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ABSTRACT:

This paper presents an approach for orienting images taken with different cameras from unknown positions. Specifically, we show that
we can relatively orient wide-baseline images taken by lightweight (micro) Unmanned Aerial Vehicles (UAVs) of about 1 kg overall
weight and from the ground. For the latter, we employ a consumer GPS camera which allows us to upgrade relativ oriented 3D models
to absolute orientation. For the remainder we assume that the camera calibration is at least weakly known.
Relative orientation based on matching point features as well as absolute orientation with consumer GPS cameras both suffer from
possibly extreme outliers. We tackle this challenge by combining consensus-based filtering of meaningful observations with robust ad-
justment. While robust techniques based on weighting down observations alone are susceptible to even single extreme outliers (leverage
points), techniques such as RANdom SAmple Consensus – RANSAC (Fischler and Bolles, 1981) make it possible to determine many
or most of the meaningful observations (inliers) independently of leverage points. As solutions by consensus-based approaches will be
correct, but might be poor, we employ a recursive procedure in the spirit of the expectation maximization (EM) algorithm, where the
improved estimate of robust adjustment is employed to iteratively find extended sets of inliers. Results demonstrate the potential of the
proposed approach.

1 INTRODUCTION

Automatic 3D reconstruction of urban areas from digital images
is an active research area. (Pollefeys et al., 2004) presents earlier
work. (Pollefeys et al., 2008) or the recent (Agarwal et al., 2009)
show that it is feasible to automatically generate 3D models from
thousands of images, even when they are taken only weakly con-
strained from the Internet. Yet this is restricted to pairs for which
the viewing angle is not too large. While 3D data from laser
scanners might have a higher reliability than from automatic im-
age matching, scanners are costly and heavy. Compared to this,
images from consumer cameras are an easily available and cheap
data source.

We have also developed an approach in line of the above work.
It particularly excels by being capable to deal with large view-
ing angles between pairs of images. This is achieved by com-
bining Förstner points (Förstner and Gülch, 1987), correlation,
least-squares matching, the 5-point algorithm (Nistér, 2004), and
RANdom SAmple Consensus – RANSAC (Fischler and Bolles,
1981) with robust bundle adjustment. The key idea is to achieve
reliability by means of a highly precise solution (computed by
least-squares matching and robust bundle adjustment) for many
points which is unlikely to arise by chance. By employing the di-
rect 5-point algorithm (Nistér, 2004), no approximate values for
position and attitude are needed and RANSAC allows us to deal
with much less than 50% correct matches.

We investigated how far we can deal with images from very small
Unmanned Aerial Vehicles (Micro-UAVs), because our approach
has no need for approximations for position and attitude of the
camera. In the last two years we made several experiments with
Micro-UAVs with a diameter of about 1 meter and a weight un-
der 1 kg (including the camera). They enable to take images of
buildings and their facades from an off-ground perspective inde-
pendently of ground conditions or obstacles on the ground. We
could demonstrate that 3D reconstruction from images from such
Micro-UAVs is feasible (Mayer and Bartelsen, 2008).

As we aim at a as complete as possible 3D modeling of urban ar-
eas, particularly buildings, we have started to combine terrestrial
images with images from UAVs. This is especially promising, as
Micro-UAVs are capable to fly through streets only a couple of
meters above the ground, impossible with heavier UAVs. There-
fore, the viewpoints are not so different than from the ground,
both showing facades and partially also the roofs.

To estimate the absolute orientation, we have made experiments
with cameras with an integrated GPS receiver. They determine
a position in the world coordinate system whenever an image is
taken. Because the GPS in the type of UAV we have used is not
synchronized with the camera, we have only done experiments
with a hand-held GPS camera. We particularly have used the
Ricoh Caplio 500SE, which produces GPS positions, but there is
no access to the raw data and thus no post-processing of the GPS
signal to improve the precision is possible. While our approach
for 3D reconstruction from images produces highly precise local
models of the scene, the GPS camera positions allow by means of
a 3D similarity transformation to estimate the absolute orientation
for the model. A larger number of GPS camera positions allows
an adjustment for the 3D similarity transformation.

Both, relative orientation of images based on matching point fea-
tures as well as absolute orientation employing consumer GPS
cameras suffer from possibly extreme outliers. For the images
these are wrong matches, particularly if a wide-baseline is used,
while the GPS camera might produce totally wrong values when
satellites are in an inappropriate constellation or are occluded as
in common in urban environments at which we aim at.

We tackle the above challenge by combining consensus-based fil-
tering of meaningful observations with robust adjustment. While
robust techniques based on weighting down observations are sus-
ceptible to single extreme outliers (leverage points), consensus-
based techniques such as RANSAC render if possible to deter-
mine many or most of the meaningful observations (inliers) in-
dependently of leverage points. Once a correct approximation is
generated via RANSAC, we refine it by robust adjustment using



weighting down as well as eventually throwing out weak points.
As approximations by RANSAC are correct, but might be poor,
we employ a recursive procedure in the spirit of the expectation
maximization (EM) algorithm, where the improved estimate of
the robust adjustment is employed to find an extended set of in-
liers, which is then used to find a further improved estimate, etc.

In the next Section, robust parameter estimation based on consen-
sus-based filtering and robust adjustment is discussed as the key
contribution of this paper. We introduce our approaches for rel-
ative and absolute orientation in Sections 3 and 4. Results are
presented in Section 5. We end up with an outlook and conclu-
sions.

2 ROBUST PARAMETER ESTIMATION

The combination of different robust techniques is a core of this
paper. While robust adjustment allows to weight down observa-
tions which are (in a certain sense) close to the correct solution,
but are still not part of it, it cannot deal with single extreme out-
liers (leverage points).

For the latter, consensus-based approaches such as RANSAC
come to the rescue, at least if certain conditions hold:

• The solution can be computed from a limited number of ob-
servations to the latter avoiding combinatorial explosion.

• A criterion has to exist to tell good from bad observations
(outliers), which can be evaluated based on the above solu-
tion.

RANSAC and similar consensus-based approaches work by ran-
domly taking a minimum number of observations and computing
a solution for them. (E.g., relative orientation can be computed
from five point pairs, or a plane from three 3D points.) Then, all
other observations not used for computing the solution are evalu-
ated according to the above criterion and the number of the obser-
vations fulfilling the criterion is counted (inlier). E.g., for relative
orientation one would check the distances from the correspond-
ing epipolar lines or for planes simply the distance of the points
from the plane. This is repeated a number of times always ran-
domly choosing new observations to compute a solution. (Once
one has a solution and thus the percentage of inliers, one can
compute how many iterations are still necessary given a certain
probability level (Fischler and Bolles, 1981).)

Counting inliers is in many cases not the best possible solution,
though, as it does not account for the different qualities of in-
liers: They can be very close to the expected solution or at the
very margin of the acceptance region. A way to take into account
this information is to employ the Geometric Robust Information
Criterion – GRIC (Torr, 1997). A constant penalty is given to
all outliers, while the inliers are evaluated by a typically squared
distance metric. The goal is thus to minimize the GRIC sum for
all observations instead of maximizing the number of inliers.

While consensus-based approaches allow to come up with a cor-
rect solution for extreme outliers, even when the percentage of
outliers is much larger than the 50% known as the breakdown-
point for robust adjustment, the solution is often not extremely
good as only a small part of the data is used. Thus, different
people came up with the idea to improve the estimate inside the
consensus-based approach by using more observations than just
the minimum number leading, e.g., to locally optimized
RANSAC (Chum et al., 2003).

We do not only combine a consensus-based approach with least
squares optimization, but we robustify the latter and use it in an
expectation maximization (EM) based fashion, iterating always
between the E and the M step (start point is an approximate solu-
tion for a minimum number of observations):

• For the current solution all inliers are determined (E).

• Based on all inliers, an improved solution is obtained using
robust least squares adjustment (M).

While in many instances only very few iterations are sufficient,
there are examples where starting from observations in a rela-
tively small area the number of inliers grows and grows by im-
proving the solution by means of the inliers step by step.

We base robust adjustment on standardized residuals v̄i = vi/σvi

involving the standard deviations σvi of the residuals, i.e., the dif-
ferences between observed and predicted values. As a first means
we employ reweighting with wi =

√
2 + v̄i

2 (McGlone et al.,
2004). Additionally, having obtained a stable solution concerning
reweighting, outliers characterized by v̄i exceeding a threshold,
which we have set to 4 in accordance with theoretical derivations
and empirical findings, are eliminated for the next iteration.

While many people use the average standard deviation of the
residuals, we have found that computing the standard deviation
for each and every residual although costly (it involves comput-
ing the covariance matrix of the observations and multiplying it
with the design matrix from both sides) still leads to a much faster
convergence and better results, often more than balancing the ef-
fort involved in the additional computations.

Usually it is sufficient to employ the above procedure only for
the best hypothesis of a larger number, e.g., 100, of RANSAC
iterations, as it is costly to use it for obviously bad hypotheses.

3 AUTOMATIC RELATIVE ORIENTATION OF IMAGE
SEQUENCES

We have developed an approach for orienting images from con-
sumer cameras (Mayer, 2008) which works without previous kn-
owledge or approximations for position and attitude and without
markers. While it is in principle possible to also work without
knowledge about calibration (Mayer, 2005) using a direct self-
calibra-
tion approach such as proposed in (Pollefeys et al., 2004), we
resort in this paper to the assumption, that an approximate cali-
bration in the range of a couple of percent is known, which is rea-
sonable for many applications. Using calibration does not only
allow to deal with totally planar scenes, but it also makes 3D re-
construction more efficient by constraining the solution space.

Relative orientation of images is based on patches around Förstner
points (Förstner and Gülch, 1987). They are correlated taking
into account the direction of the eigenvectors of the points mak-
ing the matching in-plane-rotation invariant. If the correlation
is above a low threshold, the patches are least-squares matched
using the affine transformation as geometrical model and result-
ing in highly precise relative point positions. While we found
that this procedure allows to match points from very different di-
rections, i.e., is highly off-plane rotation invariant, it cannot cope
with larger scale differences. Thus, we have started to experiment
with Scale Invariant Feature Transform – SIFT features (Lowe,
2004), even though they are limited to similar view angles.



For image pairs, the relative sub-pixel coordinates of the centers
of the patches are input to essential matrix calculation combin-
ing the direct 5-point algorithm (Nistér, 2004) needing no ap-
proximate values with RANSAC and robust bundle adjustment
(cf. Section 2).

For image triplets, the 5-point algorithm is applied twice and the
relative scale of the two pairs is computed as the median. Triplets
are used as basic building block because for them points can be
checked. Overlapping triplets are linked to form image sequences
or blocks. All the above is done for images on higher levels of
the image pyramids to reduce the computational complexity. The
final result for the block is tracked down to the original resolution
of the images. There, a final bundle adjustment is conducted.
As we usually have larger scenes with sufficient 3D structure,
the calibration parameters can be improved in the final bundle
adjustment of the whole image block.

We employ a correction for radial distortion

ds = 1.0 + k2 ∗ (r2 − r20) + k4 ∗ (r4 − r40)

with r the distance to the principal point and r0 the distance
where ds is 0. From a larger number of experiments we have
found, that it is important to employ radial distortion estimation
only after robust adjustment.

To be able to work with images from different cameras, we link
every image with a description of its camera parameters consist-
ing of the calibration matrix as well as the radial distortion pa-
rameters. By using one description for each camera and not each
image, we are able to reliably improve the camera parameters in
the bundle adjustment, which would not be the case if the param-
eters would be optimized per image.

The approach procedure has been tested for hundreds of image
sequences, also with images of beyond ten Megapixels and with
up to several hundred images. Fig. 1 gives an example depict-
ing the camera positions as colored pyramids with the tips of the
pyramids symbolizing the positions of the projection centers of
the cameras and the bases of the pyramids the image planes. The
images for the green and red pyramids were taken at two different
UAV flights while the blue pyramids are for images of the GPS
camera acquired on the ground. 3D Points are given as colored
spheres, with the color taken from the images.

4 AUTOMATIC ABSOLUTE ORIENTATION USING
CONSUMER GPS CAMERAS

4.1 3D Similarity Transformation Between Local and World
Coordinate Systems

As detailed above, relative orientation produces a local 3D model
of the scene in a Euclidean coordinate system. The mutual rela-
tion between this coordinate system and a Euclidean world co-
ordinate system can be established by means of a 3D similarity
transformation (Luhmann, 2000). Prerequisites for this are that
both coordinate systems are Euclidean and three pairs of corre-
sponding points exist whose respective vectors are linear inde-
pendent.

The WGS84 world coordinate system is based on a reference el-
lipsoid and is thus not Euclidean. As the camera Ricoh Caplio
500SE that we have used produces WGS84 coordinates, a con-
version into a Cartesian world coordinate system is necessary.
The global standard Universal Transverse Mercator (UTM) sys-
tem is particularly suited for this. Formulas for the conversion of

Figure 1: Building 51: Positions and attitudes of cameras for
Micro UAV flights around and above the building (red and green
pyramids) as well as of a consumer GPS camera (blue pyramids).
The latter was used to absolutely orient the image block. 3D
points are given as spheres with the colors taken from the images.

WGS84 coordinates to UTM are given in (Schödlbauer, 1995).
At the moment we do not consider, that UTM coordinates are
restricted to a certain range of longitude, as we do only work
in relatively small areas. We do use, though, a correction func-
tion included in the camera, transforming ellipsoidal heights to
heights related to the Geoid, although with a limited precision.

The 3D similarity transformation from the local POSlocal to the
UTM position POSUTM reads:

POSUTM = Scale×Rotation× POSlocal + Translation

Translation, Scale, and Rotation are determined as follows
based on the known camera positions in the local as well as in the
UTM coordinate system: First, the center of gravity of the cam-
era positions is computed for both coordinate system. The origin
of the local coordinate system is shifted to its center of gravity.
The center of gravity of the cameras in the world coordinate sys-
tem defines the translation between model and world coordinate
system. Additionally, the center of gravity is used as the center
for the rotation. As GPS measurements tend to have a compara-
bly bad precision for the height and we have worked in relatively
planar areas until now, we assume that the camera positions in
the world coordinate system have the same average height, mit-
igating errors in the height measurements. Yet, we note that for
images taken on a slope, or from a UAV on different heights, this
might be problematic and will need additional effort.

Because some GPS measurements might be grossly wrong, a
consensus-based approach (cf. Section 2) is used to calculate an
approximation for the transformation. For computing an indi-
vidual hypothesis for the transformation, a minimum set of three
different camera positions suffices, for each of which a position
could be measured in the world coordinate system. The three
points should neither be too close nor lie on a line.

Because we are dealing at the moment with a small number of
camera positions with GPS measurements (usually less than 30),
solutions for all possible triplets (full combinatorial search) are
computed and the one with the highest number of inliers is cho-



sen. To deal with larger numbers, random sampling in the spirit
of RANSAC will be used.

4.2 Adjustment of Local and GPS Camera Positions

The above Section presents means to compute the transformation
between the local and the world coordinate system from three
points. Usually, though, there are more points available and thus
one wants to compute an improved estimate based on an adjust-
ment of the inliers. For this, the following functional model has
been developed:

• Observations: Camera positions in world coordinate system
(E – easting, N – northing, and h – height) and related po-
sitions in the local 3D model (x, y, and z)

• 7 Unknowns: Rotation (3 parameters in rotation matrix R
or elements of normed quaternions a, b, c, and d), scale (1
parameter m), and translation (3 parameters tx, ty , and tz)

f ::

(
E
N
h

)
= mR

(
x
y
z

)
+

(
tx
ty
tz

)
with

R =

(
1− 2(c2 + d2) 2(bc− ad) 2(bd+ ac)

2(bc+ ad) 1− 2(b2 + d2) 2(cd− ab)
2(bd− ac) 2(cd+ ab) 1− 2(b2 + c2)

)

The elements of normed quaternions a, b, c, and d guarantee the
uniqueness of the 3D rotation over all values. Yet, they are redun-
dant. To reduce the number of unknowns for the adjustment, the
largest of the four values is kept constant for an iteration, varying
only the rest of the values while normalizing them.

The equations are linearized at the values of the approximation
and then the system is iteratively solved.

5 RESULTS

In the following, we present results of our experiments demon-
strating the potential of the proposed approach.

5.1 Estimation of Absolute Orientation

To verify our approach by comparing it to reference data, we con-
ducted an experiment with reference point measurements using
the SAtellite POsitioning Service (SAPOS) of the German State
Survey allowing for position measurements with a very high pre-
cision of 1 to 3 centimeters including height. For the determi-
nation of the exact positions of the GPS camera in relation to
the reference measurements, we used a special tripod which fixes
the camera very close to the antenna of a Leica GPS system using
the SAPOS service. For the reduction of the heights to the Geoid,
data from the State Survey were employed. Thus, reference cam-
era positions were available to estimate the precision of the mea-
surements of the GPS camera as well as to verify the results of
our adjustment. The GPS camera uses the NMEA-0183 proto-
col with an internal simplified Geoid reduction, which caused an
error of about 3 meters for this image-sequence.

In the following, we compare the results of the adjustment with
the measured GPS positions and the reference positions from
SAPOS. We created an image sequence of building 20 of UniBw

Figure 2: Left: 3D model of building 20 of Bundeswehr Univer-
sity Munich (UniBw). The big black sphere marks the center of
the camera positions. Right: One image from the sequence.

with 33 images made by a Ricoh Caplio 500SE GPS camera in
combination with our SAPOS system. The estimated precision
of the bundle adjustment for the relatively oriented 3D model of
building 20 is σ0 = 0.33 pixels, which is of average quality. The
impreciseness of the local model is cause of uncertainness in ad-
dition to the measured GPS positions. In spite of this Fig.3 shows
a comparison which demonstrates the precision of the estimated
absolute orientation.

Figure 3: Left: Oriented 3D model of building 20 of UniBw from
the top. Right: Oriented building 20 and camera positions in
Google Earth.

We have selected three 3D similarity transformations. The first
one is calculated from the SAPOS camera positions which have
a precision of 1 to 2.5 centimeters. A precision like that is only
possible under favorable conditions, even with SAPOS. We used
this result as reference data without adjustment. As second, one
approximation estimated from the GPS camerapositions and fi-
nally the result of the adjustment. In Table 1 and 2 the details of
the 3D similarity transformations are illustrated.

The comparison has been done for building 20 of Bundeswehr
University Munich (UniBw) (cf. Fig. 2).

a b c d m
SAPOS 0.017 0.032 0,771 0.636 4.431

GPS Cam 0.028 -0.022 0.793 0.608 5.004
Adjusted 0.046 0.007 0.781 0.623 4.567

Table 1: Elements of normed quaternions and scalefactors of es-
timated 3D similarity transformations.

For the 33 camera positions we estimated the distances of the
adjusted positions from the SAPOS reference positions and com-
pared them to the distances of the initial measurements. The re-
sults in Table 3 and 4 show that the adjusted values are much
better concerning dispersion and precision.



Easting Northing Height
SAPOS 696794.88m 5328327.63m 547.98m

GPS Cam 696794.46m 5328328.76m 544.85m
Adjusted 696794.44m 5328328.81m 544.86m

Table 2: Translations of estimated 3D similarity transformations.
The experiment was made in the UTM Zone 32U.

Average Variance Worst Best
GPS Cam 2.11m 2.80m2 8.38m 0.41m
Adjusted 1.36m 0.23m2 2.10m 0.70m

Table 3: Distances of initial and adjusted camera positions from
SAPOS reference positions on the ground.

Fig. 4 presents another example. The information from the GPS
camera has been used to absolutely orient the images. Addition-
ally, the vertical direction has been determined from vanishing
points of vertical structures on walls, vertical planes were fit to the
3D points, texture from the images was mapped on these planes,
and, finally, all this has been integrated into Google Earth.

Figure 4: For several flights around buildings with a Micro UAV
vertical planes have been determined from the 3D points gener-
ated during relative and absolute orientation, texture was mapped
on the planes, and, finally, the resulting 3D models were included
into Google Earth.

Fig. 5 shows building number 33 of UniBw, Germany. Again, the
vertical direction has been estimated from the vanishing points
and thus vertical walls were determined Fig. 5 (a) and (b) make
clear that the measured GPS camera positions are sometimes sev-
eral meters off the correct positions. Please particularly note the
order of the positions in (a). After absolute orientation (c), the
camera positions are much more plausible.

5.2 Combination of Several Cameras and Additional Esti-
mation of Absolute Orientation

The following results for building 51 already introduced in Sec-
tion 3 we firstly demonstrate, that we can determine the relative
orientation for image sequences taken from different Micro UAVs
with different cameras at different times (August 2008 and July
2009 – cf. Fig. 1). Additionally, the resulting 3D model could
be upgraded to absolute orientation by acquiring suitable images
by a GPS camera from the ground. Fig 6 illustrates the precision
of the estimated orientation by comparing the absolutely oriented
3D model to the image from Google Earth at the same position.

6 OUTLOOK AND CONCLUSIONS

This paper presents an approach for robust estimation combining
consensus-based techniques such as RANSAC which allow to ob-
tain correct estimates also for extreme outliers (leverage points)

Average Variance Worst Best
GPS Cam 4.32m 7.41m2 12.16m 0.42m
Adjusted 3.44m 0.01m2 3.69m 3.26m

Table 4: Distances of initial and adjusted camera positions from
SAPOS reference positions.

(a) Original GPS camera positions shown in Google Earth.

(b) 3D relative model including facade planes and camera
positions.

(c) Adjusted camera positions shown in Google Earth

Figure 5: Building 33 of UniBw, Germany (a) Building in the
form of the reconstructed facade plane in Google Earth and the
camera positions measured via the GPS in the camera when tak-
ing images (b) 3D model with the facade plane and the camera
positions after relative orientation. (c) Camera positions after ab-
solute orientation.

with robust adjustment. We include the latter in an iterative al-
gorithm in the spirit of Expectation Maximization (EM), where
inliers from the E-step are employed to compute a better estimate
in the M-step which then lead to more inliers, etc.

We employ the robust approach to estimate relative and abso-
lute orientation even when much more than 50% outliers exist in
image matching or for occluded GPS measurements. Practical
results show the potential of our approach for robust estimation.

Until now, we only have made use of one type of GPS camera,
namely the Ricoh Caplio 500SE, which offers no access to the
raw data. Post processing would deliver more accurate camera
positions and thus give initial values with lower uncertainty. We
expect more consumer GPS cameras to be available in the near
future.

A basic limit of our approach are the occlusions of the GPS in ur-
ban areas, particularly as we need to get close to the buildings to
obtain highly detailed 3D models. Nevertheless, we have demon-
strated for several urban areas that it is still feasible. In addition to
the occlusions, also the satellite constellation is important. Under
uncertain conditions which can be quantified the Dilution Of Pre-
cision (DOP), the initial GPS positions are too scattered. We have
found that we need a DOP of better than 3 to obtain meaningful
results.

As the vertical direction is not very precisely determined even



(a) Absolutely oriented model (left) – Google Earth (right)

(b) Camera positions in Google Earth

Figure 6: Absolutely oriented 3D model of building 51 (a) Left:
Oriented Model – Right: Image from Google Earth with the same
orientation. (b) Camera positions in Google Earth (blue: terres-
trial images of GPS camera – red and green: images from Micro
UAVs.

for many GPS measurements, we plan to make use of the fact
that we aim at urban areas where many vertical lines exist. Thus,
we are at the moment including our scheme described in (Mayer
and Reznik, 2007) in our system. This allows to estimate the
vanishing points of the vertical lines very precisely and reliably
leading together with the calibration to the vertical direction.

Concerning future research, we note that no approach for image
matching, which is one foundation of our approach, can yet han-
dle at the same times large scale variances and wide viewpoint
changes. Yet, this is typical for combined image sequences, e.g.,
from the UAV and from the ground, that we use. While scale vari-
ances in sequences with little viewpoint changes can be handled
by SIFT Features (Lowe, 2004), which we have integrated into
our approach as one option instead Förstner Points (Förstner and
Gülch, 1987), no approach can handle larger viewpoint changes,
i.e., above 50◦, yet.
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