
STORAGE, MANIPULATION, AND VISUALIZATION OF LIDAR DATA

B. Schön a, M. Bertolottoa, D.F. Laefer b,*, a, Seán W. Morrish b

a UCD, School of Computer Science & Informatics, Belfield, Dublin 4, Ireland - (bianca.schoen,

michela.bertolotto)@ucd.ie
b UCD, Urban Modelling Group, School of Architecture, Landscape & Civil Engineering, Newstead, Belfield, Dublin

4, Ireland - (debra.laefer, sean.morrish)@ucd.ie

KEY WORDS: Spatial Information Systems, LiDAR, three-dimensional indexing techniques

ABSTRACT:

In recent years, three-dimensional (3D) data has become increasingly available, in part as a result of significant technological
progresses in Light Detection and Ranging (LiDAR). LiDAR provides longitude and latitude information delivered in conjunction
with a GPS device, and elevation information generated by a pulse or phase laser scanner, which together provide an effective way
of acquiring accurate 3D information of a terrestrial or manmade feature. The main advantages of LiDAR over conventional
surveying methods lie in the high accuracy of the data and the relatively little time needed to scan large geographical areas. LiDAR
scans provide a vast amount of data points that result in especially rich, complex point clouds. Spatial Information Systems (SISs)
are critical to the hosting, querying, and analyzing of such spatial data sets. Feature-rich SISs have been well-documented. However,
the implementation of support for 3D capabilities in such systems is only now being addressed. This paper analyzes shortcomings of
current technology and discusses research efforts to provide support for the querying of 3D data records in SISs.

1. INTRODUCTION

1.1 Motivation

True three-dimensional (3D) support for spatial data has only
recently been addressed in Spatial Information Systems (SISs).
Examples include ESRI’s ArcGIS geo-database with its support
for two-and-a-half dimensions (2.5D) in its Digital Elevation
Model (DEM) and Triangular Irregular Network (TIN) and the
more recent development of a Terrain feature class and support
for 3D objects and buildings with its multipatch feature class.
These new achievements towards multi-dimensional data
representation allow for a high level of accuracy, with regard to
feature visualization, as well as empowering applications that
employ this enhanced information level.

However, current technology has only begun to exploit the
potential richness, because true 3D support is presently rather
static, as current SISs only offer capabilities for hosting of 3D
data and fall short of supporting meaningful analysis of these
vast data sets. For example, although most SISs provide the
functionality to create TINs from LiDAR point clouds, these
TINs cannot be updated or manipulated efficiently. This
limitation significantly restricts the potential for harnessing
these data sets for integrated and dynamic urban planning, as
changes cannot be easily implemented on the environment, and
subsequently, they cannot be analyzed for decision making.

In addition to the inflexibility of TIN creation, 3D indexing
techniques have yet to be fully incorporated. The original R-
tree, for instance, is based on a hierarchical structure of
minimum bounding rectangles (MBRs) that divide the space
along the x- and y-axes. Important height information provided
by 3D data is, thus, ignored. This paper analyses and discusses
efforts to date made in the area of indexing of 3D data sets in
SISs.

1.2 Related Work

Recently, some Geographic Information Systems (GISs) and
Spatial Database Management Systems (SDBMSs) vendors
have extended their technologies to integrate true 3D features.
This is largely driven by the increased availability of 3D data
(e.g. from aerial and terrestrial LiDAR). A 3D spatial system
must support 3D data types, such as point, line, surface and
volume in 3D Euclidean space. Such data types are based on a
3D geometric data model (i.e. vector and/or raster data with
underlying geometry and topology). A 3D spatial system must
also offer operations and functions embedded into its query
language that can operate with its 3D data types (Bruening et
al., 2004). In order to query data efficiently, it is crucial to apply
a suitable index as the entire database record would otherwise
have to be traversed during even the most rudimentary of
queries. Considering that aerial LiDAR data, for instance, easily
produces approximately 280,000,000 data points per square
kilometre (Hinks et al. 2007), any query would take a
considerable amount of time.

Support for two-dimensional (2D) feature types and indexing
techniques in systems dealing with spatial data sets has been
well documented and exploited commercially. The most popular
and enduring indexing technique in this context is Guttman’s R-
tree (Guttmann, 1984), which finds application in most SDBMs,
such as PostGIS and Oracle Spatial. R-tree is based on MBRs
and the 3D extension consists of minimum bounding boxes
(MBB). However, R-tree techniques are often low in efficiency,
as sibling nodes might overlap. Additionally, nodes are
generally uneven in size (Qing et al., 2007).

Another popular spatial index is the so called quadtree (Samet,
2006), which aims to decompose the space into 2D cells and is
implemented, for example in Oracle Spatial. Octrees are a 3D
extension of quadtrees.

This paper discusses these and other relevant indexing
techniques, as well as their implementation in current SISs. As
our focus is on LiDAR data manipulation, we investigate the
challenges imposed by the desire to harness the full potential of
3D data.

1.3 Overview

This paper first presents how spatial data is hosted in SISs
(section 2) and illustrates how new developments, specifically
how the ISO standard SQL:1999 led to new improvements
towards 3D support in GISs and SDBMSs. Additionally, new
data types in GISs and SDBMSs are discussed.

Section 3 discusses how spatial data have traditionally been
employed for visualization through Digital Elevation Models
(DEMs). Challenges that need to be solved in order to empower
these structures in a true engineering context are discussed.

Next, section 4 peresents the indexing of spatial data. Indexing
is crucial in order to facilitate efficient querying of data stored
in a SIS. Vendor solutions are presented as well as current
research achievements for efficient data analysis.

2. HOSTING SPATIAL INFORMATION

Since the 1960s, GISs have been used for the hosting of spatial
data. GISs consider both what an object is and where it is
located. Early systems utilized a distinct file-based system for
representing spatial features and the related attribute
information in both vector and raster formats. These early
systems did not easily integrate with external database
components. GIS vendors have recently facilitated the
integration with several commercial database tools but maintain
a loosely coupled approach, where proprietary formats are used
to store the geometry of geographical features. These are then
linked to attribute information stored in external database tables.

Later, an integrated approach was developed that stores the
spatial component (the so called spatial extent) together with the
attribute data within the same database table. This new approach
resulted in the in so-called SDBMSs.

Both GIS and SDBMS technologies have, to date, largely relied
on 2D data manipulation. The advent of the ISO standard
SQL:1999 (ISO/IEC，1999) facilitated the extensibility of
relational Database Management System (RDBMS) (and their
object-relational versions), through mechanisms that allowed
new types and operations to be added. These were developed by
adding new Abstract Data Types (ADTs). ADTs have the
capability to include methods for storing the different types of
geometry and object-relational database schemata to be
modelled. Advances regarding support for 3D spatial data in
GISs and SDBMSs that could be used for storing point cloud
data are presented in the following sections.

2.1 3D Geographic Information Systems

Support for 2D feature types and indexing techniques in
systems dealing with spatial data sets has been well
documented. However, as a result of the increasing availability
of 3D data, current systems aim for the better integration of 3D
data types and offer support for features and queries. In the
following, ESRI’s geo-database is presented as an example of
developments towards 3D support in GISs.

2.1.1 Multipatch

The ESRI geo-database models support for 3D objects in a
feature class called “multipatch”, which is a geometry type
within the ESRI database (ESRI，2008). Multipatch is
constructed much like the OpenGL 3D primitive triangle, in that
it consists of strips and fans and defines an object’s boundaries
through triangular faces.

Multipatches can be used in a variety of applications, generally
to represent geographic objects similar to cubes and spheres, or
real-world features, such as buildings and trees, where the 3D
capability is vital for the whole application. Real-life scenarios
include, for instance, employing multipatch during a modelling
framework for the representation of 3D archaeological intra-site
research (Katsianis et al., 2007).

Multipatch also finds application in areas, where 3D modelling
is an important part of a project management workflow. Bansal
and Pal (2008), for instance, describe a system that visualizes
and reviews construction production schedules. Their system
strives to provide a four-dimensional (4D) project management
view that combines 3D models (constructed of multipatches)
and a project management schedule in GIS. The representation
of features in 3D is often crucial, in order to present a complete
picture for decision-making. Ford (2004) presents a system that
employs multipatch in a system designed for the oil company
Shell. This system integrates both information about the
surface, as well as subsurface of multiple petroleum datasets. As
multipatch provides the functionality to store these features in a
3D type, it facilitates further analysis for decision making. The
following section discusses how SDBMS strive to provide true
3D support for hosting and analyzing spatial data.

2.2 3D Spatial Database Management Systems

Traditional RDBMSs were not designed for the storage of
spatial data. Recently, RDBMS have been enhanced with object
oriented capabilities and generated the new object-relational
DBMS (ORDBMS). Many were further extended to incorporate
spatial functionality.

The functionality to handle spatial data within the Oracle
RDBMS was developed for the first time as an additional
modification to Oracle 4 by the Canadian Hydrographic
Service. Since Oracle 8i the spatial extension (Oracle Spatial) is
integrated with the Oracle database package. Initially only 2D
functionality was available (Kothuri et al., 2007). However, in
Oracle Spatial 11g, true 3D types and a 3D spatial indexing
mechanism are provided. In particular, support for LiDAR data
storage has been incorporated. This will be further discussed in
sections 2.2.1 and 4.

Another popular SDMBS, which also provides 3D support, is
PostGIS, which is an initiative to extend the open source
RDBMS PostgreSQL with spatial functionalities. PostGIS is an
implementation of the Open Geospatial Consortium’s (OGC)
SQL specification for simple features (OGC, 2008). PostGIS
follows the same approach as Oracle, which is to extend a
traditional DBMS with functionalities to manage spatial data.
PostGIS is a spatial extender for the open source DBMS
PostgreSQL. Seven different geographic data types are
implemented in PostGIS: POINT, LINESTRING, POLYGON,
MULTIPOINT, MULTISTRING, and MULTIPOLYGON (a
collection of different polygon objects), and
GEOMETRYCOLLECTION (a collection of elements, such as
points, lines and polygons). Each can be 3D, and users can mix

data from different sources, as each record has its own Spatial
Reference ID (SRID) (ISO, 2003). Additionally, PostgreSQL
offers the opportunity to implement custom data types, as an
extension to a native data type. The same mechanism
theoretically works within PostGIS. However, little has been
published on this issue. Furthermore, PostGIS does not natively
support 3D indexing or a point clouds as a data type.

Microsoft recently included mechanisms for the hosting and
querying of spatial data by integrating spatial tools into their
SQL Server 2008 (Microsoft, 2007). However, these efforts
currently only support 2D spatial data and will, therefore, not be
discussed any further within the scope of this paper. Other
vendors have also provided spatial extenders for 2D spatial data
to their database. Examples include MySQL Spatial Extensions,
IBM’s DB2 Spatial Extender, and IBM’s Informix Spatial
DataBlade module.

The main advantage of storing attributional and spatial data
together in one table, within the SDBMS, is that both data types
can be queried in the Structured Query Language (SQL). SQL is
commonly used in the area of DBMSs in order to access
information about the data. An obvious choice would be to
exploit this recently provided extended functionality for LiDAR
data management in Oracle Spatial 11g.

The next sections provide an overview of how the SDBMs
Oracle Spatial 11g and PostGIS represent 3D spatial data.

2.2.1 3D Spatial Data in Oracle Spatial 11g

Oracle Spatial for Oracle 11g stores geometric vector data in the
SDO_GEOMETRY data type. SDO_GEOMETRY supports the
data types Point, Line String, Polygon (Area), Polygon with a
hole, and Collection in both 2D and 3D. Those limited to 2D are
Compound Line String and Compound Polygon. The
exclusively 3D forms are Composite Surface, Simple Solid,
Composite Solid, and Collection (Oracle, 2007).

Within Oracle Spatial, the topology model also supports
hierarchical features in a bottom-up manner (i.e. a new feature
layer can be derived from a previous feature layer constructed
from the primitive elements, such as nodes, edges and faces).
Oracle facilitates this by setting a feature ID within the
SDO_TOPO_GEOMETRY constructor. The first feature layer
is called a Level-0 feature. The feature layer derived from it is
called a Level-1 feature. In general terms, a Level-n feature is
derived from a Level-(n-1) feature.

Raster data is stored in Oracle Spatial 11g in the
SDO_GEORASTER data type, which represents an n-
dimensional matrix of cells. The SDO_GEORASTER consists
of RASTERTYPE, SPATIALEXTENT,
RASTERDATATABLE, RASTERID and METADATA.
Among other things, the RASTERTYPE specifies the
dimension of the data, which currently only supports up to two
dimensions.

Within Oracle 11g, the Spatial extender provides a native type
for the storage of point cloud data, called SDO_PC. As part of
this, metadata associated with the point cloud is stored in a base
table, whereas the actual point cloud data is stored in a different
table. Individual points within the point cloud are divided into
subsets and then loaded into multiple rows, with the points
stored as a BLOB data type (Kothuri et al., 2007).

Kothuri et al. propose to load the point cloud data first into a
table of the following structure:

Name Type
RID VARCHAR2(40)
VALUE1 NUMBER
VALUE2 NUMBER
VALUE3 NUMBER
Table 1. Structure Source Table

This table need not be a physical table, but could be an external
table interface. The base table contains only one column, which
contains the point cloud data type. The actual data is stored in
the block table in the following format:

Name Type
ptn_id NUMBER
point_id NUMBER
rid VARCHAR(24)
value1 NUMBER
value2 NUMBER
value3 NUMBER
Table 2. Structure Block Table

“pnt_id” in this set up points to a particular block and
“point_id” refers to its offset for LiDAR data management.

A crucial problem is how quickly a representative 3D set of
point cloud data can be loaded into the database. As part of the
on-going research in this area, the authors loaded a set of
approximately 18 million points (approximately 700 MB) from
a LiDAR point cloud. This required 20min13sec to load
(computer configuration: Intel Duo CPU at 2.4GHz, 4GB RAM,
64bit windows vista). However, a typical point cloud commonly
is 1-3 orders of magnitude larger. Thus, this issue needs further
investigation.

2.2.2 3D Spatial Data in PostGIS

The open source community developed PostGIS as an
alternative tool for handling spatial data. PostGIS is an
implementation of the OGC Simple Features for the SQL
specification (OGC, SFS 1.2 2006). PostGIS follows the same
approach as Oracle, which is to extend a RDBMS with
functionalities to manage spatial data. PostGIS is a spatial
extender for the open source RDBMS PostgreSQL.

Seven different geographic data types are implemented in
PostGIS: POINT, LINESTRING, POLYGON, MULTIPOINT,
MULTISTRING, and MULTIPOLYGON (a collection of
different polygon objects), and GEOMETRYCOLLECTION (a
collection of elements, such as points, lines and polygons). Each
can be 3D, and users can mix data from different sources, as
each record has its own Spatial Reference ID (SRID) (Ramsey,
2008). Additionally, PostgreSQL offers the opportunity to
implement custom data types, as an extension to a native data
type. The same mechanism theoretically works within PostGIS.
However, little has been published on this issue. The challenge
would be to register the new data type with the
geometry_columns table that is used within PostGIS, in order to
locate tables that contain geometry types.

3. DIGITAL ELEVATION MODELS

The previous section outlined how LiDAR data could be stored
in GISs and SDBMSs, where spatial data can be represented by

feature classes such as ESRI’s multipatch or new types, such as
Oracle’s SDO_PC. This section discusses ways of representing,
manipulating, and visualizing LiDAR data by means of DEMs.

DEMs are a commonly used data representation, in the area of
spatial research. They are particularly popular for visualization
of 3D content and can be employed for the surface visualization
of LiDAR data. DEMs are digital representations of surfaces. A
DEM forms the basis for a DTM or a Digital Surface Model
(DSM). A DSM contains both location and elevation
information, as well as metadata information, about urban
features. A DTM is generated by digitally removing all of the
urban features within the DSM, in order to expose the
underlying terrain. A DEM is usually a raster model (regular
spaced grids) or a TIN. Each cell within the raster data model
has a value that corresponds to its elevation.

DEM data sets are commonly collected using remote sensing
technologies. In addition to LiDAR, interferometric synthetic
aperture radar is common, where two passes of a radar satellite
produce a DEM with a resolution of approximately ten meters.
DEMs can also be generated by using digital image correlation,
where two optical images that are taken from different angles
are correlated (Wilson and Gallant, 2000).

3.1 Data Acquisition and DEM generation

Technology such as LiDAR challenges SDBMSs, with respect
to the sheer volume of data points referred to collectively as a
point cloud. Point clouds raise the question of how to allocate
these sets of points to feature types within a database.
Additionally, point cloud data are collected by a scanner and
then transferred into a format that is proprietary to the scanner
manufacturer. Figure 1 presents an area in Dublin city centre,
illustrated as raw point clouds.

Figure 1. Point Cloud of a part of Dublin City Centre

The image presents an aerial LiDAR scan of Dublin’s city
centre in a resolution of 225 points per square meter and a
vertical resolution of 15cm. Conventional aerial LiDAR data
provided excellent coverage for roof data. Particularly in urban
areas, aerial LiDAR provided only inferior surveying data
points for facades. However, an alternative flight pattern has
been presented that significantly improves the quality of facades
in urban aerial, through which LiDAR scans begin to rival
terrestrial data quality at a fraction of the time and cost, thus
providing further motivation for 3D data manipulation abilities
(Hinks et al., 2007).

The quality of a DEM is significantly determined by the
roughness of the terrain, the sampling density that is determined
by the data collection method, the resolution of the grid, the
choice of interpolation algorithm, the vertical resolution, and the
choice of terrain analysis algorithm. Figure 2 presents a DEM of
a part of Dublin Ireland’s city centre created from a similar
LiDAR point cloud dataset as figure 1.

Another data model for the representation of spatial data, which
is also appropriate for LiDAR data, is the TIN. TINs are
discussed in the following section.

Figure 2. DEM of Dublin's City Centre

(adapted from Schön et al., 2009)

3.2 Triangular Irregular Networks

TINs are a vectorial representation of DEMs. A TIN is vector-
based digital, geographic model created by triangulating a set of
vertices that are usually provided by a DEM (Pu, 2005). A TIN
is also a network of vertices, the so-called mass points. Mass
points each have coordinates in 3D and are connected via edges
to generate a triangular tessellation.

Figure 3. TIN of Dublin's City Centre

(adapted from Schön et al., 2009)

A TIN is constituted of irregularly distributed nodes and lines
with 3D coordinates (x,y,z) that are arranged in a network of
non-overlapping triangles. A major difference between a raster
DEM and a TIN lies in the distribution of points. In a raster,
DEM points are arranged regularly, whereas in a TIN, an
algorithm determines the necessary points for terrain
representation. Consequently, with a TIN fewer points need to
be stored in a database than with a DEM (Franklin, 1994).
Integrated TINs take this one step further and incorporate
feature data into the tinning process (Stanzione and Johnson,
2007). Like the DEM, a TIN offers support for 2.5D. A TIN is
typically constructed using Delaunay triangulations, which
generate triangles that are as equiangular as possible, in order to
avoid long and thin triangles. This property reduces
approximation problems. Three-dimensional visualization of
TIN data is readily generated by rendering its triangular facets.
The SIS vendors ESRI and Oracle both provide built in support
for TINs. A TIN of a part of Dublin’s city centre is presented in
figure 3.

TINs only provide 2.5D support and, thus, triangulate surfaces.
An interesting approach is to extend this principle into 3D space
and, thereby, provide volumetric partitioning of space in
Tetrahedral Irregular Networks (TENs) (Penninga and van
Oosterom, 2008). In a TEN, the Delaunay triangulation is
extended to another point in order to construct a 3D object.
Features are represented by their boundaries through a TIN and
added one after the other into the TEN. Overlap queries are,
thus, supported by the TEN’s internal neighborhood search. The
TEN is stored in this approach in a single column database
table. Constraints and topologies are derived in views, which
allows for relatively easy update functionality. Penninga and
van Oosterom (2008) identify that the building of simplexes
results in a lot of reference data to vertexes. Building a spatial
index on top of this would cause a significant increase in
storage utilization. They suggest using the geometry itself,
instead, as a unique identifier in the form of a concatenated
coordinate triple. Sorting this triple can be seen as a spatial
index, while deleting the original table. However, due to very
large data set, a secondary R-tree index would be useful and can
easily be constructed as the code contains the geometry for
which a Minimum Bounding Box (MBB) can be constructed.
The principle of extending a 2D R-tree based on MBRs to 3D
will be further explained in section 4. This structure is very
efficient in terms of updates, as updates have to be applied only
to the one column tetrahedron table. All updates performed on
the lower levels propagate from this level.

The following section discusses approaches of indexing
techniques for 3D data, regarding both vendor and research
methodologies.

4. INDEXING 3D SPATIAL DATA

Indexing in a database is used to accelerate operations
performed on the dataset. A spatial index organizes the space
and the objects within this space in a particular manner, so that
a spatial query or a spatial operator does not have to traverse the
complete table to retrieve specific data.

SDBMS vendors typically offer two types of spatial indexes:
quadtrees (Samet, 2006) and R-trees (Guttmann, 1984). Several
variations of these index structures have been developed in the
literature (Samet, 2006). R-trees are particularly popular with
SDBMS vendors: most available indexes are either based on R-
trees or use R-trees directly through a dedicated data structure.
Alternatively, they map spatial objects into one-dimensional
space in order to use a standard index, such as a B-tree (Bayer,
1971). In 2D, an R-tree is constructed by enclosing an object
into an MBR (Guttmann, 1984). The 3D extension of a 2D R-
tree encloses an object into a MBB.

Another approach to extend 2D spatial indexing to 3D is the
development of an octree, which is based on a quadtree
structure (Samet, 1989). In a quadtree data structure each node
can have up to four child nodes and by doing so decomposes the
space into 2D cells. Contrary to the quadtree, each node in an
octree can have up to eight child nodes and, thus, divides the
space into 3D cubes. However, this approach is not
implemented presently within any commercial system.

The following sections present and discuss various approaches
for advancing indexing techniques into the 3D space, and
discuss both, vendor solutions and research achievements.

4.1 Vendor Approaches for 3D Indexing

The R-tree structure was developed to overcome shortcomings
of existing indexing structures at the time (Guttmann, 1984).
Cell structures, for instance, are not dynamic, as the cell size has
to be decided in advance. K-d trees, on the other hand, are
designed particularly for point data (Bentley, 1975) and use
paged memory.

Indexing is implemented differently by particular vendors,
which might be a function of historical product development,
where the current spatial index has evolved out of an existing
technology. In the following, current vendor solutions are
presented, focusing on SDBMSs that provide 3D support

PostgreSQL supports three indexing structures: B-tree for data
that can be sorted along one axis; R-tree for spatial data, which
is then broken up into rectangles, sub-rectangles and sub-
rectangles; and the Generalized Search Tree (GiST) index, a
“template data structure for abstract data types” that offers more
robust support for spatial indexing than the PostgreSQL R-tree
implementation (Geo-Consortium, 2007). GiST is a template for
implementing other indexing methods, such as B-tree and R-
tree, and is a balanced tree structure that contains <key,
pointer> pairs. The key is a member of a user-defined class that
represents an attribute valid for all items that the pointer
element can reach. A key in an R-tree like GiST refers to a
bounding box. For instance: all items that the pointer reaches
are in Ireland. PostGIS consequently offers an R-tree index on
top of GiST (Ramsey, 2008).

Figure 4. PostGIS index implementation (Arens et al., 2005)

Compared to a traditional R-tree index, a GiST index is “null
save” (i.e. GiST can index columns that contain null values). In
addition to this, PostgeSQL allows a page size of 8K; R-trees
fail, when trying to index GIS data that exceeds 8K. As a
consequence of this, GiST supports “lossiness”, which means
that only critical parts of an object (i.e. the bounding boxes) are
stored in the index (Ramsey, 2008). MS SQL also works with a
limit of 8K for page sizes (they are called blocks in Oracle),
whereas Oracle offers a variable page size of 2, 4, 8 or 16K.
PostGIS developers plan to soon provide 3D indexing on the
basis of this structure.

Oracle Spatial 11g also provides a 3D spatial index on the basis
of an R-tree and a partitioning function for logical tables, which
includes their spatial indexes. Partitioning delivers significant

performance and manageability advantages. Additionally, the
creation of a spatial index can be performed in parallel and
spatial queries themselves can be executed in parallel. This is
particularly useful for “nearest neighbor”, “within distance”,
and “relate” spatial queries (Oracle, 2007).

Oracle Spatial also offers a quadtree based index. As part of the
on-going work, a comparison of a LiDAR dataset of 50,000,000
points showed that the 3D R-tree takes approximately 5 times
longer in the creation than quadtree [tiling level 8: 10,507sec;
R-tree: 51,015sec on a computer with Intel Pentium 4 CPU 3.2
GHz, 2GB DDR2 RAM, 7.200RPM 300 SATA hard drive on
Oracle 11g 32 release 11.1.0.6]. However, when performing an
update operation, in the form of an insert of 20,000 points, the
R-tree performs approximately 2.5 times faster (quadtree:
675sec; R-tree: 267sec; computer configuration as before). In
addition to this, the R-tree is approximately 20 times more
storage efficient than the quadtree (quadtree: 22,725MB; R-tree:
2,060MB). Table 3 illustrates our results.

Operation Quadtree (tiling level 8) R-tree
Insert 10,507 sec 51,015 sec
Update 675 sec 267 sec
Storage 22,725 MB 2,060 MB
Table 3. Performance Comparison Quadtree and R-tree

However, quadtree indexing in Oracle does not support 3D data.
Section 4.2, therefore, examines approaches to upgrade a
quadtree to 3D. The results presented here are comparable with
an evaluation presented in 2002 (Kothuri et al., 2002), who used
a 2D R-tree and the quadtree on two 2D GIS data sets (The US
Block Group data set contains 2D polygons, and the US
Business Area data set contains 2D data points). A similar
effect could be found in this evaluation (i.e. the R-tree is slower
in the creation of the index but uses less storage space).
However, Kothuri et al. found that the speed of insert update
operations greatly depends on the kind of geometry inserted, as
the quadtree performs significantly better on an insert of small
polygons, but significantly worse than the R-tree during an
insert operation of large polygons. In the case of simple point
cloud updates, the R-tree performed better than the quadtree. R-
tree can thus be considered both data and distribution
dependent.

Although the R-tree appears much more storage efficient than
the quadtree, R-trees can also become very resource intensive.
For example, in 2D every node split in an R-tree of N number of
nodes might result in 2N – (N+1) = N – 1 empty entries (Huang
et al., 2001). Huang et al. (2001) conducted experiments that
showed that an R-tree only achieves around 70% storage
utilization and proposed a new approach, called the compact R-
tree. However, to-date there have been no studies evaluating
this approach for the 3D case.

4.2 Research Approaches for 3D Indexing

The previous section presented vendor specific indexing
solutions for LiDAR data. The amount of vendors that support
true 3D data has so far been limited. Consequently, efforts
towards amending spatial indexing for 3D data in the research
community are of high interest. This section explores recent
advancements regarding R-tree, with a view to establishing a
suitable approach for indexing vast point cloud data. None of
the approaches described in this section are currently available
commercially.

One approach is the called V-reactive tree (Li et al., 2001),
which is based on combining R-trees (van Oosterom, 1990)
with an importance value. The V-reactive tree is a 4D, R-tree
structure optimized for 3D visualization. To date, the structure
has not been tested within the context of urban planning, nor has
it been tested on large-scale, point cloud data sets. Some
interesting work has, however been done on extending quadtree
based indexes to work with the TIN structure (De Floriani et al.,
2008). They argue that their mechanism could be generalized to
support TENs on an octree basis, in order to support true 3D
functionality.

A hybrid approach for the indexing of LiDAR data is proposed
in (Hua et al., 2008) and is specialized for point cloud
visualization. The basic principle of this approach is to combine
an octree with a k-d tree, thereby building a local k-d tree at
each octree level node. Although interesting, this approach has
so far only been evaluated for the case of visualization speed of
point cloud data. For a point cloud of around 100,000 points a
rendering speed of 30 seconds was achieved (Hua et al., 2008).

Contrary to the approaches presented so far, Boubekeur et al.
(2006) emphasize the fact that structures based on the
hierarchical space division, such as quadtree and k-d tree, are
critical for surface representations, as they are purely volume
based. Therefore, they suggest a combined approach, called the
Volume-Surface tree (VS tree), which combines a global 3D
decomposition of space on a coarse subdivision level and a 2D
decomposition of space near the surface, near the finer
subdivision levels. The VS-tree, therefore, combines “an octree
and a set of quadtrees to describe a discrete 3D surface”. This is
achieved by switching back to quadtree during the recursive
split performed in an octree, as soon as a certain “height field”
has been reached. This method however, has not yet been tested
on large data sets or ones with great elevational change.

An interesting approach is to index LiDAR data with a Hilbert
space filling curve, which is a recursively performed space
partitioning process (Wang and Shan, 2005). In this approach,
the space is divided into cells, according to a pre-specified,
maximum number of points per cell. If the number of points per
cell exceeds this predefined limit, the cell is split into a sub-cell.
This process is repeated until no cell exceeds the predefined
threshold. After this process, the points are stored in a database,
with each cell being represented by one record, as a binary blob
type. Wang and Shan (2005) employed a MySQL database and
a Microsoft Access database for their evaluation. Their biggest
data set consisted of approximately 1,4 million LiDAR points
from a terrestrial scan of a bridge structure. Encoding was done
in 47 minutes, and an average window query took 80 seconds.
The Hilbert space filling curve appears to be a promising
approach. However, no further evaluation on current technology
has been conducted to date, and it has not been implemented in
a vendor system. Additionally, this approach is only suitable for
accessing raw LiDAR data, while LiDAR data is often
represented in the form of a TIN for different analysis and
manipulation operations as outlined in section 3. In such cases
the approach presented by Wang and Shan (2005) would not be
directly applicable.

5. DISCUSSION

The increased availability of highly accurate LiDAR data has
sparked the desire to harness this data in a broad range of
applications that go beyond mere visualization and reach into
supporting true engineering capabilities. Such applications

include urban planning, for instance for catastrophe prevention
and evaluation (van Oosterom et al., 2008).

However, from ongoing evaluations of current commercial
systems it has emerged that before the advantages of LiDAR
data can be fully exploited, support for the hosting and querying
of such data has to be significantly improved by SIS vendors
through the improvement of 3D functionalities. Crucial for the
evaluation of data are 3D indexing capabilities. To date,
commercially available indexing techniques consist of quadtree
indexing in 2D and R-tree indexing (2D and 3D). R-tree indexes
are based on MBR, which make them difficult to apply on point
data, as the definition of an MBR on a set of data points is
rather arbitrary. Additionally, an R-tree approach is
implemented differently by individual vendors. Section 4.1.1
presented an R-tree solution based on the PostgreSQL GIST
index. Oracle Spatial on the other hand, emulates the R-tree
index through the use of SQL-level tables and recursive queries,
while the Informix Spatial DataBlade module has low-level
code libraries incorporated into the system kernel (Francica,
2007). These different implementation strategies that vendors
adopt have implications on the performance of the indexing
technique itself and consequently impair accurate comparison
between systems.

Research efforts have so far produced a variety of indexing
techniques for 3D data, such as hybrid approaches and Hilbert
curves and octrees. A more promising approach that would
better suit the indexing of 3D point data is the octree, a 3D
implementation of quadtree. However, none of these approaches
has yet been implemented within a commercial system.

Before any real progress for employing LiDAR data sets in an
engineering context can be made, it is necessary that 3D
approaches for spatial indexing are implemented in vendor
systems. This should be the main focus for future developments
in the area of 3D capabilities in SISs.

6. CONCLUSION

This paper illustrates the need for 3D data sets to offer stronger
and more thorough capabilities for the support of true
engineering functionalities with regard to analysis and
manipulation within urban modeling tools. Employing, for
instance LiDAR data, within the context of urban planning
opens a wide range of possibilities for meaningful applications,
such as studying the effect of new features within an urban
environment, while considering its true 3D effect on the
surrounding area.

A clear trend towards supporting these new 3D data sets can be
identified, as more SIS vendors provide 3D functionalities in
the form of new volumetric feature types that go beyond 2.5D
technology, such as TENs.

Despite the current lack for thorough support for 3D
functionalities, much on-going research in this area aims to
overcome the current difficulties, and it will be interesting to
see, which techniques will be successful in being adopted by
SIS vendors in the future.

7. REFERENCES

References from Journals:
Bansal, V.K., Pal, M., 2008. Construction schedule review in
GIS with a navigable 3D animation of project activities.
International Journal of Project Management.

Boubekeur, T., Heidrich, W., Granier, X., Schlick, C., 2006.
Volumne-Surface Trees, Eurographics, vol. 25 (3).

Guttmann, A., 1984. R-tree: A dynamic index structure for
spatial searching. SIGMOD Record. ACM Press, vol. 14 (2),
pp. 47 – 57.

Katsianis, M., Tsipidis, S., Kotsakis, K., Kousoulakou, A.,
2007. A 3D digital workflow for archaeological intra-site
research using GIS. Journal of Archaeological science, vol. 35,
pp.655 - 667.

Penninga, F., van Oosterom, P.J.M., 2008. A simplicial
complex-based DBMS approach to 3D topographic data
modelling. International Journal of Geographical Information
Science, vol. 22 (7), pp. 751 - 779, Taylor & Francis.

Schön, B., Laefer, D.F., Morrish, S.W., Bertolotto, M., 2009.
Three-dimensional Spatial Information Systems: State of the
Art Review. Recent Patents on Computer Science, vol. 2, pp. 21
– 31.

Shiode, N., 2001. 3D urban models: recent developments in the
digital modeling of urban environments in three dimensions.
GeoJournal , vol. 53 (3), pp. 263-269.

References from Conference Proceedings:
Bayer, R., 1971. Binary B-Trees for Virtual Memory. ACM
SIGFIDET Workshop, pp. 219 – 235. San Diego, California,
US.

De Floriani, L., Facinoli, M., Magillo, P., Dimitri, D., 2008. A
Hierarchical Spatial Index for Triangulated Surfaces.
International Conference on Computer Graphics Theory and
Applications, pp. 86 – 91.

Ford, A., 2004. The visualisation of integrated 3D petroleum
datasets in ArcGIS. 24th ESRI User Conference, pp. 1 – 11.

Hinks, T., Carr, H., Laefer, D., 2007. Impediments to vertical
data capture from Aerial LiDAR for Three-dimensional
Building Extraction. Improving Infrastructure Worldwide:
Bringing People Closer. IABSE, 8 pp.

Kothuri, R.K.V., Ravada, S., Abugov, D., 2002. Quadtree and
R-tree Indexes in Oracle Spatial: A Comparison using GIS
Data. ACM SIGMOD, pp. 546 - 557.

Li, J., Jing, N., Sun, M., 2001. Spatial Database Techniques
Oriented to Visualization in 3D GIS. In Proceedings of 2nd
International Symposium on Digital Earth, 24-28.06.2001,
Fredericton, New Brunswick, Canada.

Liu, H., Huang, Z., Zhan, Q., Lin, P., 2008. A Database
Approach to Very Large LiDAR Data Management. In ISPRS
2008, pp. 463 – 468.

Stanzione, T., Johnson, K., 2007. GIS enabled Modeling and
Simulation (GEMS). ESRI UC 2007, ESRI.

Wang, J., Shan, J., 2005. LiDAR Data Management with 3-D
Hilvert Space-Filling Curve. Annual ASPRS Conference,
Baltymore, USA.

References from Books:
Abdul-Rahman, A., Pilouk, M., 2008. Spatial Data Modeling
for 3D GIS. Springer Verlag.

Kothuri, R., Godfrind, A., Beinat, E. , 2007. Pro Oracle Spatial
for Oracle Database 11g. Apress.

Samet, H., 2006. Foundations of Multi-Dimensional and Metric
Data Structures, chapter 1.4. Morgan-Kaufmann.

vanOosterom, P. (ed.), Zlatanova, S. (ed.), Penninga, F. (ed.),
Fendel, E. (ed.), 2007. Advances in 3D Geoinformation
Systems. Lecture Notes in Geoinformation and Cartography.
Springer Verlag.

Wilson, J., Gallant, J., 2000. Terrain Analysis: Principles and
Applications. John Wiley and Sons.

References from Other Literature:
Geo-Consortium, 2007. Introduction to spatial data management
with PostGIS. Presentation slides by the Consulting Centre
Geographic Information Systems.

Franklin, W., 1994. Triangular irregular network to approximate
digital terrain. Section 2.3. Research Interests. Technical report,
Electrical, Computer, and Systems Engineering Dept.,
Rensselaer Polytechnic Institute, Troy, NY, USA.

ISO/IEC, 1999. SQL Framework 9075, International
Organization for Standardization.

ISO, 2003. Geographic information - spatial schema. ISO
19107:2003. International Organization for Standardization.

Microsoft, 2007. Microsoft SQL Server 2008: Product
Overview. White Paper. Microsoft.

Van Oosterom, P.J.M., 1990. Reactive Data Structures for
Geographic Information Systems. PhD thesis, Department of
Computer Science, Leiden University, The Netherlands.

Oracle, July 2007. Oracle Spatial 11g: Advanced Spatial Data
Management for Enterprise Applications.

Pu, S., 2005. Managing Freedom Curves and Surfaces in a
Spatial DBMS. Master Thesis. Delft University of Technology,
The Netherlands.

References from websites:
Bruening M, Zlatanova S., 2004. 3D Geo-DBMS. Directions
Magazine. Retrieved January 2009, from
http://www.directionsmag.com/article.php?article_id=694

ESRI, 2008. ArcGIS Desktop Help 9.2. Retrieved September
18, 2008, from
http://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicNam
e=welcome

Francica, J., 2007. Informix Spatial Data Technology: update
and Positioning. Directions Magazine. Retrieved January 2009,
from
http://www.directionsmag.com/article.php?article_id=2520&trv
=1

OGC, 2008. OGC Abstract Specification. (OGC) Retrieved
September 15, 2008, from OpenGIS Project Document Number
01-101: http://www.opengeospatial.org/standards/as

Ramsey, P., 2008. PostGIS Manual. (Refractions) Retrieved
September 15, 2008, from
http://postgis.refractions.net/documentation/

8. ACKNOWLEDGEMENTS

This work was generously support by Ireland’s National Digital
Research Centre’s grant EoI/0701/008 “Hosting and analysis
capabilities for 3D LiDAR point cloud data”. Data for some of
this work was provided by Science Foundation Ireland’s
sponsored grant 05/PICA/I830 GUILD: Generating Urban
Infrastructures from LIDAR Data.

