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ABSTRACT: 
 
Security monitoring, event detection and tracking of people are a few of the well-known applications for indoor video surveillance 
systems, but mainly they are accomplished by visual inspection of the images. There is need to integrate visual surveillance systems 
with 3D geospatial data to semantically improve interpretation of scene dynamics which is challenge in 2D image analysis. In this 
study a single view video camera is calibrated with respect to a 3D wireframe model to lay the foundation for further research into 
people tracking within this 3D space. For the estimation of camera parameters, the proposed method caters for the motions of a 
typical Pan-Tilt-Zoom (PTZ) surveillance camera. The method takes into consideration the degrees of freedom of the PTZ camera 
where the perspective centre is considered fixed –no translation change between the image frames- and that the camera rotates about 
its centre. For the initial estimation of camera parameters we use point correspondence between image to model space followed by 
line correspondences within image space for updating the parameters after camera motion.  Point correspondences are utilized in a 
self-calibration adjustment to project the 3D model an initial image frame. For the determination of the camera parameters of 
another overlapping image frame 2, the 3D model is projected into it using the camera parameters of the initial frame. Extracted 
lines are labelled on image 2 and a distance function is used to describe the relation of camera parameters between the two image 
frames based on the difference of the orthogonal distances between extracted lines and the projected model lines. Using image and 
model line correspondence, the distance function is minimized and the initial camera parameters are updated to retrieve those of the 
second image. The distance minimization approach for estimating camera parameters is tested on simulated and real datasets 
providing promising preliminary results. 
 
 

1. INTRODUCTION 

Surveillance monitoring video systems predominantly exist in 
the interiors of commercial, industrial and public buildings. A 
human operator of such a system is typically faced with the 
arduous and almost impossible task of looking at multiple 
monitors in an attempt to fully interpret the 3-dimensional (3D), 
real-world scene from 2-dimensional (2D) monocular video 
streams.  To overcome this handicap, fusion of 3D knowledge 
content of the real world with the video media is needed.   
 
3D geospatial data such as building information models (BIMs) 
and computer-aided design (CAD) models are the next best 
representation of real world building scenes.  Traditionally, 3D 
models have been well-utilized in many applications such as 
city design planning and development. However, their potential 
for ‘3-dimensionalizing’ a surveillance system are yet to be 
fully realized.  
 
Existing BIM and CAD models can be acquired from 
repositories of the engineering or architectural firms involved in 
the building design. Alternatively, with the continuing 
improvements in architectural modelling software and data 
collection methods such as laser scanning, 3D model generation 
can be achieved with relative ease and at increasingly lower 
costs. Therefore, the high availability of 3D models should not 
present any hindrance in mass productions of 3D model-based 
surveillance systems. 
 

The initial research challenge faced in design of a 3D model-
based surveillance system is the integration of 2D image with 
3D model data sources. This research work aims to address this 
issue by the calibrating the image frames from the video camera 
with respect to its 3D indoor representation, thereby integrating 
these two data types. To relate the 3D model to each image 
frame of the video stream, camera calibration is necessary for 
the retrieval of the parameters that can project 3D model space 
to 2D image space. The advantages of the 3D indoor model are 
its use as a virtual calibration object for all image frames of the 
video data and as a framework for accurately monitoring and 
tracking of objects from a 3D perspective.  
 
The majority of the state of the art surveillance networks are 
currently employing pan-tilt-zoom (PTZ) cameras for people 
tracking and event detection. Hence, the experiments in this 
paper cater for these cameras by simulating PTZ motions. In 
our work, camera calibration is defined by a partial interior and 
full exterior camera parameter determination. The full external 
calibration is defined as the parameter determination of the 
three rotational pose angles (i.e. pan, tilt, roll) and translations, 
whereas, the partial internal calibration recovers the focal 
length. The latter is a function of the camera’s zooming 
capabilities. Since PTZ units are usually mounted to a fixed 
position and given that our experimentation environments are 
indoors where camera de-stabilization factors such as wind 
cease to exist, we assume the translation to be rigid and known 
within the local coordinate frame provided by 3D model. 
 



 

2. RELATED WORKS 

This paper incorporates issues in research fields such as model-
image integration, surveillance using 3D models and PTZ 
camera calibration. In this section, a summary of some previous 
related works will be highlighted. 
 
Indoor structures are usually populated with linear features. It is 
also known a 3D model can be represented as a wireframe 
model. This category of 3D models can be defined as a 
topological organization of straight line segments that describes 
the scene it represents. Significant research into image and 
wireframe integration has been used in various applications. 
 
3D wireframe models have been used for applications such as 
robotic-vehicle navigation (Kosaka and Kak, 1992). 3D 
wireframe model to image fitting has also found significance in 
vehicle detection and traffic surveillance (Wijnhoven and de 
With, 2006). A-priori constructive-solid geometry (CSG) model 
primitives have also been used for semi-automated building 
extraction (Tseng and Wang, 2003). 
 
Minor strides have been also made in using 3D models for 
video surveillance, particularly, by augmented reality 
researchers. Outdoor video surveillance using global 
positioning system (GPS) technology for dynamic camera 
calibration and pose tracking via the fusion of dynamic image 
frames with the use of  textured 3D models  have been 
developed (Sebe et al., 2003). Unlike this, our proposed method 
is constrained to GPS-denied, indoor environments. We instead 
employ a purely vision-based photogrammetric approach for the 
calibration of the camera. Other works have also designed 
systems for tracking and visualization in 3D based on a ‘smart 
camera’ network architecture (Fleck et al. 2006). Instead, our 
long term goals are to effectively utilize already existing PTZ 
units for this exact purpose.  
 
PTZ camera calibration has received a significant amount of 
attention in the computer vision community with numerous 
methods being developed.  Fung and David, 2009 used inter-
image homographies to develop a calibration approach for a 
rooftop PTZ camera. Huang et al., 2007 proposed a stereo 
method to address calibration issues associated with a long-
focal-length, PTZ camera. Generally, these methods ignore the 
incorporation of external control from a 3D source for solving 
all the camera parameters, particularly for determination of 
interior parameters. However, the fundamental definition of 
camera calibration describes the all parameters that link the 2D 
image to the 3D world. For this reason, we directly use a 3D 
model, which is the next best representation of the real world, 
for all stages of the camera calibration, i.e. for interior and 
exterior parameter determination. In addition to this, the model 
to image mapping across multiple image frames of a video 
sequence is a crucial component in the future development of 
our 3D tracking methods. 
 
 

3. METHODOLOGY 

The following section describes the proposed approach of the 
research.  Essentially, the method has two main components 
(Figure 1). Two data sets are acquired from an indoor scene: a 
video sequence that is divided into multiple image frames and a 
3D wireframe model. Initially, point correspondences in first 
image frame and model space are interactively established 
.Using the well-known collinearity condition, a self-calibration 

adjustment is used to project the 3D wireframe model into 
image space via the initially computed camera parameters. 
Afterwards, the camera pans, tilts or zooms. Thus, the 
parameters with respect to image ‘k’ must be determined, where 
k = 2,....,n with n representing the image frame number. To 
accomplish this, the initial image frame parameters are used to 
project the model into image 2, where it is skewed. Using the 
line correspondence between manually extracted image 2 lines 
and the projected model lines, an objective function is used to 
minimize the distance between these lines, thus matching them 
and updating the initial camera parameters from the previous 
image frame to that of the current image frame. Figure 1 
outlines the methodological framework. 
 
 
 
 
                           
 
 
 
 
                                         
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
                 
                       Figure 1.  Conceptual outline of the approach. 
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3.1 Mapping 3D Wireframe Model to Image  

The method of camera self-calibration or bundle adjustment 
with additional parameters (AP’s) is used to mathematically 
represent the collinearity condition that exists between the 
image and model spaces (equation 1). In this case, the AP’s are 
used to model errors that occur in the imaging process (Fraser, 
2001). A least squares solution is applied by adopting the well-
known Gauss-Markov (GM) model. 
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22
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where     u,v = image coordinates  
             u0,v0 = principal point  
             f = focal length 
             X,Y,Z = model coordinates 
             X0,Y0,Z0 = ground coordinates of perspective center 
              mij = Orthogonal rotation matrix elements that contains  
                     the pan and tilt angle, as well as, the roll angle. 
            and represent the combined physical model   uΔ vΔ
             according to Beyer, 1992 
            Ki = radial-symmetric lens distortion 
            Pi = radial asymmetric and tangential distortion 
            ci = Affinity and Shear factors 
              
Initially, the Direct Linear Transformation (DLT) equations in 
equation (4) (Abdel Aziz and Karara, 1971) are used to provide 
initial camera parameter approximations for the iterative, non-
linear self-calibration process. The DLT is an algebraic solution 
whose 11 coefficients are afterwards decomposed into the 
physical camera parameters. 
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During the self-calibration adjustment, the iterations are 
terminated when the absolute relative approximate error 
percentage |εA| is less than a pre-specified relative error 
tolerance |εS|, i.e. |εA|<|εS|. Afterwards, all the computed 
parameters are used to project the 3D wireframe model into 
image space.  

(1)  
3.2 Line Correspondence  

Prior to the distance minimization and camera parameter 
estimation for the second image frame, a preliminary line 
correspondence procedure is undertaken to associate the 
projected model lines to their respective image 2 lines. An 
angle check method (equation 5) to compute line orientation 
was adopted for this purpose (Jaw and Perny, 2008). Wrong 
correspondences were interactively checked for and removed 
from the datasets.  
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where  θ = angle between 2 lines  
           (u1, v1), (u2, v2), = coordinates of projected model line 
           (u3, v3) and (u4, v4) = coordinates of image ‘k’ line 
   
3.3 Minimization of Model to Image Distance 
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Figure 2.  Residual distance dij between corresponding lines. 
 
 
The camera parameters of image frame 2 are estimated by 
adjusting the camera parameters of image frame 1 via distance 
minimization between each pair of corresponding projected 
model and image 2 lines. The coordinates of the projected 
model line (u1i,v1i) and (u2i,v2i) are functions of image 1 camera 
parameters. The coordinates (u1j,v1j) and (u2j,v2j) are functions 

d1j v  

(u1i, v1i) (u1j, v1j) 

d2j 

(u2i, v2i) 
(u2j, v2j) 

u
Projected wireframe model line 
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mage frame number 



 

of the image 2 camera parameters . Therefore, distance d1j or d2j 
is represented by a function ‘G’ of its respective projected 
model line end point coordinate and both image 2 line 
coordinates. Figure 2 illustrates this concept and shows distance 
d1j, where: 
 
 
                 }),,,{},,({ 2211111 jjjjiij vuvuvuGd =

 
 
The projected model line endpoint coordinate in equation (6) 
can be further expressed as a function ‘H’ of the camera 
parameters from image 1 as shown in equation (7). 
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The perpendicular distance of an endpoint from the projected 
model line (in this case (u1i, v1i)) to the line on image 2 is 
represented as the distance function in equation (8). 
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Replacing u1i and v1i in equation (8) with the standard 
collinearity equations and minimizing d1j leads to a non-linear 
system of the form: 
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where      d1j is treated as the residual to be minimized since it is  
                expected that d1j should be equal to zero 
               A = Jacobian matrix containing partial derivatives of 
                    the distance function with respect to unknown  
                    camera parameters 
              = Update vector to initial parameter estimations x̂
              
The linearized form of equation (9) given in equation (10) is 
solved rigorously by a least squares adjustment using the GM 
model. 
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where  parameter = (f2,ω2,φ2,κ2,X2

0,Y2
0,Z2

0) of image frame 2 
 
By minimizing d1j, and also repeating this for d2j, the parameters 
of image 1 will be adjusted accordingly to coincide with the 
required parameters of image 2 as seen in equation (11). 
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4. EXPERIMENTS AND RESULTS 

The method was tested both on numerically synthetic and real 
datasets that simulate a PTZ camera. The use of simulated data 
has the significant advantage of ground truth knowledge. This 
enables us to quantify the general robustness and validity of the 
method. The distance minimization method applied to both the 
synthetic and real datasets follows a rigorous least squares 
adjustment process where the focal length, rotational and 
translational parameters are all solved for simultaneously.  

(6) 

 
4.1 Tests with Simulated Data 

         

(7) 

         (8) 
     Figure 3. Geometric configuration of simulated model space. 
 
 
In this section pan, tilt and focal length estimations are analyzed 
with respect to their determination via the self –calibration 
adjustment and the distance function minimization. From the 
simulated model space coordinates in Figure 3, synthetic image 
sequences containing image lines at different pan, tilt and focal 
length values were generated. Two frames were produced with 
slight changes to the focal length and rotational parameters. 
This was done in order to simulate these motion changes as they 
alter from one image frame to the next. In the first image frame 
parameter values were derived via the self-calibration 
adjustment. Using these self-calibration results as initial 
estimations, the parameters for the second image frame were 
derived using the distance function. Ten line correspondences 
were used in the distance minimization adjustment (Figure 4). 
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          Figure 4. Simulated image and projected model lines.                              after least squares adjustment 



 

Using the residuals of the distance minimization adjustment to 
compute the a posteriori variance factor )ˆ( 0σ ,the standard 

deviations )(σ  of each unknown were also computed.  
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where  V = observation residuals from adjustment 
            n = number of observation equations 
            m= number of parameters 
            Qxx = a diagonal element of the covariance matrix 
 
Table 1 show the results of the camera parameters derived by 
the distance minimization compared with the true, reference 
values that were used to produce the simulated image 2 lines. 
 
 

Parameter ValueReference     ValueAdjusted ± (σ) 
f (mm)      5.5     5.49993±(1.44e-005mm) 
TILT/ω (º)      4.0     4.00029±(0.0497") 
PAN/φ (º)      10.0     9.99993±(0.0195") 
ROLL/κ (º)      5.0     5.00031±(0.1297") 
Xo (m)      105     105.00015±(0.00695cm) 
Y0(m)      100     100.00005±(0.01298cm) 
Z0

 (m)      100     100.00026±(0.01108cm) 
 
Table 1. Comparison of True vs. Distance Minimization-based  
             Parameter values using simulated data. 
                       
4.2   Preliminary Tests with Actual Data 

In this section , we carry out testing of the method on real 
image data and an actual 3D model. However, our full method 
has not yet been extensively tested on this real data. In 
particular, the automated line correspondence method was not 
used in this dataset. Manual correspondence was made between 
image and model lines. Ten corresponding lines were again 
used. 
 
The test area chosen was a corridor in an office environment 
consisting primarily of straight line features from structures 
such as doors. A  NIKON D90 digital camera with a 20mm 
Nikkor lens mounted onto a camera tripod was used for precise 
image acquisition, i.e. for minimal or zero shifting of the 
camera’s centre. The camera was attached to a rotational 
panoramic head to simulate the rotations of an actual PTZ 
camera.  A two-frame image sequence rotating in a pan 
direction, with auto-zoom (slight focal length change) was 
acquired. A 3D wireframe model of the indoor scene was 
created from an engineering plan.  Figure 5 displays the data 
used in this section.  
 
To verify our distance minimization approach for determining 
the camera parameters, we used the self-calibration adjustment 
approach as a means of obtaining a true source (i.e. reference 
value) for the second image frame parameters. Table 2 shows 
the results of the experimentation with real data.  
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Figure 5. Real Dataset. (a) 3D indoor wireframe model (b) 3D   
               model projected to image frame 1 (c) Ten digitized     
               lines on image frame 2.                                                    



 

Parameter ValueReference     ValueAdjusted ± (σ) 
f (mm)      22.18      22.10±(0.004mm) 
TILT/ω (º)     -6.162     -6.134±(8.35") 
PAN/φ (º)     -8.517     -8.668±(7.78")        
ROLL/κ (º)     -0.714     -0.631±(22')  
Xo (m)     101.155     101.116±(1.57cm) 
Y0(m)     101.419     101.473±(5.58cm) 
Z0

 (m)     126.709     126.906±(11.19cm) 
 
Table 2. Comparison of True vs. Distance Minimization-based  
              Parameter values using actual data. 
 
 

5. ANALYSIS OF RESULTS 

To analyse the quality of results obtained for both the simulated 
and real datasets, the relative parameter error is computed using 
equation (13). Table 3 highlights these error values. The 
residual values from the distance minimization adjustment were 
also examined. These accuracy measures are shown in table 4.  
 
              

REFERENCE

COMPUTEDREFERENCE

Parameter

ParameterParameter −
=ε

 

 
 

Parameter  ε % (Simulated)        ε % (Actual) 
f        0.0010           0.360 
TILT/ω        0.0073           0.450 
PAN/φ        0.0007           1.770 
ROLL/κ        0.0062           11.62 
Xo        0.0001           0.039 
Y0       0.0001           0.053 
Z0

        0.0003           0.155 
 
            Table 3. Relative parameter error percentages. 
 
 

Observations RMSE 
(mm) 

Mean 
(mm) 

Std. 
Dev. 
(mm) 

Max 
residual 
(mm) 

Min 
residual 

(mm) 
Simulated 2.0e-

005 
4.9e-
007 

2.1e-
005 

3.8e-
005 

-2.9e-005 

Actual 0.028 -0.0013 0.028 0.069 -0.058 

 
         Table 4. Distance Minimization Adjustment residuals. 
 
In table 3, the relative errors for the simulated data were below 
0.01% and very small as expected. For the real data in table 4, 
the mean value is almost zero indicating a valid model and 
minimal systematic errors in the observations. Standard 
deviation of the residuals is in the range of 4 pixels reflecting 
the error of the approach. The roll angle had the largest relative 
error. This is presumably due to zero lines being extracted on 
image 2 in the direction of the X-axis as seen in figure 5(c) 
.Thus, it can implied that the accuracy of the computed 
rotations from our method relies upon the number and 
directional configuration of the extracted image 2 lines.  
 
 

6. CONCLUSIONS 

A model-based method of calibrating a PTZ camera has been 
presented. A distance minimization approach was used to 
determine camera calibration parameters of latter image frames 
given the parameters of an initial frame with sufficient overlap. 
Using simulated and real datasets, the proposed method 
provides encouraging preliminary results. The method is 
expected to contribute to the monitoring and tracking of objects 
within a given 3D model. Further work includes 

implementation of the method with a higher degree of 
automation and an assessment of the method with an actual 
PTZ camera. 
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