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ABSTRACT:

Today GPS aided inertial navigation is widely used and well studied in any aspects. The good short term properties of inertial data are
complemented by the long term stability of the GPS signal. A common approach is to use a Kalman filter for fusing GPS and inertial
data to constrain the inertial sensor drift. Although this is working well in many applications there is a need to find a similar solution
for navigation tasks in difficult environments with erroneous or no GPS data. Therefore a vision aided inertial navigation system is
presented which is capable of providing local navigation for indoor applications without GPS or could be used to bridge GPS dropouts
in urban or forested areas. A method is described to reconstruct the ego motion of a stereo camera system aided by inertial data which
in turn is used to constrain the inertial sensor drift. The optical information is derived from natural landmarks which are extracted and
tracked over consequent stereo image pairs. Using inertial data for the feature tracking effectively reduces the computational effort and
the uncertainties from mismatching by allowing smaller search areas. This is an important precondition for a robust tracking algorithm
running in real time. However, before fusing the data with a Kalman filter many aspects including synchronization and determination
of alignments of the sensor systems as well as the calibration of the stereo camera system have to be considered. The results of an
integration of optical and inertial navigation are shown on an indoor navigation task.

1 INTRODUCTION

For many applications in indoor as well as in outdoor environ-
ments accurate navigation is required. GPS aided inertial naviga-
tion is used to provide position and orientation for airborne and
automotive tasks. Although this is working very well it has major
weaknesses in difficult environments with erroneous or no GPS
data, e.g. urban or forested areas. Furthermore, this method is
not working in indoor environments as needed for robotic appli-
cations because without GPS data the integration of inertial data
leads to an unbound error grow resulting in an erroneous naviga-
tion solution. To restrain this error reasonable measurements of
an external sensor are needed. Some proposed solutions require
active measurements, e.g. radar, laser range finder, etc. or local
area networks which have to be established first (Zeimpekis et
al., 2003). On the other hand vision can provide enough infor-
mation from a passive measurement of an unknown environment
to serve as an external reference. A stereo based approach was
preferred to obtain 3D information from the environment which
is used for self localization and ego motion respectively. Both,
inertial and optical data are fused within a filter and provide an
accurate navigation solution. This work will show a framework
for a multi-sensor system regarding hardware and software inte-
gration. Furthermore some difficulties and possible solutions are
pointed out.

2 STEREO VISION

First of all, measuring in images means to have an exact knowl-
edge of the camera model and an additional nonlinear distortion
model (Brown, 1971). In case of a stereo vision system this is ex-
tended by the exterior orientation between the cameras. Several
methods for calibrating camera systems have been made. Many
of them use observations of predefined calibration grids to extract
all camera parameters with a complex bundle adjustment (Zhang,

2000, Tsai, 1987). Another way, eliminating problems with the
classic approaches is to use holographic pattern to achieve a reli-
able camera calibration (Grießbach et al., 2008).
The basic idea is to identify corresponding points in images of
stereo camera pairs in two consecutive frames. Calculating 3D
object points for the first stereo frame allows for reconstructing
the relative orientation change of the second frame.

2.1 Camera model
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Figure 1: Pinhole camera model

In projective space P mapping of a homogeneous object point
M̃ ∈ P3 to an image point m̃ ∈ P2 is defined with,

m̃ = PM̃ (1)

where P is a 3×4-projection matrix consisting of the parameters
of the interior- and exterior orientation of the camera.

P = K
[
R|t
]

(2)

with R, t describing the rotational matrix and translation of the
exterior orientation and the camera matrix K containing the focal



length f and the principal point u0, v0.

K =

f 0 u0

0 f v0
0 0 1

 (3)

Before applying the pinhole model lens distortion has to be con-
sidered. There are several distortion models available. The most
common is the radial distortion model by Brown (Brown, 1971)
considering pincushion or barrel distortion which is expressed as
follows, [

x̂
ŷ

]
=

[
x
y

]
(1 + k1r

2 + k2r
4 + k3r

6 + · · · ) (4)

with

r2 = x2 + y2 (5)

and xy
1

 = K−1

uv
1

 (6)

where x, y are normalized image coordinates calculated from the
image coordinates m̃ = [u, v, 1]T .

2.2 Triangulation

For reconstruction of a 3D object point from two images a pair
of corresponding image points m =

[
x, y
]T
,m′ =

[
x′, y′

]T as
seen in figure 2 is needed. Given these and the associated projec-
tion matrices P, P ′ leads to a homogeneous equation AM̃ = 0
with:

A =


xp3T − p1T

yp3T − p2T

x′p′3T − p′1T

y′p′3T − p′2T

 (7)

where piT are the rows of the projection matrix P . After solving
by singular value decomposition the object point M̃ is found.
This optimization minimizes the geometric error in projective
space P3. A better choice is to look at the image space R2. With
known fundamental matrix F this is done by using the epipolar
constraint m̃′T Fm̃ = 0 which minimizes the distance between
feature point and epipolar line. Because an exact solution for the
problem is costly to obtain the sampson approximation δ is used
to correct the feature point with m̂ = m − δm (Hartley and Zis-
serman, 2004). This is also a first good indicator for incorrect
features correspondences.
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Figure 2: triangulation with corrected image points

2.3 Move estimation

Having triangulated all image points from the first stereo frame
(k−1) to 3D object points M̃i these points can be projected into

the images of the consecutive frame k by adding a transformation
T between both frames.

m̃i(k) = P T M̃i(k − 1) (8)

with:

T =

[
R t
0 1

]
(9)

Taking corresponding image points m̃i from the second frame
leads to an optimization which minimizes the euclidean distance
in image space R2 and again gives the opportunity to check for
incorrect matched features. This is done by using a local opti-
mized RANSAC algorithm which gives the opportunity to sepa-
rate moving objects from the static scene.

2.4 Feature extraction

To perform aforementioned steps it is necessary to have a se-
lection of feature points which have a defined position and are
detectable over consecutive frames. Natural landmarks such as
corners, isolated points or line endings meet these requirements.
Harris proposed to locate these features by analyzing the autocor-
relation matrix A (Harris and Stephens, 1988).

A =

[
〈I2

x〉 〈IxIy〉
〈IxIy〉 〈I2

y〉

]
(10)

where Ix, Iy are the partial derivatives of the image intensity I .
The corner strength M is calculated with

M = det(A)κ trace(A)2 (11)

with κ as an empirical value between 0.04 and 0.15. Another
possibility is to look at the smallest eigenvalue min(λ1, λ2) of A
being a better indicator than M (Shi and Tomasi, 1994).

2.5 Feature matching

A feature can be described by its local neighborhood, refereed as
template. Although different correlation methods are used nor-
malized cross correlation (NCC) will be applied here to find a
match of this template within the search image.

NCC(x, y) =
1

n− 1

∑
x,y

(S(x, y)− S̄)(T (x, y)− T̄ )

σSσT
(12)

where T (x, y) denotes the template and S(x, y) a sub image of
the search image. Having real time applications in mind it is
certainly very important to restrict the search area as much as
possible. This is not only speeding up the process it also avoids
mismatching for example at repetitive structures.
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Figure 3: Paths for intra-frame and inter-frame matching



Assuming some good features have been extracted in the left im-
age of frame (k − 1) the next step is to find the corresponding
features in the right image (intra-frame matching). In this case
the search area can be confined to the epipolar line. Limiting the
distance of considered object points is also limiting the length of
the epipolar line and reduces the search area. The result of an
intra frame matching is show in figure 4.
A second step is to match both stereo frames. Equation (8) shows
how to restrict search areas for the inter-frame matching after cal-
culating the 3D object coordinates M̃i. The only thing needed is
some information about the transformation between the frames
to predict the feature positions in the second frame k. This infor-
mation as shown in the next section can be derived from inertial
navigation enabling for rather small search areas.

Figure 4: Stereo image with intra-frame matching

3 INERTIAL NAVIGATION

Inertial navigation systems (INS) consist of an inertial measure-
ment unit (IMU) containing 3-axis-gyroscopes and -acceleration
sensors as well as a computing unit to integrate the IMU signals
to a navigation solution. Two different types of mechanization
are used, the gimbaled platform and the strapdown mechaniza-
tion (Titterton and J.L.Weston, 2004, Savage, 2000). As strap-
down mechanization is affordable, lightweight and computational
power is available it is chosen. Figure 5 shows the mechanization
with the superscripts b and n standing for body- and navigation-
frame.
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Figure 5: Strapdown mechanization

It also shows possible difficulties when integrating accelerations
ab and angular velocity ωb as the bias terms ab

bias, ω
b
bias are not

only unknown but also not constant. This leads to a strong drift
for velocity vn, position sn and attitude qn

b if left uncompen-
sated. In addition the gravitation constant gn has to be taken into
account. The corresponding 22-dimensional state vector includes
7 parameters each 3-dimensional except the quaternion with 4
components.

x =
[
sn vn an ab

bias qn
b ω̂b ωb

bias

]T (13)

Quaternions were used for the attitude calculation because of
their compact rotation representation and there lack of singulari-
ties called the ”gimbal lock” compared to euler angles (Grewal et
al., 2000). A constant angular velocity and acceleration model is
used for the discrete non-linear system equations f which can be
described as follows,

f(x) =



sn + vndt+ an dt2

2
vn + andt

qn
b ◦
[
0,ab − ab

bias

]T◦ qn
b
∗+ gn

ab
bias

qn
b ◦ r

ωb − ωb
bias

ωb
bias


(14)

where dt denoting the integration time, q∗ the conjugate of the
quaternion and the operator ◦ describes a quaternion multiplica-
tion (Burchfiel, 1990, E. B. Dam and Lillholm, 1998). A first-
order integrator with r = 0.5

[
2 ω̂xdt ω̂ydt ω̂zdt

]T de-
scribes an approximation for the quaternion update.

3.1 Kalman filter

To estimate and compensate for various errors like drift, random
walk, bias, scaling, etc. independent measurements are needed.
Usually these (e.g. GPS) are fused with the inertial data by a
Kalman filter. This recursive filter estimates the state vector x of
a linear dynamic system from different noisy observations z with
w,v being white independent gaussian noise (Welch and Bishop,
1995, Ribeiro, 2004).

xk = f(xk−1) + wk−1 (15)
zk−1 = h(xk−1) + vk−1 (16)

Having non-linear state equations f and observation equations h
the extended Kalman filter (EKF) gives an approximation of the
optimal estimate by linearizing the non-linear system around the
last state estimate as shown in equation (17, 18).

Fk = ∇f |x̂k
(17)

Hk = ∇h|x̂k
(18)

time update: The time update equations propagate the current
state estimate and error covariance P forward in time, also re-
ferred as a priori estimate (−). Q denotes the covariance of the
process noise.

x̂−k = f(x̂+
k−1) (19)

P−k = Fk−1P
+
k−1F

T
k−1 +Q (20)

measurement update: This serves as input for the measure-
ment update which includes new measurements with uncertainty
R to obtain an a posteriori estimate (+).

x̂+
k = x̂−k +Kk(zk − h(x̂−k )) (21)

K = P−k H
T
k (HkP

−
k H

T
k +R)−1 (22)

P+
k = (I −KHk)P−k (23)

3.2 Unscented Kalman filter

Since the EKF is only considering first order linearization terms
it is not performing well for highly non-linear problems. There-
fore the scaled unscented Kalman filter (sUKF) uses determinis-
tic chosen sample points (sigma points) around the mean which



are propagated by the non-linear state- and observation equations
(Julier, 2002, Julier and Uhlmann, 2004, Van Der Merwe, 2004).
The sigma points are calculated as follows,

χ+
k−1,0 = x+

k−1 (24)

χ+
k−1,i = x+

k−1 +
√

(n+ λ)P+
k−1,i i = 1 . . . n

χ+
k−1,2n+i = x+

k−1 −
√

(n+ λ)P+
k−1,i i = 1 . . . n

wm
0 =

λ

n+ λ

wc
0 =

λ

n+ λ
+
(
1− α2 + β

)
wm

i = wc
i =

1

2 (n+ λ)
i = 1 . . . 2n

with the number of states n. Scaling parameters are defined by
β = 2 for gaussian distributions and λ = α2 (n+ κ) − n with
k usually set to 0. α determines the spread of the sigma points
around mean.

time update: The sigma points are propagated with the non-
linear state equations and recombined with weighting factors w
to the predicted mean and covariance.

χ−k,i = f
(
χ+

k−1,i

)
(25)

x−k =

2n∑
i=0

wm
i χ
−
k,i (26)

P−k,xx =

2n∑
i=0

wc
i

(
χ−k,i − x−k

) (
χ−k,i − x−k

)T
+Q (27)

measurement update: Similar to the time update the a poste-
riori estimate of mean and covariance are calculated.

γk,i = h
(
χ−k,i

)
(28)

εk =

2n∑
i=0

wm
i γk,i (29)

Pk,zz =

2n∑
i=0

wc
i (γk,i − εk) (γk,i − εk)T +R (30)

Pk,xz =

2n∑
i=0

wc
i

(
χ−k,i − x−k

)
(γk,i − εk)T (31)

K = Pk,xzP
−1
k,zz (32)

x+
k = x−k +K (zk − εk) (33)

P+
k,xx = P−k,xx −KPk,zzK

T (34)

Besides from being computational more costly than the EKF the
sUKF has many advantages. By being accurate to the third or-
der with gaussian inputs it produces more stable estimates of the
true mean and covariance. Furthermore, it behaves better in case
of unknown initialization values and analytic derivations are not
needed. With highly non-linear observation equations of the used
sensors just like parts of the state equations the sUKF ensures a
reliable navigation solution.

4 EXPERIMENTAL SETUP

A demonstrator for visual aided inertial navigation system has
been developed. The core component is a low cost MEMS-IMU

Figure 6: Sensor head with cameras, IMU and tilt sensor

(MEMS standing for Microelectromechanical system) which im-
plies a low quality gyroscope compared with mechanical, fibre
optic or ring laser gyroscopes regarding noise and bias stability.
On the other hand they are much cheaper, more robust and rea-
sonably smaller (Schmidt, 2009). The used IMU shows noise
terms of 0.035 deg/s and a bias stability of 7.4 deg/hr for the gy-
roscopes respectively 1.3 mg/ 70µg for the acceleration sensors.
The data rate is 410 Hz. In the current setup the INS is aided by
a stereo camera system with 200 mm base that provides incre-
ments of attitude and position. The combination with the used
lenses gives very good results for indoor environments.

Frequency max. 30 Hz
Sensor size 1360×1024
Pixel size 6.45 µm
Focal length 4.8 mm
FoV 42.8×34.5 deg

Table 1: Camera parameters

Additionally a 2-axis inclinometer with a noise of 0.027 deg is
also included to support the state estimation if the system is not
moving. It measures roll and pitch angles regarding an earth fixed
coordinate system being the only absolute unbiased measurement
in the process. The heading angle and all other states are without
absolute aiding and reliant on the stereo camera system alone. All
components are mounted to an optical bench to achieve a stable
setup.

4.1 Data flow

Figure 7 shows the combination of Kalman filter and optical sys-
tem which provides incremental attitude- and position updates.
Receiving IMU or tilt measurements the full filter cycle is com-
pleted including a check for plausibility of the data. For incom-
ing stereo images first the time-update is done. The a priori esti-
mate enables the tracker to perform a very fast and reliable inter-
frame matching. After triangulation the calculated move estimate
is used for the measurement-update within the Kalman filter.

Buffer

Prediction

(time update)

Stereo?

Measurement 

update

Chi2 test

Extraction
Matching

left-right

Matching

left-left

Matching

right-right

Triangulation Triangulation

Move 

estimation

Kalman filter Tracker

VIS

Figure 7: Data flow



4.2 Synchronization and real time issues

Fusing data as shown in section 3.1 requires synchronous mea-
surements. Because it is not possible to trigger any sensor the
asynchronous sensor data is grabbed by a FPGA-card generating
a time stamp for each incoming data set. This card is equipped
with various interfaces as RS232, trigger-inputs and -outputs, eth-
ernet, etc. Both cameras are connected to one trigger-output to
get synchronized images as well. An integrated GPS providing
GPS-position and -time enables to synchronize with UTC-time if
necessary.

 

Figure 8: Synchronization of grabbed data

The goal of this work was to build a system not only for log-
ging sensor data and process it offline but to handle the data on-
line. This includes data grabbing, image processing, data fusing,
logging, etc. For this reason a buffer concept was developed to
manage different processing times of diverse incoming data. This
buffer is also responsible for feeding the Kalman filter with time-
wise ordered data despite any latency times.

4.3 Calibration and alignment

Another, often underestimated problem is the complex alignment
procedure for the whole sensor system. First step is to calibrate
the stereo camera system as shown in (Grießbach et al., 2008). It
is now feasible to calculate the rotation between camera and tilt
sensor. Therefore the orientation of the camera system and the
tilt angles are measured with a few static positions in front of a
calibration chart.
Finding out about the alignment between camera system and IMU
is slightly more ambitious. Since the IMU is only measuring ac-
celerations and angular velocities a dynamic calibration is needed.
Comparing both, measured IMU angular velocities and calcu-
lated angular velocities from the camera system as shown in sec-
tion 2.3 the rotational alignment can be estimated. The translation
of the systems has to be estimated with a Kalman filter extended
by additionally states for the alignment parameters.
An absolute reference for the dynamic calibration move would
make it much easier to obtain the alignment parameters.

5 RESULTS

To show the capability of the system an indoor environment was
chosen providing triangulated markers which were not used for
navigation but only for validating the later result. The distance
from a start mark to a second arbitrarily mark seen by the cameras
had to be measured in real time without post processing the data.
A course off about 90 m length leading over two floors as shown
in figure 9 was selected. At the beginning of every run the system
was not moved for about 45 seconds to initialize the Kalman filter.

This corresponds to 360 stereo images taken with 8 Hz frame rate.
Due to a bottleneck within image processing this is the maximum
rate the system can cope with. After this time the filter has ”run
in” and walking the course could be started.

Figure 9: Path 3D-view

With normal walking speed of about 1.5 m/s the destination mark
was reached after 85-90 seconds with a final distance error of
20-50 cm for several runs. This difference is mainly caused by
phases where no or little features could be seen resulting in no or
low quality vision data and as a consequence an increased error
grow from integrating the IMU measurements. This situations
occur through difficult and changing lighting conditions, a low
texturing at some areas or for example at narrow stairways with
all objects to close for the stereo system. In good conditions the
tracker uses up to 100 features and achieves a frame to frame
position error of 5 mm respectively 2 mm for the viewing axis
and an attitude error of about 0.2 / 0.1 degrees for typical indoor
applications. This strongly depends on the number and distribu-
tion of the seen features. Figure 10 shows the floor plan with the
overlaid trajectory calculated from the system.
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Figure 10: Path top view

It is to stress that the experiment was not conducted in protected
environment but during working hours with many people interfer-
ing the optical measurements. Due to the before mentioned build
in safety mechanisms while matching, triangulating and move es-
timation the system was working very robust. Mismatched fea-
tures on moving objects are also prevented by using the a priori
estimate from inertial navigation for inter-frame matching.



6 CONCLUSION

A system has been presented combining inertial- and optical nav-
igation. In doing so the disadvantages of the individual systems
are compensated by the other. Inertial navigation error grow is
significantly reduced whereas the performance and reliability of
the optical navigation is increased. Although the system is work-
ing at 8 Hz frame rate further work has to be done to speed up
some parts of computational costly image processing. The pro-
posed system provides a robust solution for navigation tasks in
difficult indoor environments and is also conceivable for support-
ing conventional GPS-INS navigation. Future work will address
this issue for outdoor applications. Important points are also the
integration of other external sensors e.g. barometer as well as
improvements for the optical navigation.
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