AUTOMATED 3D MODELING OF URBAN ENVIRONMENTS

loannis Stamos

Department of Computer Science
Hunter College, City University of New York
695 Park Avenue, New York NY 10065

istamos@hun
http://www.cs.hunter.

KEY WORDS: LIDAR, 3D Modeling, Urban Scenes

ABSTRACT:

ter.cuny.edu
cuny.edu/~ioannis

The photorealistic modeling of large-scale scenes, suahuas structures, requires a fusion of range sensing téofand traditional

digital photography. This paper summarizes the contrimgtiof our

group in that area. We present a system that inesgaaitomated

3D-to-3D and 2D-to-3D registration techniques, with miitwv geometry for the photorealistic modeling of urban snThe 3D
range scans are registered using our automated 3D-to-38iredgpn method that matches 3D features (linear or caguh the range
images. A subset of the 2D photographs are then aligned Wét8D model using our automated 2D-to-3D registration étigor

that matches linear features between the range scans aptdtay

raphs. Finally, the 2D photographs are used to genarsecond

3D model of the scene that consists of a sparse 3D point cfmaduced by applying a multiview geometry (structure-frarotion)

algorithm directly on a sequence of 2D photographs. A nolggdréth

m for automatically recovering the rotation, sgalad translation

that best aligns the dense and sparse models has been @elelbys alignment is necessary to enable the photogragiesdptimally
texture mapped onto the dense model. Finally, we presemgraesgation and modeling algorithm for urban scenes. Theibotion of
this work is that it merges the benefits of multiview geometith automated registration of 3D range scans to produceopbalistic
models with minimal human interaction. We present resutisifexperiments in large-scale urban scenes.

1 INTRODUCTION

The photorealistic modeling of large-scale scenes, suctir-as

important current problem. Some of the systems that combine
3D range and 2D image sensing for 3D urban modeling include
the following: (Friih and Zakhor, 2003, Sequeira and Coresl

ban structures, can be achieved by a combination of range sen2002, NRC, 2008, Zhao and Shibasaki, 2003, Stamos and Allen,

ing technology with traditional digital photography. Lasange
scanners can produce highly-detailed geometry whereasdigr
ital cameras can produce highly-detailed photometric iesaof
objects. Our main focus is the geometric and photorealistic
construction of individual buildings or large urban areathg a
variety of acquisition methods and interpretation teche&) such
as ground-base laser sensing, air-borne laser sensingyaumad
and air-borne image sensing. The ultimate goal is the réaans
tion of detailed models of urban sites, i.e. digital citibg,the
efficient combination of all possible sources of informatidhe
creation of digital cities drives other areas of researchval:
visualization of very large data sets, creation of modedblases
for GIS (Geographical Information Systems) and combimatid
reconstructed areas with existing digital maps. Recemignse
commercial interest for photorealistic reconstructioriof mod-
els is eminent in systems such as Google Earth, or Microgoft V
tual Earth.

3D models of cities can be acquired by various techniqueb suc
as aerial imagery, ground-based laser range-scannirgiirexar-
chitectural CAD modeling, and traditional photogramme#grial-
based methods produce crude box-like models, whereasdroun
based laser range-scanning methods produce highly aecnoat-
els. The latter models though consist of irregular and hegesy

ometry.On the other hand purely image-based approaches hav

presented significant progress, and are now able to prodoce i
pressive 3D models (Pollefeys et al., 2008, Seitz et al.6P@hat
are still inferior to laser-based models. Finally, webduhgplat-
forms (such as Google Earth or Microsoft Virtual Earth), abée

to receive and display light-weight 3D models of urban otgjec
whereas rapid-prototyping machines are able to build suoti-m
els. Therefore, the generation of photorealistic 3D canbéir-
ban sites at various resolutions and from various senserseasy

2002, Zhao et al., 2005).

The framework of our system is shown in Fig. 1. Each of the
framework elements listed below, is a distinct system medtul
Fig. 1.

A set of 3D range scans of the scene is acquired and co-
registered to produce a dense 3D point cloud in a common
reference frame.

An independent sequence of 2D images is gathered, taken
from various viewpoints that do not necessarily coincide
with those of the range scanner. A sparse 3D point cloud is
reconstructed from these images by using a structure-from-
motion (SfM) algorithm.

A subset of the 2D images are automatically registered with
the dense 3D point cloud acquired from the range scanner.

Thecomplete set of 2D images is automatically aligned with
the dense 3D point cloud. This last step provides an integra-
tion of all the 2D and 3D data in the same frame of reference.
It also provides the transformation that aligns the models
gathered via range sensing and computed via structure from
motion.

e Finally, segmentation and modeling of the 3D point clouds
follows.

2 3D MODELING PIPELINE

In this section we present the status of our 3D modeling sys-

tem: 3D-t0-3D Registration (Sec. 2.1). 2D-to-3D registnat
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Figure 1: System framework (Stamos et al., 2008). Seveg#@tered range scans of Shepard Hall (CCNY) constitute ael8b point
cloud modelM,.ng. Shown in the leftmost column. The five white dots correspanthe locations of five of the 26 color images
(shown as thumbnails on top row) that are independentlystegid with the model/ ;.4 Via a 2D-t0-3D image-to-range registration
algorithm. The rightmost image of the second row depict3thenodelM ., produced by SFM. The points af s, as well asll the
recovered camera positions for the sequence of 2D imagepritduced) ., are shown as red dots in the figure. Since SFM does not
recover scaleM q.nge and My, are not registered when brought to the same coordinatersysteshown in the second row. The 3D
range modelM .4 Overlaid with the 3D modely,,, is shown in the third row of the figure after a 3D-range to 30VBiegistration
module aligns them together. The recovered camera positrom SFM can now be used to project the26 color images 8,4,
which now properly sits in thé/,s, coordinate system, to produce the richly textured 3D moBelg] Output) shown in the right
column.



(Sec. 2.2),and 3D modeling (Sec. 2.3). More details cantiedo 2.3 Modeling

on some of our papers: (Stamos et al., 2008, Liu and Stamos,

2007, Chao and Stamos, 2007, Liu et al., 2006, Yu et al., 2008) We have developed novel algorithms (Yu et al., 2008, Chao and
Stamos, 2007, Chen, 2007) for extracting planar, smooth non
planar, and non-smooth connected segments, and then imergin

Our 3D registration techniques are based on automated matcf!! these extracted segments from a set of overlapping range
ing of features (lines, planes, and circles) that are etdthfrom ~ 29€S. Our input is a collection of registered range images. O

range images. We have applied our automated methods fer regiOUtPUt is a number of segments that describe urban entetigs (
tration of scans of landmark buildings. In particular we @ae- facades, windows, ceilings, architectural details). lis thork

quired and registered: interior scans of Grand Central Teahin W€ detect different segments, but we do not yet identify éor r
NYC, Great Hall at City College of New York (CCNY), as well _ogn_lze) them. A flowchart of our current technique can be seen
as exterior scans of St. Pierre Cathedral in Beauvais (Ejanc N Fi9- 2.

Shepard Hall at CCNY, Thomas Hunter building at Hunter Col-
lege, and Cooper Union building (NYC). As a result, all range
scans of each building are registered with respect to ometesl
pivot scan. The set of registered 3D points from fliescans is

2.1 3D-to-3D Range Registration

In addition to segmenting each individual scan, our metlasis
merge registered segmented images. The merging results in ¢
herent segments that correspond to urban objects (e.gddaca

called Myange (Fig. 1). windows, ceilings) of a complete large scale urban scense®a
J on this, we generate a different mesh for each object. In aethod
2.2 2D-t0-3D Image-to-Range Registration ing framework, higher order processes can thus manipld#ts,

) B or replace individual segments. In an object recogniti@me-
We present our automated 2D-to-3D image-to-range regjistra  work, these segments can be invaluable for detecting amgjrec
method used for the automated calibration and registralfam nizing different elements of urban scenes. Results of @mse-

single 2D imagel, with the 3D range model/,u.s.. The com-  tation and modeling algorithms can be seen at Fig. 3.
putation of the rotational transformation betwelgnand M ange

is achieved by matching at least two vanishing points coetput
from I,, with major scene directions computed from clustering
the linear features extracted froM,.,4.. The method is based
on the assumption that the 3D scene contains a cluster aéalert
and horizontal lines. This is a valid assumption in urbamsce
settings.

With this method, a few 2D images can be independently regis-
tered with the modeM q4.. The algorithm will fail to produce
satisfactory results in parts of the scene where there iskad&

2D and 3D features for matching. Also, since each 2D image
is independently registered with the 3D model, valuablerinf
mation that can be extracted from relationships betweer2ihe
images (SfM) is not utilized. In order to solve the aforenamed
problems, an SfM module final alignment module (Stamos ¢t al.
2008, Liu et al., 2006) has been added into the system. Thvese t
modules increase the robustness of the reconstructed naodkl
improve the accuracy of the final texture mapping resulteréh
fore, the 2D-to-3D image-to-range registration algoritisnused

in order to register a few 2D images (five shown in Fig. 1) that
produce results of high quality. The final registration of @D
image sequence with the range modél,..,. is performed after
SfM is utilized.

Pair-wise Registration

¥
Complete Registration
'

Our recent contributions (Stamos et al., 2008, Liu and Ss&amo
2007, Liu, 2007) with respect to 2D-t0-3D registration can b
summarized as follows:

o We gavt? devglt)tpe(jzg yvorklng tsysstgm th(?tlls ab_let to Im.jei:igure 2: Our segmentation and modeling framework (Chen and
pendently register 2D images to 3D models at interactiveg,, s 5405, Chao and Stamos, 2007, Chen, 2007).
rates. This system requires minimal user interaction. Note
that after a few 2D images are registered to the 3D model

the multiview geometry approach (SfM) is utilized for reg- 3 FUTURE WORK

istering all images with the 3D range model.

e The whole space of possible matches between 3D and 2he generated 3D models are complex triangular meshes. Mesh
linear features is explored efficiently. That improves the Simplification is thus important. Unfortunately, simpléibon ap-
possibility of convergence of our algorithm. proaches suffer from the fact that their input is a compédat

mesh. A mesh is a low-level heavy collection of triangleg tha

e Our method utilizes 3D and 2D linear features for matchingdoes not take into account the high-level abstraction ofirb
without significant grouping. This increases the generalit structures. A high-level model should identify facadesordp
of our algorithm since we make fewer assumptions about thgyindows, and other urban entities. An important avenue ef ex

3D scene. Scenes with various layers of planar facades, Qfloration is an automated high-level representation offthal
without clear major facades can thus be handled. 3D urban model.
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Figure 3: (a) Segmentation and modeling result: 15 ranggésaf Grand Central Terminal dataset. Different colorgespond to
different segments that have been automatically extraatetimodeled via the Ball Pivoting algorithm (Bernardini d&dshmeier,
2002). Cylindrical ceiling, planar facades, as well as pthere complex areas (windows, etc.) have been correctlgneated. (b)
Segmentation and modeling result of Cooper Union datasetafge images (one facade is shown). Planar facades, armquesom
window and arch elements have been correctly segmentede, Mt in both (a) and (b) each segment is represented assa den

triangular mesh.



