Remote Sensing of Environmental Vibrio in the Chesapeake Bay

Erin Urquhart1, Matt Hoffman2, Ben Zaitchik1

1Johns Hopkins University, 2Rochester Institute of Technology
Study Area
(The Chesapeake Bay)

- **Salinity gradient**
 - Oligohalic (0-6 ppt)
 - Mesohalic (6-18 ppt)
 - Polyhalic (18-30+ ppt)
- **Sea surface temperature**
 - -0.5°C to 31°C
- **Major inputs**
 - Atlantic Ocean
 - Susquehanna River
- **2-Layer gravitational circulation scheme**
Vibrio in the Chesapeake Bay

- V. cholerae
- V. vulnificus
- V. parahaemolyticus

ENVIRONMENTAL PARAMETERS

PHYSICAL
- Precipitation
- Circulation
- Sea surface height

BIOLOGICAL
- SST
- Salinity
- Nutrients
- pH

-Copepods
-Bacteria

-Shellfish
-Rec. water

Untreated sewage

HUMANS

Urquhart et al.
September 13, 2011

Advances in Geospatial Technologies for Health
Session 5: Real Time & Early Warning Systems
Vibrio in the Chesapeake Bay

Reported Vibrio Cases, Maryland and Virgina

Maryland Dept. of Health and Mental Hygiene
Virgina Department of Health.

*Estimated 2010 VA Cases
Pre-existing Empirical Vibrio Models

\[z(V.v) = -7.867 + (0.316 \times \text{Temp}) + (-0.342 \times |\text{Saln} - 11.5|) \]

(Jacobs et al., 2010)

\[z(V.c) = -1.1939 + (0.1233 \times \text{Temp}) - (0.1997 \times \text{Saln}) - (0.0324 \times \text{Temp} \times \text{Saln}) \]

(Louis et al., 2003)

\[f(z) = \frac{e^z}{1 + e^z} \]

- **In situ** and **modeled** temperature and salinity inputs
- Probability of occurrence Vibrio spp. models
- Historical cruise (V.c) and CBay Program (V.v) bacteria collection
Remote Sensing of Vibrio in the Chesapeake Bay

\[z(V.c) = -1.1939 + (0.1233 \times \text{Temp}) - (0.1997 \times \text{Saln}) - (0.0324 \times (\text{Temp} \times \text{Saln})) \]

Urquhart et al.
September 13, 2011

Advances in Geospatial Technologies for Health
Session 5: Real Time & Early Warning Systems
Remote Sensing of Sea Surface Salinity

- NASA Aquarius Salinity Product
 - 150 km spatial resolution
 - Monthly composites

- Neural Network Salinity Product
 - Geiger et al. (2011): UDEL
 - Statistically Derived from MODIS-Aqua Ocean Color
 - Additional RS input products
 - Trained on Mid-Atlantic region
 - Historical cruise data
Satellite Based Salinity Algorithms

- MODIS-Aqua Ocean Color Standard Products
 • 10 Remote sensing reflectances (visible)
 • 2003-2010

- In situ – remote sensed measurement matchups
 • 68 CBay Program in situ stations
 • Single pass RS ocean color data
 • 1km radius RS averaging
 • 2003-2010

- Salinity Prediction Models
 • GLM
 • GAM
 • CART
 • BCART
 • BART
 • RF
 • ANN
 • MARS

Urquhart et al.
September 13, 2011

Advances in Geospatial Technologies for Health
Session 5: Real Time & Early Warning Systems
Satellite Based Salinity Algorithms

- Generalized Linear Model (GLM)
- Generalized Additive Model (GAM)
- Artificial Neural Network (ANN)
- Multivariate Adaptive Regression Spline (MARS)

Tree-Based Data Mining

- Categorical and Regression Tree (CART)
- Bagged Categorical and Regression Tree (BCART)
- Bayesian Additive Regression Tree (BART)
- Random Forest (RF)
Satellite Based Salinity Algorithms

<table>
<thead>
<tr>
<th></th>
<th>GAM</th>
<th>ANN</th>
<th>GLM</th>
<th>CART</th>
<th>BCART</th>
<th>RF</th>
<th>MEAN</th>
<th>BART</th>
<th>MARS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE</td>
<td>1.82</td>
<td>1.85</td>
<td>1.93</td>
<td>2.39</td>
<td>2.38</td>
<td>2.06</td>
<td>3.72</td>
<td>2.04</td>
<td>1.98</td>
</tr>
<tr>
<td>RMSE</td>
<td>2.38</td>
<td>2.50</td>
<td>2.53</td>
<td>3.03</td>
<td>3.01</td>
<td>2.67</td>
<td>4.69</td>
<td>2.60</td>
<td>2.52</td>
</tr>
</tbody>
</table>

- Top performing prediction models: **GAM** and **ANN**
- GAM and ANN are not statistically different
- All models outperform the mean salinity prediction
Remote Sensing of Vibrio in the Chesapeake Bay

\[z(V_c) = -1.1939 + (0.1233 \times \text{Temp}) - (0.1997 \times \text{Saln}) - (0.0324 \times (\text{Temp} \times \text{Saln})) \]

Urquhart et al.
September 13, 2011

Advances in Geospatial Technologies for Health
Session 5: Real Time & Early Warning Systems
General Additive Model (GAM) for Predicting Salinity

GAM.MODEL<-gam(Salinity~s(Rrs_678)+s(Rrs_547)+s(Rrs_488))

y = 0.81\times + 2.8

MAE: 1.82
RMSE: 2.38
Daily Remote Sensing of SST and Saln

MODIS- Aqua SST 9/18/2006

MODIS- Derived SSS 9/18/2006

RMSE: 0.51

RMSE: 1.22

Urquhart et al.
September 13, 2011

Advances in Geospatial Technologies for Health
Session 5: Real Time & Early Warning Systems
Remote Sensing of Vibrio in the Chesapeake Bay

9/18/2006 V.cholerae

9/18/2006 V.vulnificus

Urquhart et al.
September 13, 2011

Advances in Geospatial Technologies for Health
Session 5: Real Time & Early Warning Systems
In situ Vibrio Sampling

![Image of in situ Vibrio sampling](image1.png)

![Image of Vibrio culture](image2.png)

![Image of laboratory setup](image3.png)

Urquhart et al.
September 13, 2011

Advances in Geospatial Technologies for Health
Session 5: Real Time & Early Warning Systems
Future Research Directions

• Salinity algorithm applications

• Applications within the Chesapeake Bay

• Applications beyond the Bay
Acknowledgments

University of Delaware, Erick Geiger
NASA Goddard, Vanessa Escobar
University of Maryland, Bradd Haley, Dr. Elisa Taviani
Cornell University, Dr. Bruce Monger
Johns Hopkins University, Dr. Seth Guikema
NASA, Dr. Antonio Manino, Dr. Maria Tzortziou
Maryland Department of Natural Resources, Sally Bowen

Funding Sources
NASA Goddard
Johns Hopkins University