LIDAR- DATA: AUTOMATIC OBJECT DETECTION TO SUPPORT
URBAN FLOODING SIMULATION

MD. Aktaruzzaman, Theo G. Schmitt
Institute of Urban Water Management, UniversitKaiserslautern, Paul Ehrlich strasse 14,
D-67663
mzaman@rhrk.uni-kl.dgschmitt@rhrk.uni-kl.de

Commission |, WG 1/3

KEY WORDS: LiDAR point cloud, Object segmentation, DSM, Sudaanoff, Object detection

ABSTRACT:

Urban flooding is an increasingly alarming issugerms of public safety and property damage. Ckndtange and its possible
effects on the occurrence of more frequent extremather events have become an important topicaratba of global politics,
science and engineering of today’s world. The prajesign of urban drainage systems and analysieofhydraulic performance
to secure flood protection in urban areas is alehging task of urban water management. High résolsurface data describing
hydrologic and hydraulic properties of complex urlzaeas is the prerequisite to more accuratelyritbesand simulate the flood
water movement and thereby to take adequate measgainst urban flooding. LIDAR (Light detectiondaranging) point cloud is
an efficient way of generating high resolution thgisurface model (DSM) of any study area. Thisgpgpesents an approach to
segment LiDAR point cloud into ground and non-grbyooints based on slope change, height variatioghstendard deviation of
neighbouring points. The non-ground points arer latassified into buildings and trees by using apraach based on surface
roughness and planar component calculation. Stpaysan important role in terms of surface rurggheration. A semiautomatic
approach has been developed to extract street paimdidates from LIDAR data. A knowledge based expgstem has been
implemented to identify impervious surfaces (ottiem street) and grassland. Finally future idedkhei described to detect other
surface drainage elements such as property bounddty and slope information in the neighbourhoddhe street as they are

believed to guide the flood water flow and influertbeir possible intrusion into the private propégarage, basement).

1INTRODUCTION

1.1 Motivation

The history of urban drainage goes back to someistind

years. Historical evidences suggest that ancieilizeitions like

Indus, Greeks and the Romans put as much importanadan

drainage as we do in our modern civilization. Thelus

civilization flourished in the Indus river Vallen 3000 BC and
Harappa and Mohenjo-Daro were the two importariegitn

this valley. Archaeological evidences and histdrigacounts
revealed that this both cities were equipped withqauate urban
drainage system in order to facilitate collectiohrain water

and conveyance of waste water and later transpen to Indus
River. Similar evidences of urban drainage systewehbeen
reported in the Persian, the Mesopotamian Empird the

Minoan. People of the ancient civilization was veeilare of the
hazard of urban flooding and the necessity to doaibhwaste
water and pollution to keep the living environmesafe and
healthy which in turn  prompted them to design ttieinage
systems even centuries ago. The same spirit addspphy of

human civilization continued through medieval te timodern
age. The urbanization process became massive atabtoup
with the drainage facility, designing and mairsece of urban
drainage system became more complex than everebefor

Conventional flood simulation models are not adégj@emough
to simulate the flood water flow phenomena in thzan area in
case of excessive rainfall according to the requémt of
European Standard EN-752 (Ettrich, 2005). Mosthefrhodels
do not properly address the problem of the inteyaocdf water
between sewer and surface which resulted in inatequ
handling of flooding scenario. The new methodoledyich is

developed in the EUREKA-project RisUrSim (Schmét, al.,
2004), solves this problem on the basis of shallwater
equations solved on triangulated high resolutiorfase grids.
Street inlets and manholes are assumed as therghades
between the sewer and the surface which are lodatetle
computational grid. Water that escapes the seweinglu
excessive rainfall is further propagated on thdaser raising
the demand of detailed surface information. Sggtidénsed
topographical information is needed to build a niceétable
for hydrodynamic runoff calculations in urban arégasddition
to the detection of elements like houses, curls, that guide
the runoff of water. Airborne data collection medBooffer a
great chance to economically gather densely sanipfed data.
The core focus of this research project is to coostdetailed
surface representation of a large area to suppoanuflooding.
‘Dual drainage’ is a term mostly used along witlvan flood
simulation techniques where pipe flow and surfdosv fare
combined. A number of literatures are availablecdbig this
dual drainage urban flood simulation model. In mostthe
cases, these works either cover very small pagudtce area
(Street cross section) or relatively big area hgwiack of
adequate integration of GIS and remote sensingnigab. In
today’'s research in the field of Geosciences, Hygdyp and
Environmental science integration of remote sensing GIS
technology has put an immense impetus of explogwkgry
possible aspect. This research aims to integrateanagd
remote sensing technology (airborne LIDAR data) aondhe
forms of field data within GIS boundary to bettésualize and
characterize large urban area as accurately agf@sEhis is to
mention that, the goal of the research work isuppsrt urban
flooding i.e., to make a supplementary platformhwitetailed
information to represent surface of a large areachviwill



eventually act as an input to dual drainage floodukation
model.

12 Scope of thework

Urban Flooding has become an important issue inarurb
drainage planning and operation. The proper desfigitainage
systems and analysis of their hydraulic performancessure or
improve flood protection require accurate simulatinodels.

The existing urban flood modelling and simulati@ehniques
are based on the detailed representation of thergrmlind
sewer network and the modelling of sewer flow in@dy
dynamic flow routing. At the same time, the surfataa to
describe relevant rainfall-runoff processes, beihg driving
force of urban flooding, are still very coarse. Has been
recognized, however, that surface flow processasilyeaffect
the occurrence and extend of flooding both in teohsvater
levels and damage. Modeling of urban flooding tfeeee
requires a more detailed representation of thehoatat area on
the surface. Available surface data, however, ateemely
heterogeneous, fragmentary and highly unstructuRedjuiring
innovative and efficient methods of data mining analcessing,
visualization techniques are a promising approackenerate
an adequate data base for modeling and simulaticurban
flooding (Aktaruzzaman, M. and Schmitt, T., 2009).

The concept of urban drainage through minor systeen,
underground pipes and major system, i.e., parreét cross-
section was introduced in the eighties in North Anze

(Djordjevi¢, S. et al., 2004). The interaction of water betwee

this major and minor system through a guided wayoigularly
know as dual drainage

In the meantime advancement has been made in doel fl
simulation techniques and there has been
development in the data acquisition technologiesich have
enabled detailed, explicit and accurate handlintimior-major
system reaction (Towi et al., 1999 ; Prodanayi1999). The
introduction of GIS based technologies in additionmproved
simulation techniques have helped designing teatigisound
minor-major system which resulted in more reliakidban
flooding simulation and realistic estimation of
consequences (Schmitt et al., 2002).

1.3 Related Work / Literature Review

There are literatures available describing urbaadimodelling
using LIDAR data. Most of them deal with river fidiag.
Abdullah et al., (2009) described DTM generationgess by
using open source software ALDPAT. They excludedtings,
bridges and trees before applying flood simulatimodel.
Tsubaki and Fujita (2010) generated detailed sarfamdel
from LiDAR to feed it into flood inundation modaeily. Their
work focuses on river flooding and presents arcieffit way to
generate unstructured gridded representation of uHzan
topology. Haile and Rientjes, (2005) describedsesitivity of
LIiDAR DEM resolution on urban flood modelling.

In our research work we are particularly aiming umban
flooding caused by excessive rainfall and seasataims
causing failure to existing drainage capacity. Hldoundation
modelling is not the scope of the study but todyestipport the

the

inundation modelling by generating high spatial oheson
surface data with objects detailing and surfaceadtarization.
Schmitt et al., (2004) introduced the concept dfaar surface
detailing in a small area and connected it to urbesinage
modelling. They generated high resolution surfaaéa df a
small street area by manual data collection. Ettr{2007)
described detailing of complex urban areas inclgdéubtle
surface distinction such as street, curbs and siiewHe
extracted buildings and streets from LIiDAR data uadly by
giving polygonal inputs.

In our research work emphasis has been given oometic
fitering of LIDAR data followed by automatic objec
classification. Liu (2008) presented literature ksorelated to
LiDAR data for DEM generation. LIDAR data is a cement
source from where digital terrain information cae made.
Raber et al., (2007) described that LIDAR data hbgeome
prominent source of information to generate digitatrain
model and have been used in urban modelling antblogical
modelling. Hodgson et al., (2005 ) described tie main
purpose of LIDAR data collection has been to gatecterrain
modelling. Forlani and Nardinocchi (2007) also disxl the
same importance. Hodgson and Bresnahan (2004) shthaé
people of spatial science is not only preferring &lso making
it a standard practice to generate terrain modeh fLIDAR
data. Curiosity may arise, since when people haen husing
LiDAR data? According to Flood (2001), since 196&ople
have been using it. Bufton et al., (1991) and ikradt
al.,(1984) described that research on LiDAR systeroollect
topographic data started from 1980s. Accordin@feifer and
Briese (2007), LIDAR system emerged commerciallyniid
1990s. With the gradual improvement and developinie
LiDAR system , its users community has also in@dasithole
and Vosselman (2003) described that over the kside there
has been a significant increase in the use of LiDARta for
digital elevation model generation. Many authorsuch as

signtfican_loyd and Atkinson (2002), Wack and Wimmer (2002)da

Kobler et al., (2007) described the applicationLddAR to
generate terrain model in different example cases.

Airborne LIiDAR data falls under the category ofiae remote
sensing. LIDAR data has advantage over
photogrammetry for DEM generation specially in ammband
forest areas as LIDAR sensor takes data from sisglesor
while for photogrammetry it is necessary to view drea from
two locations. Stoker et al., (2006) and Barbeat Shortrudge
(2004) described that LIDAR pulse returns not oiflgm

buildings and tress but also from power lines,pletme polls
and birds. But bare earth points are always topioterest to
generate DTM. That is why, it is an important task filter or

extract bare earth points from LIDAR data. Mantefiimethods
have been developed to classify or separate ravARiE@ata
into ground and non-ground points. Romano (20045cdbed
that almost none of the filtering algorithm is 10G#curate.
Chen (2007) showed that manual interaction is séided to
improve filtering algorithms. LIDAR technology iga@wing in

fast pace and large amount of data acquirechiz/téchnology
must be handled in an efficient way. Sangster (2@@2cribed
that high density LIDAR data has increased the datame and
has created challenges in terms of data storageegsing and
interpretation. Chen (2007) described that gradivap of the
cost of LIDAR data has made it popular and coreeifor the
users.

traditional



2MATERIALS

The study area was part of Kaiserslautern Univeraitd its
surroundings. Raw LiDAR (light detection and rampirdata
having spatial resolution of 0.25 meter was acqufoem BSF
SwissPhoto. It means that the density of the LiDgdt cloud
is 4 points per square meter which is sufficienbwgh to
describe many small surface properties apart froitdings and
big objects. Other available supporting data aie golygon
maps of buildings and streets, aerial imagery otdDspatial
resolution. Figure 1 shows the aerial image ofstiuely area.

Figure 1: Aerial image of the studgaar

3 METHODOLOGY

31 Object Extraction

Filtering is the process of separating off-terrapoints
(buildings, trees and other objects) from on-terrgioints
(DTM). A moving window based spatial filter has hee
designed based on slope change, height variatidrs@mdard
deviation of neighbouring points in the raw LiDARIpt cloud.
In LIDAR community filtering generally means ‘morplogical
filtering’. Morphological filtering is operated onlon the grid
data (image pixels). This morphological filtering & special
type of classification where the main objectivetas classify
LiDAR data into two classes, namely ground and mougd
points (Vosselman, 2000). The ground data poirgsuaed for
generating DTM and the nonground points are usealigect
detection and subsequent classification. Shan ampath
(2005) described a filter mainly for urban areasddtermines
the nonground points along the LiDAR scan line. efEhare
many morphological filters that have been develdpeseparate
ground and nonground points are based on the dhdsdics
such as elevation and slope difference of LiDARniZhang
and Whitman (2005) developed a filtering methodedasn
elevation threshold. Vosselman (2000) developdd@eshased
filter. Some researcher introduces new techniguesheir
filtering algorithm. Haugerud and Harding (2001pjposed a
filter based on local curvature whereas Passini dambbsen
(2002) presented a filter based on linear predictiethod. In
this paper a new filtering algorithm has been psggowhich is
not a morphological type filtering, rather a kind spatial
filtering operated on raw LiIDAR point cloud. Beside
considering elevation and slope criteria of groupaints,
partitioning of point data along Z direction (Heipgton a
neighbourhood scale and special security checlongonfirm

the first point as either ground or nonground. TEpecial

security checking involves calculation of standdaviation of
the points in each partitioned layer. The variatainstandard
deviation up to a specific threshold and positidnthe first

point confirms itself as ground or nonground pofdhan and
Sampath (2005) assume the first point as groundt pamd

validate the assumption by one-dimensional bidiveet filter.

The partitioning of LIDAR points along the heightno
neighbourhood scale gives the intuitive proportiona
distribution of ground and nonground points andrthember

ratio. This information along with slope and heigtriteria

helps better to classify points when some parte®lrban area
have really complex pattern with varying and ecoatbject

shapes and heights.

Figure 2: Objects (Buildings and Trees) extracfimm LiDAR
point cloud. Figure at the left shows unstructurddAR data
and figure at right shows extracted objects.

Taking object points out of the point cloud aiiting those
gaps with appropriate interpolation method is a veagenerate
digital terrain model (DTM). Placing the extraciojects again
on the DTM gives birth to the tern DSM (Digital fage
model). The objective of object separation and sgbsnt
classification of buildings and trees was to supfiue idea that
the rain water falling on the roof top will go dityy to the
sewers and in case of trees there will be initialstening and
interception before the water touches ground. Eigurshows
raw LiDAR point cloud (left) and the extracted atife (right)
after applying our filtering algorithm.

3.2 Object Clustering

After extraction of non ground objects from LiDARoipt
cloud, attention was paid to the classificationtlodé objects.
Work has been done on the separation of buildingd a
vegetation. Most of the works use a variety of siettasuch as
infrared imagery, colour imagery, LIDAR data andmimne
them together to separate the objects.

Several studies have shown that LIiDAR data hapthential to
support 3D feature extraction, especially if conelirwith other
types of data such as 2D GIS ground plans (Breanétaala,



1999; Weidner and Fdérstner, 1995). The calculatbidTM

from a DSM with the help of image matching is déses in
Passini and Jacobson (2002). The use of reflectaased
identification is described in Hug (1997). Oude dflbk &

Maas (2000) describes the use of anisotropic héggidire such
as the co-occurrence matrix and contrast texturasores in
LIDAR data used for unsupervised classificationisTimethod
allows to remove the vegetation. In this work aterapt has
been made to separate buildings and trees from RipAint

cloud only. The algorithm is based on the idearake packet
of all visible clusters’ and later an individuakatment was
applied to each of the cluster to recognize thaitgons in terms
of building and tree.

Figure 3: Automatic object clustering technique

The algorithm starts with the first numerical podfithe dataset
supplied as text (*.txt) file to the system. Leg¢ thoint be P1. P1
searches the nearest point P2 within a given thtdstalue.
Then P2 searches its nearest point P3 within trestiold and
stores all the points in a packet until the lashp&n does not
find any point within given proximity. The formatioof a
‘cluster packet’ is thus completed and the alganitthen fixes
the next point sequentially from the text file l&std allows it to
grow into a new cluster. When the point P1 dodsfind any
point in its threshold proximity, it makes a clusteitself. After
making segmentation of all the visible clusterscheaf the
‘packet clusters’ was investigated. Figure 3 shthwesautomatic
object clustering technique.

3.3 Object Classification by Pseudo gridding approach

The object clustering approach not only ‘packetsohject but
also gives each packet a numerical identity. Thisnerical
identity helps better classify the object followegthe ‘Pseudo
gridding’ algorithm. Pseudo gridding is an appioagc break
the whole objects into small square blocks (Figdye Then
each of the small grids was checked to designateghid as
either ‘building’ or ‘tree’. Height profile and stdard deviation
of z values (height) of the points within a gridrerghe criteria

that were investigated for each grid. A given thréd of height
difference and standard deviation assign each agsideither
building or tree. The assumption behind this chagkis that
tree surfaces have more irregular height profileenshs
building surfaces have regular height profile. Tisiconly the
general assumption. Many roof tops have an irregslaface
due to the presence of chimney, solar panel or rwiatek.
Normally sloped roofs also have smooth surfaceshvbhan be
detected by pseudo grid approach. But situatiomstaomplex

Figure 4: Concept of Pseudo Griddin

when trees and buildings are attached togethevem orse
when trees overhang on the buildings. Pseudo gricari
efficient approach to separate buildings and teen when
they are attached together. Breaking down the wihister
object into smaller parts help to draw satisfactpartition
between building and tree. The pseudo grid appréaaot an
absolute error free algorithm. Sometimes particgléd shows
anomalous behaviour being a part of same objBEuis type of
cases requires some adjustment as shown in Figure 6

..

Figure 5: Final decision objects after grid adjuest

In figure 5 (left) the presence of blue grid (tré@)the middle
surrounded by red grids (building) is a weird reprgation of
the whole object as building. The presence of cbiyror water
tanks have resulted in rough surface and heighhgghanore
than threshold set for detecting building objeéin automatic
adjustment has been implemented to handle this kihd
situation. The automatic adjustment algorithmaseda on the
idea that any grid takes on the property of neigiing grids.
Thus in figure 5, the central blue grid has begnsidd as red
grid following the existence of surrounding reddgri Figure 6
shows the object classification followed by psewgtalding
algorithm of the whole study area where red reprissieuilding
candidate points and blue represents tree poimlidates.



Figure 6: Object classification after pseudo gnidgin the point
cloud (Building (red) and tree (blue)).

3.4 Classification refinement by planar analysis

Planar analysis follows the pseudo grid approach atempts
to capture the planar information of an object usSome
object cluster has highly heterogeneous point cliisttibution.
For example, when any object cluster contains aldibhg and
more than one tree and thus the relative volumeesf point
cloud is large, in that specific case pseudo gniddderforms

poorly. Planar analysis is a method based on pahci

component analysis to identify flat regions in anpaloud. A
principal component analysis of a given set of mim 3D
point cloud shows the direction of mutually orthagbvectors
(eigenvectors) and their relative strength (eigkres) (Shan
and Sampath , 2005). If a set of points has two idanh

eigenvalues and the third value is nearly zeroséhmoints said

to be on a plane. Let a set of poild be denoted byX;

(=2,..cccienn , m)and letX be their mean vector.
covariance matrix is calculated as:

3= 206 = X)X, = X" n

The eigenvaluedl,ﬂ2 ,/13 and their corresponding
eigenvectors/\;, /\, and /\;.
If [/11/(/]1 +A,+ /13)] < ¢, then set of pointdVl is planar,

Figure 7: Obiject cluster classified as tree (bhafegr
pseudo gridding.
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Figure 8: Object cluster classified as buildingdjrand tree

(blue) after planar analysis.

In figure 8, it is clear that same object clustas been classified
into building and trees after applying planar asalynethod.

3.5 Spectral information integration

The Spectral information integration (Sll) techniquevatves

mapping spectral value from image pixel to LiDARirgadata.
This is an approach of exploiting spectral inforimatfrom
image pixel and then to correct the misclassifieith{s in an
object clusters (if there is any). Consecutive @ppibn of
pseudo gridding and planar analysis classified nudsthe
object cluster accurately with the exception of felject
clusters. Figure 9 shows the classified buildings &ees in the
study area after applying planar analysis algorithm

These exceptional clusters were both buildingtelubaving
few misclassified points inside it and tree clustshowing

where & is a small number. Figure 7 shows one object alustesudden flat zone on the edge. The reason couldebpresence

with apparently three objects attached togethecaBse of its
highly unstructured pattern pseudo gridding faildd
distinguish building and tree and treated the wrallgect as
tree.

of several chimneys and dormer windows on one opofind a
sudden flat region at the edge of any tree object.

SFI methodology attempted to identify those poifitst by
looking at the geographic coordinates of those lagsified
points. As both the LIiDAR point cloud and the akimage
were geo-referenced to same coordinate system $Gauger-
3), linking the misclassified points to the corresding image
pixels was done through an automatic routine.



contains mixed type of points namely building psifrted) and
tree points (blue). In figure 11, the same buildoigect has
been cleaned automatically after the application Sif

algorithm.

4 RESULT AND ACCURACY

The final result of the classified map after apmy pseudo
gridding, planar analysis and spectral informaiiiegration is
shown in figure 12. To determine the accuracy efdfassified
map, an error matrix was computed. An error masrix matrix

Figure 9: Object classification after pseudo gmddand planar
analysis in the point cloud (Building (red) ancet(glue)).

A colour index (Cl) was calculated for each pixeldaa
threshold value of that colour index was chosert twuld
distinguish building and tree on spectral basise Tdrmula of

the Cl is as,

Cl =(green/ red + green+blue) )

doaves,

X L PIN )

Figure 12: Object classification after pseudo gridd planar
analysis and spectral integration approach in thiatpcloud
. . . ) . (Building (red) and tree (blue)).

Figure 10: Building object before applying SFlhemue

Figure 13: Aerial image of part of the study andeere object
Figure 11: Building object after applying SFI taaue classification was investigated
or table that displays statistics for assessingy@r@assification
accuracy by showing the degree of misclassificatomong
classes (Glossary of remote sensing terms, Canawtaecfor
remote sensing). The error matrix is a way to caompao

It was investigated that, Cl value less than 0.8%esponds to
building pixel whereas Cl value equal or more thHag5
corresponds to tree pixel. In figure 10, a buildiogject



thematic maps, one a ‘ground map’ (the referenge) mad the
other is a map produced by automatic classificatilgorithm
(the classified map). In our case the reference map the
orthophoto of the study area in the figure 13 dml dlassified
map was the final product of the classified LiDABint cloud
showed in figure 12.

Reference map
Classified Building Tree Ground
map Buiding | 87 1 5
Tree 3 20 2
Ground 2 1 179

Table 1: Error matrix of the classified map agaireference
map

Overall accuracy = (87+20+179)/300

= 9533%
Building Tree Ground
User’s accuracy (%) 93.5 80 98.35
Producer’s accuracy (%) 94.57 90.91 96.24
Errors of omission (%) 5.43 8.09 3.66
Errors of commission (%)| 6.5 20 1.65

Table 2: Calculation of different accuracies

Table 1 shows the error matrix of the classifiedpnagainst
reference map and table 2 shows the calculatiorusef’'s
accuracy, producer’'s accuracy, errors of omissiwh errors of
commission. The overall accuracy turned out to Hh8%%.

5 STREET EXTRACTION

Street detection on the Digital surface model isiraportant
and necessary task for the preparation of a ddtaleface
database to simulate flooding phenomena in urbeasaiStreet
surface is a place where runoff occurs and inteEnadietween
sewer and surface water takes place. Manholes atet imlets
are the gateway that facilitates these interacpbenomena
making the concept of urban flooding characteristinother
important emphasis of this research is the detpitih streets,
sidewalks and the height of the curbs. Usually Ihieigf the
curbs range from 5 to 10 cm. At the same time LiDdd®a has
vertical accuracy of 3 to 5 cm. It is a challengitagk to
determine the curb height accurately because irympkates the
curb height is too small or there is no curb at &he curb
height is important in simulation model becaus¢heflocation
of street inlets and the possible entering of tla¢ewfrom the
street to the private ground. Street inlets aratkxt at the foot

of curb wall. In case the street inlets are locaiadthe top of
curb wall by mistakes, flood modelling is goingtte affected.
Road extraction from LiDAR data is not a new id&a.fact
some works has been done on this issue. Researbbees
adopted two approaches namely automatic and sewiratic
approaches to detect road in the LIDAR data. Imomatic
approaches, people have mostly followed the comnwesit way
in computer vision. It means converting the LiDABN cloud
into gray scale image as a first step, later appglgigital image
processing technique on the gray scale image.rhiasgomatic
approaches people have tried to combine existimjoveoad
maps and raster LIDAR image to detect road netwirkhis
paper a semiautomatic approach for detection af @ been
described. This approach combines the vector datharaw
LiDAR point cloud without converting it into grayale image
or any other raster format. The idea behind thjzr@gch is that
raw points preserve the originality of the surfaegore they are
converted to any other formats. At first the celiie of the
road network from vector maps are collected. Takihis
centreline as seed point’s information, road po#mtsextracted
from LiDAR point cloud. The road extraction algbrn
actually encapsulates the points in both sidefi@fcentreline.
The point searching region is limited by the inpfithe road
boundary lines from road polygon maps. The cengslare
provided as point data as input to this algorithim.Figure 14,
a street segment is consisted of three points @@x0,
0O1(x1,y1) and O2(x2,y2) . The algorithm startshw@(x0,y0)
and searches for point Q and P on both sides afsPectively
by using simple trigonometric formula dx=rce}(and
dy=rsin@) . The value of r is the distance between cemigeli
and the intersecting point of road boundary and O&ame
procedure is followed to search the points Q1 ahdAPsearch
algorithm is implemented to extract the points e by the
rectangle PQQ1P1. The street extraction algorithguided by
points on the centreline and goes for drawing megtangle
P1Q1Q2P2 and subsequently extracting points boubhgékat
rectangle. Figure 15 shows the final stage of edchction and
closer view at the road candidate points.

Figure 14: Street extraatio
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Figure 15: Street candidate points after extractiom LiDAR
data

6 IMPERVIOUS SURFACE DETECTION

Impervious surfaces such as surfaces having cenaed
asphalt layer on top do not allow water to perepldtrough
them. In case of precipitation, this surface predumaximum
runoff  leading the water into drainage networks Brban
flooding mainly caused by ‘rainfall overwhelming adlrage
capacity’, that is why proper identification of iewvious
surfaces is an important task to model urban flogdi
Urbanization helps grow amount of impervious swefadany
local, state and federal regulations have attempdinit the
development of impervious surfaces by adjusting irmpn
regulations (Hodgson et al 2003). Some local jictsmhs
apply a stormwater levy (tax) based on the sizeperdentage
of a parcel that is impervious (Kienegger, 1992)ergfore an
accurate method to detect impervious surface s @deful for
proper planning,
Considerable remote sensing research has focusaccarately
mapping impervious surfaces. Ridd (1995), Ji andsde
(1999), and Wu and Murray (2002) mostly used gtesis
classification approaches with moderate resolutgatellite
imagery. Hodgson, et al., (2003) used high resmuterial
image and LIDAR height data.

In this work, a knowledge based expert system (KBE&

according to input vector objects instead of eqizds square.
Figure 17 shows the external vector map of thepdiicel. This
option in definiens was utilized to segment the gmaf the
study area according to the boundary lines of #regd map of
the same area. Figure 18 shows how the aerial pbiotbe

study area has been segmented followed by thecappli of

chessboard segmentation. Chessboard segmentationfast

not truly object based segmentation.

v

Figure 16: Aerial image of part of the study area

e

Figure 17: City parcel map of the study area

design and urban economic factors.

Object-based segmentation takes into account thrgeneous
pixels in neighbourhood basis and forms image [pies.
Multiresolution segmentation satisfies the purpo$eobject-
based segmentation and it was carried out as andesiep
segmentation after performing chessboard segmentati
Multiresolution segmentation breaks each segmemadel
object into homogeneous object primitives. The sizghese
primitives can be controlled by user defined shapd size

been implemented to detect impervious areas usiigh h factor in definiens. The software also has opfmmassigning

resolution aerial image (10 cm by 10 cm) and LiDARtensity
data unlike Hodgson, et al., (2003).Figure 16 shtvesstudy

different weights to different wavebands. Figure &®ows
Multiresolution segmentation and example decisiate rfor

area where the KBES system was implemented. Anctbje image objects classification.

based image segmentation is the pre-requisite fby agny
knowledge based classifier in our
‘segmentation’” means subdividing objects
partitions. Chessboard segmentation was appliedusing
definiens 8.0 (Definiens, 2010). Chessboard setatien
algorithm breaks the image object into equal squafa given
size. Chessboard algorithm in the definiens caa be guided
by providing external vector maps which help bréak image

method. The term
into semall



Figure 18: Chessboard segmented image

When the image segmentation is complete, we stithat know
the properties or features of each segmented objedtalso
which objects belong to which classes.
investigating the properties/ features of each seged objects
are the initial steps before developing knowledgsel rule
sets. Features or properties of a segmented imbgetoare
attributes representing specific information of ttiperticular
segmented object.

Definiens software provides two types of classifiefor
assigning class labels to each segmented objdoty. dre rule
set based classifier and nearest neighbour dkxssif this
work rule set based approach has been opted fonulé set
approach one can define rules by using expert leayd to
guide the classification process. The datasets unstds work
were aerial image and LiDAR intensity data. Theaemage
has 0.1 m spatial resolution with three colour cteds blue,
green and red. Our rule based approach targetietdify two
land cover types, pervious and impervious. As tiaed has
already been detected, we excluded them from tlaeclse
domain inside the whole image. The total
wavebands used for rule set development was sesareln
three wavebands from RGB image, three PCA bandputed
from RGB image and LiDAR intensity band. We detered
that mean values of layer 3 (blue band of RGB)diatinguish
most of the buildings including garages and someega
surfaces attached to buildings. Mean values ofrldy@iDAR
intensity band) could capture pervious surfaces,(grassland,
soil and bush) of the study area including the slessl under
shadow after setting a threshold value. The restthaf
unclassified areas (mainly impervious area understadow)
were identified with PCA band 3 feature with a ahbie
investigated threshold value.

Figure 20 shows the classified pervious and impeisiareas.

Studying an(

If (blue < 125) AND
(intensity > 80)

THEN
Segment= pervious

Figure 19: Multiresolution segmentation and
example decision rule for image objects classificat

} impervious

--y pervious

Figure 20: Classified pervious and impervious area

number of

7 FUTURE IDEAS

One of the objectives of this research work is megate
detailed urban surface representation as accurasefossible.
Detection of macro objects such as buildings, teses streets
from LiDAR data alone or with the help of multispet images
has been a research topic for a decade. On the fwudhe, very
few works have been done to detect micro objeath as street
and pavement curbs, property boundary walls ancefenext to
the street. Abdullah, A.F., et al (2009) descrilteel detection
and construction of micro objects such as streeideli and

ramps by giving city GIS data as polygonal inputickhis not

an automatic process. In this work we are aimingedécting

street curbs, boundary walls, fences and slofuenmation in

the street neighbourhood in an automatic way with lielp of
LiDAR and multispectral image. Research work ipmogress
on how to develop a framework based on waveletyaisahnd

tensor voting approach to detect break lines dubdgresence
of street curbs and boundary walls.



8 CONCLUSION

This paper has presented an innovative but simpPAR
filtering algorithm to separate on-terrain and teffrain points.
This paper also presents an object clustering ighgor to
facilitate classification process, pseudo griddaigorithm to
classify objects followed by planar analysis andecsgl
information integration techniques in an automatanner. It is
necessary to mention here that object extractiom fpoint
cloud data was done through designing a moving evindased
spatial filter. Like many other filtering algorittanit searches
object on the basis of height information but vitie exception
of additional height partitioning and standard dé&win criteria.
The object clustering algorithm is based on thecephof linear
distance calculation among points within a certaireshold to
put them into a ‘Packet’ or ‘Cluster. The pseudadding
algorithm breaks the cluster down to small squaick @and then
checks the height profile of each grid in orded&signate the
whole cluster either as building or tree. The resll
classification by pseudo gridding was further re€irby planar
analysis and spectral information. Street extractiom LiDAR
data was done through a GIS database guided afpvdach
was actually a semiautomatic algorithm. A knowledsed
classifier was designed to detect pervious and rvipes
surfaces. Finally future ideas have been discussetiow to
detect other micro objects on the urban surfaceatiten.
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