetrahedron table. All updates performed on 
the lower levels propagate from this level.  
 
The following section discusses approaches of indexing 
techniques for 3D data, regarding both vendor and research 
methodologies. 
 

4. INDEXING 3D SPATIAL DATA 

Indexing in a database is used to accelerate operations 
performed on the dataset. A spatial index organizes the space 
and the objects within this space in a particular manner, so that 
a spatial query or a spatial operator does not have to traverse the 
complete table to retrieve specific data.  

SDBMS vendors typically offer two types of spatial indexes:  
quadtrees (Samet, 2006) and R-trees (Guttmann, 1984). Several 
variations of these index structures have been developed in the 
literature (Samet, 2006). R-trees are particularly popular with 
SDBMS vendors:  most available indexes are either based on R-
trees or use R-trees directly through a dedicated data structure. 
Alternatively, they map spatial objects into one-dimensional 
space in order to use a standard index, such as a B-tree (Bayer, 
1971). In 2D, an R-tree is constructed by enclosing an object 
into an MBR (Guttmann, 1984). The 3D extension of a 2D R-
tree encloses an object into a MBB.  

Another approach to extend 2D spatial indexing to 3D is the 
development of an octree, which is based on a quadtree 
structure (Samet, 1989). In a quadtree data structure each node 
can have up to four child nodes and by doing so decomposes the 
space into 2D cells. Contrary to the quadtree, each node in an 
octree can have up to eight child nodes and, thus, divides the 
space into 3D cubes. However, this approach is not 
implemented presently within any commercial system. 

The following sections present and discuss various approaches 
for advancing indexing techniques into the 3D space, and 
discuss both, vendor solutions and research achievements. 

4.1 Vendor Approaches for 3D Indexing 

The R-tree structure was developed to overcome shortcomings 
of existing indexing structures at the time (Guttmann, 1984). 
Cell structures, for instance, are not dynamic, as the cell size has 
to be decided in advance. K-d trees, on the other hand, are 
designed particularly for point data (Bentley, 1975) and use 
paged memory. 

Indexing is implemented differently by particular vendors, 
which might be a function of historical product development, 
where the current spatial index has evolved out of an existing 
technology. In the following, current vendor solutions are 
presented, focusing on SDBMSs that provide 3D support 

PostgreSQL supports three indexing structures:  B-tree for data 
that can be sorted along one axis; R-tree for spatial data, which 
is then broken up into rectangles, sub-rectangles and sub-
rectangles; and the Generalized Search Tree (GiST) index, a 
“template data structure for abstract data types” that offers more 
robust support for spatial indexing than the PostgreSQL R-tree 
implementation (Geo-Consortium, 2007). GiST is a template for 
implementing other indexing methods, such as B-tree and R-
tree, and is a balanced tree structure that contains <key, 
pointer> pairs. The key is a member of a user-defined class that 
represents an attribute valid for all items that the pointer 
element can reach. A key in an R-tree like GiST refers to a 
bounding box. For instance:  all items that the pointer reaches 
are in Ireland. PostGIS consequently offers an R-tree index on 
top of GiST (Ramsey, 2008).  

Figure 4. PostGIS index implementation (Arens et al., 2005) 

Compared to a traditional R-tree index, a GiST index is “null 
save” (i.e. GiST can index columns that contain null values). In 
addition to this, PostgeSQL allows a page size of 8K; R-trees 
fail, when trying to index GIS data that exceeds 8K. As a 
consequence of this, GiST supports “lossiness”, which means 
that only critical parts of an object (i.e. the bounding boxes) are 
stored in the index (Ramsey, 2008).  MS SQL also works with a 
limit of 8K for page sizes (they are called blocks in Oracle), 
whereas Oracle offers a variable page size of 2, 4, 8 or 16K. 
PostGIS developers plan to soon provide 3D indexing on the 
basis of this structure. 

Oracle Spatial 11g also provides a 3D spatial index on the basis 
of an R-tree and a partitioning function for logical tables, which 
includes their spatial indexes. Partitioning delivers significant 



performance and manageability advantages. Additionally, the 
creation of a spatial index can be performed in parallel and 
spatial queries themselves can be executed in parallel. This is 
particularly useful for “nearest neighbor”, “within distance”, 
and “relate” spatial queries (Oracle, 2007).  

Oracle Spatial also offers a quadtree based index. As part of the 
on-going work, a comparison of a LiDAR dataset of 50,000,000 
points showed that the 3D R-tree takes approximately 5 times 
longer in the creation than quadtree [tiling level 8: 10,507sec; 
R-tree: 51,015sec on a computer with Intel Pentium 4 CPU 3.2 
GHz, 2GB DDR2 RAM, 7.200RPM 300 SATA hard drive on 
Oracle 11g 32 release 11.1.0.6]. However, when performing an 
update operation, in the form of an insert of 20,000 points, the 
R-tree performs approximately 2.5 times faster (quadtree: 
675sec; R-tree: 267sec; computer configuration as before). In 
addition to this, the R-tree is approximately 20 times more 
storage efficient than the quadtree (quadtree: 22,725MB; R-tree: 
2,060MB). Table 3 illustrates our results. 
 

Operation Quadtree (tiling level 8) R-tree 
Insert  10,507 sec 51,015 sec 
Update 675 sec 267 sec 
Storage 22,725 MB 2,060 MB 
Table 3. Performance Comparison Quadtree and R-tree 

However, quadtree indexing in Oracle does not support 3D data. 
Section 4.2, therefore, examines approaches to upgrade a 
quadtree to 3D. The results presented here are comparable with 
an evaluation presented in 2002 (Kothuri et al., 2002), who used 
a 2D R-tree and the quadtree on two 2D GIS data sets (The US 
Block Group data set contains 2D polygons, and the US 
Business Area  data set contains 2D data points). A similar 
effect could be found in this evaluation (i.e. the R-tree is slower 
in the creation of the index but uses less storage space). 
However, Kothuri et al. found that the speed of insert update 
operations greatly depends on the kind of geometry inserted, as 
the quadtree performs significantly better on an insert of small 
polygons, but significantly worse than the R-tree during an 
insert operation of large polygons. In the case of simple point 
cloud updates, the R-tree performed better than the quadtree. R-
tree can thus be considered both data and distribution 
dependent. 
 
Although the R-tree appears much more storage efficient than 
the quadtree, R-trees can also become very resource intensive. 
For example, in 2D every node split in an R-tree of N number of 
nodes might result in 2N – (N+1) = N – 1 empty entries (Huang 
et al., 2001). Huang et al. (2001) conducted experiments that 
showed that an R-tree only achieves around 70% storage 
utilization and proposed a new approach, called the compact R-
tree. However, to-date there have been no studies evaluating 
this approach for the 3D case. 
 
4.2 Research Approaches for 3D Indexing 

The previous section presented vendor specific indexing 
solutions for LiDAR data. The amount of vendors that support 
true 3D data has so far been limited. Consequently, efforts 
towards amending spatial indexing for 3D data in the research 
community are of high interest. This section explores recent 
advancements regarding R-tree, with a view to establishing a 
suitable approach for indexing vast point cloud data. None of 
the approaches described in this section are currently available 
commercially. 
 

One approach is the called V-reactive tree (Li et al., 2001), 
which is based on combining R-trees (van Oosterom, 1990) 
with an importance value. The V-reactive tree is a 4D, R-tree 
structure optimized for 3D visualization. To date, the structure 
has not been tested within the context of urban planning, nor has 
it been tested on large-scale, point cloud data sets. Some 
interesting work has, however been done on extending quadtree 
based indexes to work with the TIN structure (De Floriani et al., 
2008). They argue that their mechanism could be generalized to 
support TENs on an octree basis, in order to support true 3D 
functionality. 
 
A hybrid approach for the indexing of LiDAR data is proposed 
in (Hua et al., 2008) and is specialized for point cloud 
visualization. The basic principle of this approach is to combine 
an octree with a k-d tree, thereby building a local k-d tree at 
each octree level node. Although interesting, this approach has 
so far only been evaluated for the case of visualization speed of 
point cloud data. For a point cloud of around 100,000 points a 
rendering speed of 30 seconds was achieved (Hua et al., 2008). 
 
Contrary to the approaches presented so far, Boubekeur et al. 
(2006) emphasize the fact that structures based on the 
hierarchical space division, such as quadtree and k-d tree, are 
critical for surface representations, as they are purely volume 
based. Therefore, they suggest a combined approach, called the 
Volume-Surface tree (VS tree), which combines a global 3D 
decomposition of space on a coarse subdivision level and a 2D 
decomposition of space near the surface, near the finer 
subdivision levels. The VS-tree, therefore, combines “an octree 
and a set of quadtrees to describe a discrete 3D surface”. This is 
achieved by switching back to quadtree during the recursive 
split performed in an octree, as soon as a certain “height field” 
has been reached. This method however, has not yet been tested 
on large data sets or ones with great elevational change. 
 
An interesting approach is to index LiDAR data with a Hilbert 
space filling curve, which is a recursively performed space 
partitioning process (Wang and Shan, 2005). In this approach, 
the space is divided into cells, according to a pre-specified, 
maximum number of points per cell. If the number of points per 
cell exceeds this predefined limit, the cell is split into a sub-cell. 
This process is repeated until no cell exceeds the predefined 
threshold. After this process, the points are stored in a database, 
with each cell being represented by one record, as a binary blob 
type. Wang and Shan (2005) employed a MySQL database and 
a Microsoft Access database for their evaluation. Their biggest 
data set consisted of approximately 1,4 million LiDAR points 
from a terrestrial scan of a bridge structure. Encoding was done 
in 47 minutes, and an average window query took 80 seconds. 
The Hilbert space filling curve appears to be a promising 
approach. However, no further evaluation on current technology 
has been conducted to date, and it has not been implemented in 
a vendor system. Additionally, this approach is only suitable for 
accessing raw LiDAR data, while LiDAR data is often 
represented in the form of a TIN for different analysis and 
manipulation operations as outlined in section 3. In such cases 
the approach presented by Wang and Shan (2005) would not be 
directly applicable.  
 

5. DISCUSSION 

The increased availability of highly accurate LiDAR data has 
sparked the desire to harness this data in a broad range of 
applications that go beyond mere visualization and reach into 
supporting true engineering capabilities. Such applications 



include urban planning, for instance for catastrophe prevention 
and evaluation (van Oosterom et al., 2008). 
 
However, from ongoing evaluations of current commercial 
systems it has emerged that before the advantages of LiDAR 
data can be fully exploited, support for the hosting and querying 
of such data has to be significantly improved by SIS vendors 
through the improvement of 3D functionalities. Crucial for the 
evaluation of data are 3D indexing capabilities. To date, 
commercially available indexing techniques consist of quadtree 
indexing in 2D and R-tree indexing (2D and 3D). R-tree indexes 
are based on MBR, which make them difficult to apply on point 
data, as the definition of an MBR on a set of data points is 
rather arbitrary. Additionally, an R-tree approach is 
implemented differently by individual vendors. Section 4.1.1 
presented an R-tree solution based on the PostgreSQL GIST 
index. Oracle Spatial on the other hand, emulates the R-tree 
index through the use of SQL-level tables and recursive queries, 
while the Informix Spatial DataBlade module has low-level 
code libraries incorporated into the system kernel (Francica, 
2007). These different implementation strategies that vendors 
adopt have implications on the performance of the indexing 
technique itself and consequently impair accurate comparison 
between systems.  
 
Research efforts have so far produced a variety of indexing 
techniques for 3D data, such as hybrid approaches and Hilbert 
curves and octrees. A more promising approach that would 
better suit the indexing of 3D point data is the octree, a 3D 
implementation of quadtree. However, none of these approaches 
has yet been implemented within a commercial system.  
 
Before any real progress for employing LiDAR data sets in an 
engineering context can be made, it is necessary that 3D 
approaches for spatial indexing are implemented in vendor 
systems. This should be the main focus for future developments 
in the area of 3D capabilities in SISs. 
 

6. CONCLUSION 

This paper illustrates the need for 3D data sets to offer stronger 
and more thorough capabilities for the support of true 
engineering functionalities with regard to analysis and 
manipulation within urban modeling tools. Employing, for 
instance LiDAR data, within the context of urban planning 
opens a wide range of possibilities for meaningful applications, 
such as studying the effect of new features within an urban 
environment, while considering its true 3D effect on the 
surrounding area.  
 
A clear trend towards supporting these new 3D data sets can be 
identified, as more SIS vendors provide 3D functionalities in 
the form of new volumetric feature types that go beyond 2.5D 
technology, such as TENs. 
 
Despite the current lack for thorough support for 3D 
functionalities, much on-going research in this area aims to 
overcome the current difficulties, and it will be interesting to 
see, which techniques will be successful in being adopted by 
SIS vendors in the future. 
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