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ABSTRACT: 
 
 
Urban flooding is an increasingly alarming issue in terms of public safety and property damage. Climate change and its possible 
effects on the occurrence of more frequent extreme weather events have become an important topic in the area of global politics, 
science and engineering of today’s world.  The proper design of urban drainage systems and analysis of their hydraulic performance 
to secure flood protection in urban areas is a challenging task of urban water management. High resolution surface data describing 
hydrologic and hydraulic properties of complex urban areas is the prerequisite to more accurately describe and simulate the flood 
water movement and thereby to take adequate measures against urban flooding. LiDAR (Light detection and ranging) point cloud is 
an efficient way of generating high resolution digital surface model (DSM) of any study area. This paper presents an approach to 
segment LiDAR point cloud into ground and non-ground points based on slope change, height variation and standard deviation of 
neighbouring points. The non-ground points are later classified into buildings and trees by using an approach based on surface 
roughness and planar component calculation. Streets play an important role in terms of surface runoff generation. A semiautomatic 
approach has been developed to extract street point candidates from LiDAR data. A knowledge based expert system has been 
implemented to identify impervious surfaces (other than street) and grassland. Finally future ideas will be described to detect other 
surface drainage elements such as property boundary walls and slope information in the neighbourhood of the street as they are 
believed to guide the flood water flow and influence their possible intrusion into the private property (garage, basement). 
 

1 INTRODUCTION 

1.1 Motivation 

The history of urban drainage goes back to some thousand 
years. Historical evidences suggest that ancient civilizations like 
Indus, Greeks and the Romans put as much importance to urban 
drainage as we do in our modern civilization. The Indus 
civilization flourished in the Indus river Valley in 3000 BC and 
Harappa and Mohenjo-Daro were the two important cities in 
this valley. Archaeological evidences and historical accounts 
revealed that this both cities were equipped with adequate urban 
drainage system in order to facilitate collection of rain water 
and conveyance of waste water and later transport them to Indus 
River. Similar evidences of urban drainage system have been 
reported in the Persian, the Mesopotamian Empire and the 
Minoan. People of the ancient civilization was well aware of the 
hazard of urban flooding and the necessity to drain out waste 
water and pollution to keep the living environment safe and 
healthy which in turn   prompted them to design the  drainage 
systems even centuries ago. The same spirit and philosophy of 
human civilization continued through medieval to the modern 
age. The urbanization process became massive and to cope up 
with the drainage facility,   designing and maintenance of urban 
drainage system became more complex than ever before.  
 
Conventional flood simulation models are not adequate enough 
to simulate the flood water flow phenomena in the urban area in 
case of excessive rainfall according to the requirement of 
European Standard EN-752 (Ettrich, 2005). Most of the models 
do not properly address the problem of the interaction of water 
between sewer and surface which resulted in inadequate 
handling of flooding scenario. The new methodology which is  

developed in the EUREKA-project RisUrSim (Schmitt, et al., 
2004), solves this problem on the basis of shallow water 
equations solved on triangulated high resolution surface grids. 
Street inlets and manholes are assumed as the exchange nodes 
between the sewer and the surface which are located in the 
computational grid. Water that escapes the sewer during 
excessive rainfall is further propagated on the surface raising 
the demand of detailed surface information. Spatially densed 
topographical information is needed to build a model suitable 
for hydrodynamic runoff calculations in urban areas in addition 
to the detection of elements like houses, curbs, etc. that guide 
the runoff of water. Airborne data collection methods offer a 
great chance to economically gather densely sampled input data. 
The core focus of this research project is to construct detailed 
surface representation of a large area to support urban flooding.  
‘Dual drainage’ is a term mostly   used along with urban flood 
simulation techniques where pipe flow and surface flow are 
combined. A number of literatures are available describing this 
dual drainage urban flood simulation model. In most of the 
cases, these works either cover very small part of surface area 
(Street cross section) or relatively big area having lack of 
adequate integration of GIS and remote sensing technique. In 
today’s research in the field of Geosciences, Hydrology and 
Environmental science integration of remote sensing and GIS 
technology has put an immense impetus of exploring every 
possible aspect. This research aims to integrate advanced 
remote sensing technology (airborne LiDAR data) and some 
forms of field data within GIS boundary to better visualize and 
characterize large urban area as accurately as possible. This is to 
mention that, the goal of the research work is to support urban 
flooding i.e., to make a supplementary platform with detailed 
information to represent surface of a large area which will 



eventually act as an input to dual drainage flood simulation 
model. 
 
1.2 Scope of the work 

 
Urban Flooding has become an important issue in urban 
drainage planning and operation. The proper design of drainage 
systems and analysis of their hydraulic performance to assure or 
improve flood protection require accurate simulation models.  
 
The existing urban flood modelling and simulation techniques 
are based on the detailed representation of the underground 
sewer network and the modelling of sewer flow is done by 
dynamic flow routing. At the same time, the surface data to 
describe relevant rainfall-runoff processes, being the driving 
force of urban flooding, are still very coarse. It has been 
recognized, however, that surface flow processes heavily affect 
the occurrence and extend of flooding both in terms of water 
levels and damage. Modeling of urban flooding therefore 
requires a more detailed representation of the catchment area on 
the surface. Available surface data, however, are extremely 
heterogeneous, fragmentary and highly unstructured. Requiring 
innovative and efficient methods of data mining and processing, 
visualization techniques are a promising approach to generate 
an adequate data base for modeling and simulation of urban 
flooding (Aktaruzzaman, M. and Schmitt, T., 2009). 
 
The concept of urban drainage through minor system, i.e., 
underground pipes and major system, i.e., parts of street cross-
section was introduced in the eighties in North America 
(Djordjević, S. et al., 2004). The interaction of water between 
this major and minor system through a guided way is popularly 
know as dual drainage  
 
In the meantime advancement has been made in the flood 
simulation techniques and there has been significant 
development in the data acquisition technologies   which have 
enabled detailed, explicit and accurate handling of minor-major 
system reaction (Tomičić et al., 1999 ; Prodanović, 1999). The 
introduction of GIS based technologies in addition to improved 
simulation techniques have helped designing technically sound  
minor-major system which resulted in more reliable urban 
flooding simulation and realistic estimation of the   
consequences (Schmitt et al., 2002). 
 
 
 
1.3 Related Work / Literature Review 

There are literatures available describing urban flood modelling 
using LiDAR data. Most of them deal with river flooding. 
Abdullah et al., (2009) described DTM generation process by 
using open source software ALDPAT. They excluded buildings, 
bridges and trees before applying flood simulation model. 
Tsubaki and Fujita (2010) generated detailed surface model 
from LiDAR to feed it into flood inundation modelling. Their 
work focuses on river flooding and presents an efficient way to 
generate unstructured gridded representation of the urban 
topology. Haile and Rientjes, (2005) described the sensitivity of 
LiDAR DEM resolution on urban flood modelling. 
 
 In our research work we are particularly aiming at urban 
flooding caused by excessive rainfall and seasonal storms   
causing failure to existing drainage capacity. Flood inundation 
modelling is not the scope of the study but to better support the 

inundation modelling by generating high spatial resolution 
surface data with objects detailing and surface characterization. 
Schmitt et al., (2004) introduced the concept of urban surface 
detailing in a small area and connected it to urban drainage 
modelling. They generated high resolution surface data of a 
small street area by manual data collection. Ettrich (2007) 
described detailing of complex urban areas including subtle 
surface distinction such as street, curbs and sidewalls. He 
extracted buildings and streets from LiDAR data manually by 
giving polygonal inputs.  
 
In our research work emphasis has been given on automatic 
filtering of LiDAR data followed by automatic object 
classification. Liu (2008) presented literature works related to 
LiDAR data for DEM generation. LiDAR data is a convenient 
source from where digital terrain information can be made.  
Raber et al., (2007) described that LiDAR data have become 
prominent source of information to generate digital terrain 
model and have been used in urban modelling and hydrological 
modelling. Hodgson et al., (2005 )  described that the main 
purpose of LiDAR data collection has been   to generate terrain 
modelling. Forlani and Nardinocchi (2007) also described the 
same importance. Hodgson and Bresnahan (2004) showed that  
people of spatial science  is not only preferring but also making 
it a standard practice to generate terrain model from LiDAR 
data. Curiosity may arise, since when people have been using 
LiDAR data?  According to Flood (2001),  since 1960s people 
have been using it. Bufton et al., (1991)  and krabill et 
al.,(1984) described that  research on LiDAR system to collect 
topographic data started from 1980s.  According to Pfeifer and 
Briese (2007), LiDAR system emerged commercially in mid 
1990s.  With the  gradual improvement and development in 
LiDAR system , its users community has also increased. Sithole 
and Vosselman (2003) described that over the last decade there 
has been a significant increase in the use of LiDAR  data for 
digital elevation model generation. Many authors , such as 
Lloyd and Atkinson (2002), Wack and Wimmer (2002) and 
Kobler et al., (2007)  described the application of LiDAR to 
generate terrain model in different example cases. 
 
Airborne LiDAR data falls  under the category of active remote 
sensing. LiDAR data has advantage over traditional 
photogrammetry  for DEM generation specially in urban and 
forest areas as LiDAR sensor takes data from single sensor 
while for photogrammetry it is necessary to view the area from 
two locations. Stoker et al., (2006)  and Barber and Shortrudge 
(2004) described that LiDAR pulse returns not only from 
buildings and tress but also from power lines, telephone polls 
and  birds. But bare earth points are always topic of interest to 
generate DTM. That is why, it is an important task   to filter or 
extract bare earth points from LiDAR data. Many filter methods 
have been developed to classify or separate raw LiDAR data 
into ground and non-ground points. Romano (2004)  described 
that almost none of the filtering algorithm is 100% accurate. 
Chen (2007) showed that manual interaction is still needed to 
improve filtering algorithms. LiDAR technology is growing in 
fast pace  and  large amount of data acquired by  this technology 
must be handled in an efficient way. Sangster (2002) described 
that high density LiDAR data has increased the data volume and 
has created challenges in terms of data storage, processing and 
interpretation. Chen (2007) described that gradual drop of the 
cost of LiDAR data has made it  popular and convenient for the 
users. 
 
 



2 MATERIALS 

The study area was part of Kaiserslautern University and its 
surroundings. Raw LiDAR (light detection and ranging) data 
having spatial resolution of 0.25 meter was acquired form BSF 
SwissPhoto. It means that the density of the LiDAR point cloud 
is 4 points per square meter which is sufficient enough to 
describe many small surface properties apart from buildings and 
big objects.  Other available supporting data are city polygon 
maps of buildings and streets, aerial imagery of 10 cm spatial 
resolution. Figure 1 shows the aerial image of the study area. 
  

 
  
 
            Figure 1:  Aerial image of the study area 
 
 

3   METHODOLOGY 

 
3.1 Object Extraction                        

Filtering is the process of separating off-terrain points 
(buildings, trees and other objects) from on-terrain points 
(DTM). A moving window based spatial filter has been 
designed based on slope change, height variation and standard 
deviation of neighbouring points in the raw LiDAR point cloud. 
In LiDAR community filtering generally means ‘morphological 
filtering’. Morphological filtering is operated only on the grid 
data (image pixels). This morphological filtering is a special 
type of classification where the main objective is to classify 
LiDAR data into two classes, namely ground and nonground 
points (Vosselman, 2000). The ground data points are used for 
generating DTM and the nonground points are used for object 
detection and subsequent classification.  Shan and Sampath 
(2005) described a filter mainly for urban areas. It determines 
the nonground points along the LiDAR scan line.  There are 
many morphological filters that have been developed to separate 
ground and nonground points are based on the characteristics 
such as elevation and slope difference of LiDAR points. Zhang 
and Whitman (2005) developed a filtering method based on 
elevation threshold. Vosselman (2000) developed a slope-based 
filter. Some researcher introduces new techniques in their 
filtering algorithm. Haugerud and Harding (2001) proposed a 
filter based on local curvature whereas Passini and Jacobsen 
(2002) presented a filter based on linear prediction method.  In 
this paper a new filtering algorithm has been proposed which is 
not a morphological type filtering, rather a kind of spatial 
filtering operated on raw LiDAR point cloud. Besides 
considering elevation and slope criteria of ground points, 
partitioning of point data along Z direction (Height) on a 
neighbourhood scale and special security checking to confirm 

the first point as either ground or nonground.  The special 
security checking involves calculation of standard deviation of 
the points in each partitioned layer. The variation of standard 
deviation up to a specific threshold and position of the first 
point confirms itself as ground or nonground point. Shan and 
Sampath (2005) assume the first point as ground point and 
validate the assumption by one-dimensional bidirectional filter. 
The partitioning of LiDAR points along the height on 
neighbourhood scale gives the intuitive proportional 
distribution of ground and nonground points and their number 
ratio. This information along with slope and height criteria 
helps better to classify points when some parts of the urban area 
have really complex pattern with varying and erratic object 
shapes and heights.   
 
 
 
 
 

 
Figure 2: Objects (Buildings and Trees) extraction from LiDAR 
point cloud. Figure at the left shows unstructured LiDAR data 
and figure at right shows extracted objects. 
 
 
Taking object points out of the point cloud   and filling those 
gaps with appropriate interpolation method is a way to generate 
digital terrain model (DTM). Placing the extracted objects again 
on the DTM gives birth to the tern DSM (Digital surface 
model). The objective of object separation and subsequent 
classification of buildings and trees was to support the idea that 
the rain water falling on the roof top will go directly to the 
sewers and in case of trees there will be initial moistening and 
interception before the water touches ground. Figure 2 shows 
raw LiDAR point cloud (left) and the extracted objects (right) 
after applying our filtering algorithm. 
 

 

 
3.2 Object Clustering 

After extraction of non ground objects from LiDAR point 
cloud, attention was paid to the classification of the objects. 
Work has been done on the separation of buildings and 
vegetation. Most of the works use a variety of dataset such as 
infrared imagery, colour imagery, LiDAR data and combine 
them together to separate the objects.  
 
Several studies have shown that LiDAR data has the potential to 
support 3D feature extraction, especially if combined with other 
types of data such as 2D GIS ground plans (Brenner and Haala, 



1999; Weidner and Förstner, 1995). The calculation of DTM 
from a DSM with the help of image matching is describes in 
Passini and Jacobson (2002). The use of reflectance-based 
identification is described in Hug (1997). Oude Elberink & 
Maas (2000) describes the use of anisotropic height texture such 
as the co-occurrence matrix and contrast texture measures in 
LiDAR data used for unsupervised classification. This method 
allows to remove the vegetation. In this work an attempt has 
been made to separate buildings and trees from LiDAR point 
cloud only.  The algorithm is based on the idea ‘to make packet 
of all visible clusters’ and later an individual treatment was 
applied to each of the cluster to recognize their patterns in terms 
of building and tree.  
 
 
 

 
 
    Figure 3: Automatic object clustering technique 
 
 
 
The algorithm starts with the first numerical point of the dataset 
supplied as text (*.txt) file to the system. Let the point be P1. P1 
searches the nearest point P2 within a given threshold value. 
Then P2 searches its nearest point P3 within the threshold and 
stores all the points in a packet until the last point Pn does not 
find any point within given proximity. The formation of a 
‘cluster packet’ is thus completed and the algorithm then fixes 
the next point sequentially from the text file list and allows it to 
grow into a new cluster.  When the point P1 does not find any 
point in its threshold proximity, it makes a cluster in itself. After 
making segmentation of all the visible clusters, each of the 
‘packet clusters’ was investigated. Figure 3 shows the automatic 
object clustering technique. 
 
 
 
 
3.3 Object Classification by Pseudo gridding approach 
 
The object clustering approach not only ‘packets’ an object but 
also gives each packet a numerical identity. This numerical 
identity helps better classify the object followed by the ‘Pseudo 
gridding’ algorithm.  Pseudo gridding is an approach to break 
the whole objects into small square blocks (Figure 4). Then 
each of the small grids was checked to designate that grid as 
either ‘building’ or ‘tree’. Height profile and standard deviation 
of z values (height) of the points within a grid were the criteria 

that were investigated for each grid. A given threshold of height 
difference and standard deviation assign each grid as either 
building or tree. The assumption behind this checking is that 
tree surfaces have more irregular height profile whereas 
building surfaces have regular height profile. This is only the 
general assumption. Many roof tops have an irregular surface 
due to the presence of chimney, solar panel or water tank.  
Normally sloped roofs also have smooth surfaces which can be 
detected by pseudo grid approach. But situation turns complex  
 

 
               Figure 4:  Concept of Pseudo Gridding 
 
when trees and buildings are attached together or even worse 
when trees overhang on the buildings. Pseudo grid is an 
efficient approach to separate buildings and trees even when 
they are attached together. Breaking down the whole cluster 
object into smaller parts help to draw satisfactory partition 
between building and tree.  The pseudo grid approach is not an 
absolute error free algorithm. Sometimes particular grid shows 
anomalous behaviour   being a part of same object.  This type of 
cases requires some adjustment as shown in Figure 6. 
 
 

 
 
 
Figure 5:  Final decision objects after grid adjustment 
 
 
In figure 5 (left) the presence of blue grid (tree) in the middle 
surrounded by red grids (building) is a weird representation   of 
the whole object as building. The presence of chimney or water 
tanks have resulted in rough surface and height change more 
than threshold set for detecting building object.  An automatic 
adjustment has been implemented to handle this kind of 
situation.  The automatic adjustment algorithm is based on the 
idea that any grid takes on the property of neighbouring grids. 
Thus in figure 5, the central blue grid has been adjusted as red 
grid following the existence of surrounding red grids. Figure 6 
shows the object classification followed by pseudo gridding 
algorithm of the whole study area where red represents building 
candidate points and blue represents tree point candidates. 
 



 
Figure 6: Object classification after pseudo gridding in the point 
cloud (Building (red) and tree (blue)). 
 
 
3.4 Classification refinement by planar analysis 
 
Planar analysis follows the pseudo grid approach and attempts 
to capture the planar information of an object cluster. Some 
object cluster has highly heterogeneous point cloud distribution. 
For example, when any object cluster contains one building and 
more than one tree and thus the relative volume of tree point 
cloud is large, in that specific case pseudo gridding performs 
poorly. Planar analysis is a method based on principal 
component analysis to identify flat regions in a point cloud. A 
principal component analysis of a given set of points in 3D 
point cloud shows the direction of mutually orthogonal vectors 
(eigenvectors) and their relative strength (eigenvalues) (Shan 
and Sampath , 2005). If a set of points has two dominant 
eigenvalues and the third value is nearly zero, those points said 

to be on a plane. Let a set of points M  be denoted by iX  

(i=1,………….., m) and letX  be their mean vector. The 
covariance matrix is calculated as: 
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=

                             (1) 

The eigenvalues1λ , 2λ , 3λ  and their corresponding 

eigenvectors  1Λ , 2Λ  and 3Λ . 

If [ ] ξλλλλ <++ )( 3211 , then set of points M is planar, 

where ξ is a small number. Figure 7 shows one object cluster 

with apparently three objects attached together. Because of its 
highly unstructured pattern pseudo gridding failed to 
distinguish building and tree and treated the whole object as 
tree. 
 

 
Figure 7:  Object cluster classified as tree (blue) after 
pseudo gridding. 
 

 
 

Figure 8:  Object cluster classified as building (red) and   tree 
(blue) after planar analysis. 
 
In figure 8, it is clear that same object cluster has been classified 
into building and trees after applying planar analysis method.  
 
3.5    Spectral information integration 
 
Spectral information integration (SII) technique involves 
mapping spectral value from image pixel to LiDAR point data. 
This is an approach of exploiting spectral information from 
image pixel and then to correct the misclassified points in an 
object clusters (if there is any). Consecutive application of 
pseudo gridding and planar analysis classified most of the 
object cluster accurately with the exception of few object 
clusters. Figure 9 shows the classified buildings and trees in the 
study area after applying planar analysis algorithm. 
 These exceptional clusters were both building cluster having 
few misclassified points inside it and tree clusters showing 
sudden flat zone on the edge. The reason could be the presence 
of several chimneys and dormer windows on one rooftop and a 
sudden flat region at the edge of any tree object.  
SFI methodology attempted to identify those points first by 
looking at the geographic coordinates of those misclassified 
points. As both the LiDAR point cloud and the aerial image 
were geo-referenced to same coordinate system (Gauss Kruger- 
3), linking the misclassified points to the corresponding image 
pixels was done through an automatic routine.  
 
 



 
Figure 9: Object classification after pseudo gridding and planar 
analysis in the point cloud (Building (red) and tree (blue)). 
 
A colour index (CI) was calculated for each pixel and a 
threshold value of that colour index was chosen that could 
distinguish building and tree on spectral basis. The formula of 
the CI is as, 
 

)( bluegreenredgreenCI ++=                     (2) 

 
 

 
Figure 10:  Building object before applying SFI technique 
 

 
 
Figure 11:  Building object after applying SFI technique 
 
 
It was investigated that, CI value less than 0.35 corresponds to 
building pixel whereas CI value equal or more than 0.35 
corresponds to tree pixel. In figure 10, a building object 

contains mixed type of points namely building points (red) and 
tree points (blue). In figure 11, the same building object has 
been cleaned automatically after the application of SII 
algorithm.  
 
 
 
 

 
4 RESULT AND ACCURACY 

 
 
 The final result of the classified map after applying pseudo 
gridding, planar analysis and spectral information integration is 
shown in figure 12. To determine the accuracy of the classified 
map, an error matrix was computed. An error matrix is a matrix  
 
 
 
 
 

 
 
Figure 12: Object classification after pseudo gridding, planar 
analysis and spectral integration approach in the point cloud 
(Building (red) and tree (blue)). 
 

             
      
Figure 13:  Aerial image of part of the study area where object 
classification was investigated 
 
or table that displays statistics for assessing image classification 
accuracy by showing the degree of misclassification among 
classes (Glossary of remote sensing terms, Canada centre for 
remote sensing). The error matrix is a way to compare two 



thematic maps, one a ‘ground map’ (the reference map) and the 
other is a map produced by automatic classification algorithm 
(the classified map). In our case the reference map was the 
orthophoto of the study area in the figure 13 and the classified 
map was the final product of the classified LiDAR point cloud 
showed in figure 12.  
 
 

 
Table 1: Error matrix of the classified map against reference 
map 
 
 
  Overall accuracy =   (87+20+179)/300  
                              =   95.33 % 
 
 
 
 Building Tree Ground 

User’s accuracy (%) 93.5 80 98.35 

Producer’s accuracy (%) 94.57 90.91 96.24 

Errors of omission (%) 5.43 8.09 3.66 

Errors of commission (%) 6.5 20 1.65 

 
Table 2: Calculation of different accuracies 
 
 
 
Table 1 shows the error matrix of the classified map against 
reference map and table 2 shows the calculation of user’s 
accuracy, producer’s accuracy, errors of omission and errors of 
commission. The overall accuracy turned out to be 95.33%.  
 
 
 
 
 

5 STREET EXTRACTION 

         
 
Street detection on the Digital surface model is an important 
and necessary task for the preparation of a detailed surface 
database to simulate flooding phenomena in urban areas. Street 
surface is a place where runoff occurs and interaction between 
sewer and surface water takes place. Manholes and water inlets 
are the gateway that facilitates these interaction phenomena 
making the concept of urban flooding characteristic. Another 
important emphasis of this research is the detailing of streets, 
sidewalks and the height of the curbs. Usually height of the 
curbs range from 5 to 10 cm. At the same time LiDAR data has 
vertical accuracy of 3 to 5 cm. It is a challenging task to 
determine the curb height accurately because in many places the 
curb height is too small or there is no curb at all. The curb 
height is important in simulation model because of the location 
of street inlets and the possible entering of the water from the 
street to the private ground. Street inlets are located at the foot 

of curb wall. In case the street inlets are located on the top of 
curb wall by mistakes, flood modelling is going to be affected. 
Road extraction from LiDAR data is not a new idea. In fact 
some works has been done on this issue. Researchers have 
adopted two approaches namely automatic and semi-automatic 
approaches to detect road in the LiDAR data. In automatic 
approaches, people have mostly followed the conventional way 
in computer vision. It means converting the LiDAR point cloud 
into gray scale image as a first step, later applying digital image 
processing technique on the gray scale image. In semiautomatic 
approaches people have tried to combine existing vector road 
maps and raster LiDAR image to detect road network. In this 
paper a semiautomatic approach for detection of road has been 
described. This approach combines the vector data and raw 
LiDAR point cloud without converting it into gray scale image 
or any other raster format. The idea behind this approach is that 
raw points preserve the originality of the surface before they are 
converted to any other formats.  At first the centreline of the 
road network from vector maps are collected.  Taking this 
centreline as seed point’s information, road points are extracted 
from LiDAR point cloud.  The road extraction algorithm 
actually encapsulates the points in both sides of the centreline. 
The point searching region is limited by the input of the road 
boundary lines from road polygon maps.  The centrelines are 
provided as point data as input to this algorithm.  In Figure 14, 
a street segment is consisted of three points O(x0,y0), 
O1(x1,y1) and O2(x2,y2) .  The algorithm starts with O(x0,y0) 
and searches for point Q and P on both sides of O respectively 
by  using simple trigonometric formula  dx=rcos(ȅ) and 
dy=rsin(ȅ) . The value of r is the distance between centreline 
and the intersecting point of road boundary and OQ.  Same 
procedure is followed to search the points Q1 and P1. A search 
algorithm is implemented to extract the points bounded by the 
rectangle PQQ1P1.  The street extraction algorithm is guided by 
points on the centreline and goes for drawing next rectangle 
P1Q1Q2P2 and subsequently extracting points bounded by that 
rectangle. Figure 15 shows the final stage of road extraction and 
closer view at the road candidate points. 
 
 
 

 
 
                        Figure 14: Street extraction 
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Figure 15: Street candidate points after extraction from LiDAR 
data 
 
 
 

6 IMPERVIOUS SURFACE  DETECTION 

 
 
 Impervious surfaces such as surfaces having concrete and 
asphalt layer on top do not allow water to percolate through 
them. In case of precipitation, this surface produces maximum 
runoff   leading the water into drainage network. As urban 
flooding mainly caused by ‘rainfall overwhelming drainage 
capacity’, that is why proper identification of impervious 
surfaces is an important task to model urban flooding. 
Urbanization helps grow amount of impervious surfaces. Many 
local, state and federal regulations have attempted to limit the 
development of impervious surfaces by adjusting zoning 
regulations (Hodgson et al 2003). Some local jurisdictions 
apply a stormwater levy (tax) based on the size and percentage 
of a parcel that is impervious (Kienegger, 1992). Therefore an 
accurate method to detect impervious surface is also useful for 
proper planning, design and urban economic factors.  
Considerable remote sensing research has focused on accurately 
mapping impervious surfaces. Ridd (1995), Ji and Jensen 
(1999), and Wu and Murray (2002) mostly used statistical 
classification approaches with moderate resolution satellite 
imagery. Hodgson, et al., (2003) used high resolution aerial 
image and LiDAR height data.  
 
In this work, a knowledge based expert system (KBES) has 
been implemented to detect impervious areas using high 
resolution aerial image (10 cm by 10 cm) and LiDAR   intensity 
data unlike Hodgson, et al., (2003).Figure 16 shows the study 
area where the KBES system was implemented. An object-
based image segmentation is the pre-requisite to apply any 
knowledge based classifier in our method. The term 
‘segmentation’ means subdividing objects into smaller 
partitions. Chessboard segmentation was applied by using 
definiens 8.0 (Definiens, 2010). Chessboard  segmentation 
algorithm breaks the image object into equal squares of a given 
size.  Chessboard algorithm in the definiens can also be guided 
by providing external vector maps which help break the image 

according to input vector objects instead of equal sizes square. 
Figure 17 shows the external vector map of the city parcel. This 
option in definiens was utilized to segment the image of the 
study area according to the boundary lines of the parcel map of 
the same area. Figure 18 shows how the aerial photo of the 
study area has been segmented followed by the application of 
chessboard segmentation. Chessboard segmentation is in fact 
not truly object based segmentation.  
 

 
 
 Figure 16:  Aerial image of part of the study area  
 

    
Figure 17:  City parcel map of the study area  
 
Object-based segmentation takes into account the homogeneous 
pixels in neighbourhood basis and forms image primitives. 
Multiresolution segmentation satisfies the purpose of object-
based segmentation and it was carried out as a second step 
segmentation after performing chessboard segmentation. 
Multiresolution segmentation breaks each segmented parcel 
object into homogeneous object primitives. The size of these 
primitives can be controlled by user defined shape and size 
factor in definiens.  The software also has option for assigning 
different weights to different wavebands. Figure 19 shows  
Multiresolution segmentation and example decision rule for 
image objects classification. 
 



     
      
     Figure 18:  Chessboard segmented image  
 
 
  
 
 
When the image segmentation is complete, we still do not know 
the properties or features of each segmented object and also 
which objects belong to which classes. Studying and 
investigating the properties/ features of each segmented objects 
are the initial steps before developing knowledge based rule 
sets. Features or properties of a segmented image object are 
attributes representing specific information of that particular 
segmented object.  
 
Definiens software provides two types of classifiers for 
assigning class labels to each segmented objects. They are rule 
set  based classifier and nearest neighbour classifier. In this 
work rule set based approach has been opted for.  In rule set 
approach one can define rules by using expert knowledge to 
guide the classification process. The datasets used in this work 
were aerial image and LiDAR intensity data. The aerial image 
has 0.1 m spatial resolution with three colour channels, blue, 
green and red. Our rule based approach targets to identify two 
land cover types, pervious and impervious. As street/road has 
already been detected, we excluded them from the search 
domain inside the whole image.  The total number of 
wavebands used for rule set development was seven namely 
three wavebands from RGB image, three PCA bands computed 
from RGB image and LiDAR intensity band. We determined 
that mean values of   layer 3 (blue band of RGB) can distinguish 
most of the buildings including garages and some paved 
surfaces attached to buildings. Mean values of layer 4 (LiDAR 
intensity band) could capture pervious surfaces (e.g., grassland, 
soil and bush) of the study area including the grassland under 
shadow after setting a threshold value. The rest of the 
unclassified areas (mainly impervious area under the shadow) 
were identified with PCA band 3 feature with a suitable 
investigated threshold value.  
Figure 20 shows the classified pervious and impervious areas. 
 

 
 
 
Figure 19: Multiresolution segmentation and  
example decision rule for image objects classification. 
 
 

 
 
Figure 20:  Classified pervious and impervious area.  
 
 
 
 
 
 
                   
 

7   FUTURE IDEAS 

 
One of the objectives of this research work is to generate 
detailed urban surface representation as accurately as possible.  
Detection of macro objects such as buildings, trees and streets   
from LiDAR data alone or with the help of multispectral images 
has been a research topic for a decade. On the other hand, very 
few works have been done to detect micro objects such as street 
and pavement curbs, property boundary walls and fences next to 
the street. Abdullah, A.F., et al (2009) described the detection 
and construction of micro objects such as street divider and 
ramps by giving city GIS data as polygonal input which is not 
an automatic process. In this work we are aiming at detecting 
street curbs, boundary walls, fences   and slope information in 
the street neighbourhood in an automatic way with the help of 
LiDAR and multispectral image. Research work is in progress 
on how to develop a framework based on wavelet analysis and 
tensor voting approach to detect break lines due to the presence 
of street curbs and boundary walls.         
 
 

If (blue < 125) AND 
    (intensity > 80) 
 
THEN 
Segment= pervious 

impervious 

pervious 



      8 CONCLUSION 

 
This paper has presented an innovative but simple LiDAR 
filtering algorithm to separate on-terrain and off-terrain points. 
This paper also presents an object clustering algorithm to 
facilitate classification process, pseudo gridding algorithm to 
classify objects followed by planar analysis and spectral 
information integration techniques in an automatic manner. It is 
necessary to mention here that object extraction from point 
cloud data was done through designing a moving window based 
spatial filter. Like many other filtering algorithms, it searches 
object on the basis of height information but with the exception 
of additional height partitioning and standard deviation criteria. 
The object clustering algorithm is based on the concept of linear 
distance calculation among points within a certain threshold to 
put them into a ‘Packet’ or ‘Cluster’.  The pseudo gridding 
algorithm breaks the cluster down to small square grid and then 
checks the height profile of each grid in order to designate the 
whole cluster either as building or tree. The resulted 
classification by pseudo gridding was further refined by planar 
analysis and spectral information. Street extraction from LiDAR 
data was done through a GIS database guided approach which 
was actually a semiautomatic algorithm. A knowledge based 
classifier was designed to detect pervious and impervious 
surfaces. Finally future ideas have been discussed on how to 
detect other micro objects on the urban surface elevation.  
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