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ABSTRACT: 
 
Semi-automatic methods are regarded as more practical than automatic methods to obtain and/or update the vector road data. But 
road tracking methods lose their efficiencies when they are applied to track a long straight roads step by step compared to manual 
digitalizing. So an efficient semi-automatic method is proposed in this paper. Particularly, spoke wheel algorithm and region 
growing algorithm are combined together to extract a rectangle corresponding to a short road segment. That above process is 
performed at each pixel along a line segment between two seed points, which derives a number of rectangles. Then statistical 
analysis of histograms of directions and widths of the obtained rectangles is made to determine an optimal rectangle. At last, a 
precise road model is determined by the above optimal rectangle. Extensive experiments show that our method is capable of 
efficiently extracting a straight long road with a high spatial accuracy, even various types of noises existing.  
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1.  INTRODUCTION 

With the increasing availability of commercial high-resolution 
imaging sensors, automatic/semi-automatic interpretation tools 
are needed to efficiently extract road networks with reliable 
spatial accuracy. Actually, automatic/semi-automatic 
extraction of road networks from remotely sensed imagery is 
not only meaningful for cartography and topography, but also 
significant for various applications of geodata such as 
automatically aligning two spatial datasets or automated 
vehicle navigation (Lin, 2009). Despite the fact that much work 
on automatic approaches for road extraction has taken place, 
the desired high level of automation could not be achieved yet 
(Baumgartner et al., 2002). The main problem of a fully 
automatic approach is that it needs some strict hypothesis of 
road characteristics, but road properties vary considerably with 
ground sampling distances (GSD), road types, and densities of 
surrounding objects, light conditions etc (Zhou et al., 2006). 
Therefore, the quality of automatic extraction is usually 
insufficient for practical applications. On the other hand, semi-
automatic methodologies are considered to be a good 
compromise between the fast computing speed of a computer 
and the efficient interpretation skills of a human operator 
(Zhou et al., 2006), and quite a number of promising 
approaches for semi-automatic road extraction have been 
proposed so far (Mena, 2003).  For example, optimal search 
methods, which are often realized by dynamic programming 
(Gruen and Li, 1995) or snakes(Gruen and Li, 1995; Niu, 2006), 
are frequently applied to find or determine an optimal 
trajectory between manually selected seed points. In these 
models, geometric and radiometric characteristics of roads are 
integrated by a cost function or an “energy” function. Then the 
road extraction is equivalent to seeking the global energy 
minimum. However, it is hard to define the reasonable 
“energy” function for each image. Promisingly, Hu et al. (2007) 
combined a spoke wheel operator, used to detect road surfaces, 

and a toe-finding algorithm, utilized to determine the road 
direction, to trace roads. But the extracted results are the 
inscribed lines rather than the centerlines needed for 
cartography, and that algorithm is not very robust to noises. 
Another more practical methodology is road tracking by 
template matching. Particularly, McKeown and Denlinger 
(1988) presented a road tracking method based on the intensity 
profile correlation of road cross sections to follow the direction 
of a road. Vosselman and Knecht (1995), Baumgartner et al. 
(2002) imposed the profile matching by using least squares 
template matching and Kalman filter. Zhou et al. (2006) used 
two profiles, one perpendicular to the road direction and the 
other parallel to the road direction, to enhance the robustness of 
the tracker and applied extended Kalman filter and particle 
filter to solve profile matching issues for road tracking; this 
method also integrates the online learning with novelty 
detection to adapt to the road features change (Zhou et al., 
2007). Kim et al. (2004) employed a rectangular template to 
track roads by least squares template matching, and the road 
path is modeled as similarity transform. Zhao et al. (2002) used 
rectangular template matching on the basis of a classified 
imagery. Hu et al. (2004) presented a road tracker using a 
piecewise parabolic model and least squares template matching. 
Lin et al. (2010) utilized the distance transformation to erode 
the image noises in order to enhance the reliability of template 
matching. Despite the above road tracking methods can extract 
the road width, the road direction besides a road centerline, the 
experiments demonstrate that existing step-by-step tracking 
method is more preponderant for smooth and curving long 
ribbon roads than for straight roads (Lin et al., 2009), because 
it is inefficient to track the straight roads compared to the 
curving roads. However, high efficiency is an important 
criterion in semi-automatic road tracker performance 
evaluation (Hu et al., 2004; Zhou et al., 206), meanwhile the 
straight roads account for most of road networks, especially in 
the urban areas (Price, 2000; Haverkamp, 2002). In this sense, 
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the efficiency of road network extraction is determined by the 
efficiency of straight roads extraction. 
 
Considering the importance of extracting the straight roads, 
many methods had been proposed. It is well known that a short 
road segment on very high resolution (VHR) remotely sensed 
imagery has a very large rectangularity (Hu et al., 2007). That 
character has been utilized to detect the whole road networks 
by many researchers such as Nagao and Matsuyama (1980) 
Song and Civco (2004), Shi and Zhu (2002), and Hu et al. 
(2007) etc. Meanwhile, edge detection algorithms are also 
utilized to extract straight roads. For instance, radon transform 
was employed to locate the roadsides and to measure the width 
of a road (Zhang and Couloigner, 2007). However, the above 
automatic methods are sensitive to various types of noises such 
as occlusion of vehicle and shadow of trees, and they can not 
detect precise road width and road direction which are essential 
for depicting a straight road in practice. In this paper, a semi-
automatic method is proposed to extract a straight road. 
 
As mentioned above, a short road segment is equivalent to a 
rectangle (Hu et al., 2007). If a road is not seriously affected by 
noises, spoke wheel algorithm (Hu et al., 2007) is capable of 
reliably extracting a rectangle at a road point. That rectangle 
can supply enough information such as direction and width to 
depict a whole straight road. That means the spoke wheel 
algorithm is helpful to extract a whole road. However, spoke 
wheel loses its advantages once encountering the image noises 
such as traffic jam and shadow of tall buildings, and the VHR 
image is greatly impacted by various types of noises. 
Fortunately, fusion of the spoke wheel algorithm and region 
growing method can overcome the above noises in this paper. 
Once a starting point and an end point are selected by a human 
operator, a number of rectangles will be obtained if the above 
improved spoke wheel algorithm is run at each pixel along the 
line segment between the starting point and the end point. Then 
analysis of histogram of rectangles is helpful to determine the 
optimal rectangle responding to a straight road. Once the 
optimal rectangle is given, it means width and direction of the 
road are determined, and the starting point and the end point 
can be adjusted based on the precise road direction. At last, a 
straight road is accurately depicted by the starting point, the 
end point and the width. Overall, the spoke wheel algorithm, 
the region growing algorithm are combined to extract a precise 
rectangle corresponding to a short road segment, and maximum 
likelihood estimation is employed to find the optimal rectangle 
corresponding to a straight road. 
 
The organization of this paper are: the methods are described in 
Section II, experiments and performance evaluation are 
presented in Section III, and results are summarized in Section 
IV. 
 
 

2.  METHOD 

2.1  Spoke wheel algorithm 

Theoretically, each road pixel has a local homogeneous region, 
which is anisotropic and directionally rectangular. That is, 
along some directions, the branches of the local homogeneous 
region are approximately rectangular. Hu et al. (2007) 
proposed the spoke wheel operator to delineate the boundary of 
the homogeneous region. Hu’s spoke and the spoke wheel 
SW  are used for detecting a footprint of a pixel p , as shown 
in Fig. 1a. A spoke is a line segment with a length of m (a 

preset value) pixels, and m = 90 pixels in Fig. 1a. A spoke 

wheel is a sequence of spokes ),( mS iϕ ( i =0,…, 4 n −1) 
with common initial point p  and evenly spaced 

angles nii 2/πϕ = , and n =18 in Fig. 1a. The set of pixels 

in a spoke wheel SW  centered at the pixel p with 4 n  

spokes is denoted by ),,( mnpSW . And the intersection 
between a spoke and a road edge provides useful information 
to determine the local homogeneous region around a pixel. 
However, we do not know the exact location of a road edge in 
advance. To search for the intersection of a spoke and the edge 
of a road, we start from p , move in the direction of the spoke, 
and observe the absolute intensity differences between p  and 
the pixels along the spoke. The differences are small when the 
pixels are near to p ; however, they may become larger when 

the pixels are far away from p . Let iS be the spoke at pixel p . 

The cutting point, denoted by iC , on iS  is the first pixel such 
that 

ij pICI σ≥− |)()(| （ j =0, …, m ， ni 40 <≤ ）(1) 

where iσ is the intensity standard deviation 

on ),,( mnpSW . Therefore, the threshold in Equation 1 is 
adaptive. Subsequently, we connect the cutting points on all 
spokes around a pixel p in a counterclockwise direction, 
which results in a closed polygon. This represents the footprint 
of the pixel p , denoted by )( pF , and its corresponding 
minimal oriented bounding box (Rosin, 1999) is denoted 
by MOBB . We threshold the ratio of its area to that of 
its MOBB . A footprint )( pF is nearly rectangular if 
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both hold. The thresholds of 85% and 2.0 were selected by 
experiments in Hu et al. (2007). If the road surfaces are 
homogenous, the derived MOBB may best match the road 
segment, as shown in Fig. 1b. Oppositely, if the road surfaces 
are not, there may be no MOBB obtained at all, as shown in 
Fig. 1c.  
 
2.2  Our integration strategy 

Region growing (Adams and Bischof, 1994) was employed to 
decrease the side-effects of image noises on spoke wheel 
algorithm. Actually, there are three key elements in region 
growing, namely: a seed point, a similarity threshold or criteria 
that a region is grown from the seed point to adjacent points 
depending on, and the connectivity of pixels (4-connected 
neighborhood or 8-connected neighborhood). In this paper, we 
take the above pixel p as the seed point, the standard deviation 

of grey values in )( pF is regarded as similarity threshold 
value, and 8-connected neighborhood is adopted for our pixels 
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adjacent relationship. The above process derives a new 
connected region, denoted as )( pR . Let iS be the spoke at 

pixel p . The cutting point jiC , on iS is redefined as the first 

pixel such that 
 

φ≠∩ )(, pRC ji （ j = m , m -1, …,0, ni 40 <≤ ）(3) 

 
Subsequently, we connect the cutting points on all spokes 
around a pixel p in a counterclockwise direction, which also 

results in a closed polygon. Replace )( pF with the newly 
obtained region, and its corresponding minimal oriented 
bounding box is also denoted as MOBB , as shown in Fig. 1e 
and 1g. As can be seen, the improved spoke wheel is robust to 
noises, and the newly derived MOBB  matches a short road 
segment. 
 
2.3  The general framework 

A straight road can be modelled by a starting point, an end 
point, road width. The basic idea of our approach is that two 
initial seed points are selected by human operator, precise road 
width and road direction are measured by the computer, and 
adjustment of the seed points is made to get precise road model. 
Thus a framework is designed to extract straight roads as 
follows: 
(1) A human operator detects a straight road and consecutively 
clicks the mouse two times at the beginning and end of a road 
respectively, which indicates two seed points, the starting 
point startP ( startx , starty ) and the end 

point endP ( endx , endy ), where ( startx , starty ) and 

( endx , endy ) are the coordinates of the two seed points. 
Moreover, a corresponding line segment is derived 
by startP and endP , denoted as segmentS  whose length is 

denoted as roadL , and roadL is calculated by: 
 

=roadL Floor ))()-( ( 22
end endstartstart yyxx −+  (4) 

 
Note that the direction of segmentS  is arctangent( startP endP ) 

(0< arctangent( startP endP )≤ 2π ). 

(2) Obtain a seed point at each pixel of segmentS , denoted as 

kP ( kx , ky )( k =0,…, roadL ). 
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Fig. 1 (a) A spoke wheel. (b) Result of a spoke wheel algorithm 
operated on a road image corresponding to (a). (c) Side-effects 

of occlusion on the spoke wheel algorithm. (d) A subset of 
image seriously impacted by occlusion of traffic jam and the 
result of our improved spoke wheel algorithm operated on the 

image 
 

 (3) Take each kP ( kx , ky )( k =0,…, roadL ) as a seed and 
run the above improved spoke wheel algorithm, if a minimal 
oriented bounding box is obtained, denoted as kMOBB  

whose width is kw , direction and intercept on the y axis of the 
line through the two midpoints of shorter sides is 

kθ (0< kθ ≤ 2π ) and kb respectively. Then add ( kθ , kw , kb ) 
into a “vote box”. Note that the line through the two midpoints 
of shorter sides of a rectangle may have two alternatives, but 
the one with minimal angle with arctangent( startP endP ) is 
selected. 
(4) Obtain the total number of minimal oriented bounding box 
in the “vote box”, denoted as MOBBT . In this circumstance: 

 If MOBBT =0, then return the control back to the 
human operator; 

 If MOBBT =1, the corresponding information of the 
minimal oriented bounding box is regard as the 
road’s width w , direction θ  and intercept b .then 
go to step (7);  

 If MOBBT >1, then go to step (5). 
(5) Obtain the optimal road direction by the following 
procedure: 
① Determine the block size to build the histogram of 
directions in the above “vote box”, denoted as blockS , and 

blockS  is set to 1°in this paper; 

② Find the maximum value and the minimum value of 
direction values in the “vote box”, denoted as )max(θ  and 

)min(θ  respectively, where )min(θ ≤  ( kθ )≤ )max(θ  

( k =0,…, MOBBT ); 

③ Determine the total number of blocks, denoted as blockT , 

and blockT  is calculated by: 

blockT =Ceiling(( )max(θ - )min(θ )/ blockS )  (5) 

④ Determine the number of minimal oriented bounding boxes 
in each block, and find the block who has the largest amount of 
minimal oriented bounding boxes, denoted as θO ; 

⑤ Put each minimal oriented bounding box in θO  into 
another “vote box”, and determine the number of minimal 
oriented bounding boxes, denoted as MOBBT ' . In this 
circumstance: 

 If MOBBT ' =1, the corresponding information of the 
minimal oriented bounding box is regard as the 
road’s width w , direction θ  and intercept b , then 
go to step (7);  

 If MOBBT ' >1, then go to step (6). 

(6) Obtain the optimal road width by the following procedure: 
① Determine the block size to build the histogram of widths in 
the above newly obtained “vote box”, denoted as blockS ' , and 

blockS ' =1 in this paper; 

② Find the maximum value and the minimum value of width 
values in the “vote box”, denoted as )max(w  and )min(w  

respectively, where )min(w ≤  

kw ≤ )max(w ( k =0,…, MOBBT ' ); 

③ Determine the total number of blocks, denoted as blockT ' , 

and blockT '  is calculated by: 
 

blockT ' =Ceiling(( )max(w - )min(w )/ blockS ' )  (6) 

④ Determine the number of minimal oriented bounding boxes 
in each block, and find the block who has the largest amount of 
minimal oriented bounding boxes, denoted as wO ; 

⑤ Find the optimal minimal oriented bounding box whose 
width has a minimal difference with the median of wO , and 
the corresponding information of the optimal minimal oriented 
bounding box is regard as the road’s width w , direction θ  and 
intercept b . 
(7) Update the road model by ( w ,θ , b ) as follows: 

Suppose a line pass through startP ( startx , starty ) and it is 

perpendicular to the line by += )tan(θ , the foot of the 
perpendicular is regarded as the true starting point, denoted as 

startP' ( startx' , starty' ). Similarly, suppose a line pass 

through endP ( endx , endy ) and it is perpendicular to the 

line by += )tan(θ , the foot of the perpendicular is 
regarded as the true end point, denoted as 

endP' ( endx' , endy' ). Then the true road model is determined 

by the starting point startP' ( startx' , starty' ), the end point 

endP' ( endx' , endy' ), plus the road width w . 
 
 

3.  EXPERIMENTS AND PERFORMANCE 
EVALUATION 

We developed a testing platform based on the above method to 
extract straight roads from VHR images, and attempted to 
evaluate how fast (efficiency) and how accurate (spatial 
accuracy) our method is compared to a fully manual digitizing. 
Particularly, the efficiency is evaluated by comparing the total 
time consumed in digitizing the same road (Hu et al., 2004), 
and spatial accuracy is evaluated by comparing length, width 
and direction between the results of the two methods. In the 
digitizing process of our method, two seed points are input 
through the interface by clicking the mouse at a reasonable 
scale. But for the manual annotation, three seed points are input 
as follows: a human operator enters a road segment with two 
seed points on A’ and B’ whose axis joining the points defining 
one road sideline A’B’, which indicates road direction 
arctangent(A’B’) and road length l . l  is the equal to the 
distance between point A’ and point B’. Then the following 
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third seed on C, on the other roadside, defines the road width 
w . w  is equal to the distance between the point C and the 
line A’B’. As a result, the above three points can also derive a 
rectangle A’B’B”A” with width w  and length l , as shown in 
Fig. 2. 
 
A great number of aerial and satellite images of different GSD 
have been tested, and four images are displayed in Fig. 3. In 
fact, the four images are impacted by various types of noises. 
Particularly, Fig. 3a shows an arterial road on an aerial 
photograph covered in an urban area, and the road is impacted 
by occlusion of vehicles and shadow of trees. Fig. 3b shows a 
residential road on an aerial image covered in a suburban area, 
and the road is seriously polluted by surrounding collapsed 
buildings. Fig. 3c shows an arterial road on a QuickBird 
panchromatic image covered in an urban area, and the road is 
seriously impacted by occlusion of traffic jam. Fig. 3d shows 
an arterial road on a QuickBird panchromatic image covered in 
an urban area, and the road is seriously occluded by colonnades. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3 Semi-automatic straight road extraction from VHR 
images. (a) Extraction of an arterial road from an aerial 

photograph, ground sampling distance = 0.2 m/pixel, image 
size = 1585×2120 pixels. (b) Extraction of a residential road 

from an aerial photograph, ground sampling distance = 0.2 
m/pixel, image size = 1346×450 pixels. (c) Extraction of an 

arterial road from a QuickBird panchromatic image, image size 

= 1844×521 pixels. (d) Extraction of an arterial road from a 
QuickBird panchromatic image, image size = 395×185  

pixels. 
 
In the experiments, the parameter m , length of a spoke refers 
to Table 1, and Fig. 4 shows the corresponding histogram of 
widths. The corresponding extracted results of our method are 
superimposed on the original images, as Fig. 3 shown. Visual 
inspection tells that the extracted rectangles are reasonable and 
accurate even the many noises exiting. Table 1 shows the 
statistical result on testing the efficiency and spatial accuracy 
of our semi-automatic road extraction method. In general, 
comparing to the fully manual annotation, our method has a 
higher efficiency and a comparable spatial accuracy. 
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(1) Manual - 7 2261 77 - 
Semi-
automatic

100 6 2256 77 4 

(2) Manual - 5 871 46 - 

Semi-
automatic

60 4 879 44 3 

(3) Manual - 6 761 93 - 

Semi-
automatic

120 5 764 95 2 

(4) Manual - 5 1067 49 - 

Semi-
automatic

70 3 1062 51 6 

 
Table 1． Comparison of semi-automatic and manual methods 
 
Our method’s better performance comes from its several merits. 
First, it utilizes the fast computing speed of a computer. On 
state-of-the-art computers, the volume of computation of our 
method is not a key constraint. Automatic measurement may be 
completed as soon as the mouse click is operated for most of 
the straight roads. Second, our method can be operated at a 
coarsely scale. A human operator can input the two necessary 
seed points at a low level of image pyramid for our method. 
But, for fully manual annotation, a human operator has to input 
the seed points at a finer scale so that the spatial accuracy is 
guaranteed, and additional operations such as zoom and pan 
may be needed for a long road to get a precise result on a VHR 
image. Comparably， our method is not sensitive to the raw 
spatial resolution as manual digitalizing does, which means a 
time saving in initialization compared to manual digitalizing. 
Third, our method utilizes only one parameter, the length m  
of a spoke, needed human involvement before extracting, but 
the extracted result is not very sensitive to value of m . For the 
above four tests, m  is approximately equal to the true road 
width multiplying by 1.25. In fact, the road with is relevant to 
road types in practice. In this sense, m  can be set to a constant 
for each type of roads. For example, m is 110 pixels for arterial 
roads and 70 pixels for streets on aerial images. Last but not 
least, our method utilizes the maximum likelihood estimation. 
In fact, only a precise rectangle is enough to depict a whole 
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road for our semi-automatic method. Even a straight road is 
seriously impacted by noises, but not all parts of a straight are 
polluted. That means that our fusion method is capable of 
extracting the rectangle that can derive inform to depict a 
whole road if some a part of the road is satisfied. Certainly, 
more rectangles are helpful to get a better result. Then 
histogram analysis is employed to get the most precise result. 
Those advantages of our method guarantee the high efficiency 
and precise spatial accuracy of the results. 
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Fig. 4 Histogram of width of the rectangles extracted in the 

second test image 
 
 

4.  CONCLUSION 

This paper presents a semi-automatic method for extracting 
straight roads from VHR images. On the basis that a short road 
segment is equivalent to a rectangle, the fusion of spoke wheel 
algorithm and region growing is employed to extract the 
rectangle corresponding to a short road segment even varying 
image noises existing. Meanwhile, histogram analysis is 
employed to obtain the most precise rectangle from the 
extracted results along the line segment of two input seed 
points. Various types of aerial and satellite images are used to 
test our method. The results demonstrate that our method is 
capable of efficiently extracting the straight roads with precise 
results. Future work will focus on improvement of our method 
to make it feasible to curve roads. 
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