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ABSTRACT: 
 
The complementary characteristics of GPS and inertial sensors motivate their integration for more reliable positioning information in 
challenging GPS environments. Last decade has witnessed an increasing trend of utilizing MEMS-grade inertial sensors in the 
integration due to their low cost. For this research, only one MEMS-grade gyroscope and the vehicle built-in odometer are used 
together with two accelerometers to build a reduced inertial sensor system (RISS). This system is integrated with GPS to provide a 
low cost 3D positioning solution. As a linear estimation technique, Kalman Filter (KF) is adequate for the data fusion of GPS and 
high-end inertial sensors. However, MEMS-grade inertial sensors suffer from severe sensor errors including non-stationary 
stochastic drifts and nonlinear inertial errors, which undermine the effectiveness of KF. To overcome the problem, Fast Orthogonal 
Search (FOS) algorithm is employed in this research to identify the higher order RISS errors. With a tolerance of arbitrary stochastic 
noise, FOS is able to build an accurate nonlinear model that predicts RISS errors. KF can then be augmented by FOS to estimate and 
reduce both linear and nonlinear inertial errors, thus enhancing the navigation performance. The road test trajectory is conducted to 
examine the proposed method. The results demonstrate the advantages of the proposed method over the stand alone KF approach. 
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1. INTRODUCTION 

Nowadays, Global Positioning System (GPS) is commonly 
utilized to achieve land vehicle navigation. However, in urban 
canyons, tunnels, and the other GPS-denied environments, 
possible signal blockage may jeopardize the availability of GPS 
information (Farrell, 1998). To establish a more reliable 
positioning system, GPS needs to work together with a 
standalone inertial navigation system (INS). Linear estimation 
techniques such as Kalman filter (KF) are always used to 
conduct the INS/GPS integration (Hostetler and Andreas, 1983; 
Grewal et al., 2007). When GPS signals are available, KF 
predicts INS errors according to the previous estimation and 
corrects them using GPS updates. Once GPS outages occur, KF 
operates in the prediction mode. It predicts and removes the 
linear INS errors relying on the linearized dynamic model of 
INS error states as well as the first order stochastic model of the 
inertial sensor errors (Noureldin et al., 2004). As a result, the 
unaided INS data can be corrected. The system is thus able to 
maintain the availability and the accuracy of positioning. 
 
Owing to the rapid booming Micro-Electro-Mechanical System 
(MEMS) technologies, the MEMS-based inertial measurement 
unit (IMU) becomes popular because of its low cost. Other 
advantages like low power consumption and small size 
(Barbour and Schmidt, 2001) make MEMS IMU preferred by 
recent cost-sensitive vehicle navigation systems. Currently, 
MEMS-based INS is challenged by intensive nonlinear INS 
errors and non-stationary MEMS sensor errors. Although, by 
removing linear system errors, KF is adequate to keep the 
positioning accuracy of the higher grade INS, it has limited 

success when applied to the MEMS-based system. In such 
cases, there are massive nonlinear INS errors, which cannot be 
handled by KF. Once the GPS aiding is unavailable, these 
errors may grow over time without boundary. Eventually, their 
effects can undermine the overall positioning accuracy 
seriously. How to prevent the above scenario motivates the 
nonlinear modelling of INS errors. 
 
This paper aims at improving MEMS-based INS/GPS 
integration by handling nonlinear INS errors. Fast Orthogonal 
Search (FOS) algorithm is adopted to establish the higher order 
error model. It updates the model structure continuously using 
GPS readings while available. Should GPS outages occur, the 
pre-built FOS model is applied to predict the higher order INS 
errors. The system performance can then be improved in terms 
of the above predictions. To examine the proposed method, a 
MEMS-based reduced inertial sensor system (RISS) is 
employed for the testing. Instead of using a Six Degree of 
Freedom (6DoF) Full IMU, RISS offers 2D/3D navigation 
solution using fewer MEMS sensors. 2D RISS was firstly 
proposed by Iqbal et al., 2008. It relies on a MEMS grade 
gyroscope aligned along the vertical direction and the vehicle 
built-in odometer integrated with GPS using KF to provide a 
low cost 2D positioning solution on the horizontal plane. Iqbal 
et al., 2008 also proposed adding two accelerometers to 
calculate the pitch and roll which were independent of the 
positioning solution. Georgy et al., 2010 augmented 2D RISS 
by adding a more accurate calculation of the pitch and roll 
inside the integration filter to obtain a full 3D navigation 
solution. Since the pitch and roll calculations were used in turn 



to determine the vertical velocity and position, a 3D positioning 
solution can be obtained in this manner. 3D RISS/GPS 
integration was explored and achieved using either Particle 
Filter (Georgy et al., 2010) or tightly coupled KF (Tashfeen et 
al., 2009). In this paper, KF is still utilized to execute 
RISS/GPS integration in a loosely coupled scheme. The 
proposed method (FOS) is cascaded to KF in order to suppress 
nonlinear INS errors. 
 
Section 2 discusses 3D RISS and its error model. In Section 3, 
the FOS algorithm is reviewed and introduced to the modelling 
of nonlinear RISS errors. The experimental results are 
presented in Section 4. 
 
 

2. RISS ERRORS IN 3D VEHICLE NAVIGATION 

2.1 Three Dimensional RISS Mechanization 

The ultimate goal of RISS is to keep a balance between the 
system cost and navigation functionality. A low cost 2D RISS 
proposed by Iqbal et al., 2008, consists of a single axis 
gyroscope and a vehicle built-in odometer. The gyroscope is 
installed with its sensitive axis along the vertical direction of 
the vehicle. With the assumption that the vehicle mostly travels 
on the horizontal plane, its velocities along the North and the 
East can be determined using the vehicle forward speed and the 
heading angle obtained by the odometer and the gyroscope, 
respectively. The velocities can then be integrated over time to 
derive the latitude and longitude of the vehicle. This former 
work also proposed the use of two accelerometers, which point 
towards the forward and transverse directions, to compute the 
pitch and roll independently of the positioning solution. To 
offer a full 3D positioning solution, Georgy et al., 2010 
suggested to augment the above system by exploiting the pitch 
and roll calculation using the two accelerometers to get more 
accurate horizontal position and velocity as well as vertical 
velocity and altitude. The measurements of these 
accelerometers are used together with the odometer-derived 
speed and a reliable gravity model to determine the pitch and 
roll of the vehicle. Consequently, one can calculate the vertical 
velocity of the vehicle using the pitch and the forward speed. 
The altitude of the vehicle can then be derived as well. The 3D 
RISS used in this paper includes a MEMS grade single axis 
gyroscope, a vehicular odometer, and two MEMS grade single 
axis accelerometers. It is integrated with a GPS receiver and 
works in the above-mentioned manner. The following figure 
demonstrates how it derives 3D positioning results in terms of 
the inertial measurements. This procedure is also known as 3D 
RISS mechanization. 
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Figure 1. Block diagram of 3D RISS mechanization 

In Figure 1, by removing effects of the Earth rotation ωe and the 
change of orientation of the local level frame with respect to the 
Earth, the azimuth Az can be determined as Eq (1): 
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where ωz = vertical aligned gyroscope measurement; 
 ϕ  = latitude; h = altitude; 
 Ve = velocity along the East; 
 RN = normal radius of curvature of the Earth’s ellipsoid. 
Using the azimuth Az, the pitch θp, and the forward speed Vod 
(measured by the odometer), the vehicular velocities along the 
East and the North (Ve and Vn) can then be derived in Eq (2).  
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The latitude ϕ and longitude λ of the vehicle can be determined 
in Eq (3) as well: 
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where RM = meridian radius of curvature of the Earth’s 
ellipsoid. 
 
The pitch and roll are computed in terms of the idea presented 
by Noureldin et al., 2002 and Georgy et al., 2010. When the 
vehicle is stationary, the accelerometers measure components 
of the gravity due to the pitch and roll angles (tilt from the 
horizontal plane). When the vehicle is moving, the forward 
accelerometer measures both the forward vehicle acceleration 
and the component of the gravity. To determine the pitch angle, 
the vehicle acceleration derived from odometer measurements 
should be deducted from the forward accelerometer 
measurement. Also, the transversal accelerometer measures the 
normal part of the vehicle acceleration as well as the 
component of the gravity. Hence, to derive the roll angle, the 
transversal accelerometer measurement should be compensated 
for the normal part of the vehicular acceleration. As a result, the 
pitch θp and the roll θr can be determined by Eq (4): 
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where g  = gravity acceleration; 
 fx = transversal accelerometer measurement; 
 fy = forward accelerometer measurement; 
 aod = vehicle acceleration derived from Vod. 



The vertical velocity (Vu) and the altitude (h) of the vehicle can 
then be derived using Eq (5). 
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2.2 RISS Error Model 

The RISS error state vector δX consists of position errors (δϕ, 
δλ, δh), velocity errors (δVe, δVn, δVu), azimuth errors δAz, 
and sensor measurement errors (δaod, δωz). Since these errors 
are variable in time, they can be described by differential 
equations. By applying Taylor series approximation on Eq (1) – 
(5) or their time derivative, one can establish the error model of 
3D RISS to be used inside the KF. For instance, one can derive 
the error models of the azimuth, velocities, and position as Eq 
(6) – (8): 
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where ΔAz and o(⋅) denote corresponding higher order residual 
errors. The sensor errors are described as 1st order Gauss-
Markov models. 
 
According to Eq (1) – (5), in 3D RISS, only the azimuth, the 
pitch and the roll depend on the measurements of MEMS grade 
inertial sensors directly. Since the pitch and roll calculations 
from the accelerometers do not include integration operations, 
these angles do not suffer from error growth with time due to 
the integration. On the other hand, the azimuth suffers heavily 
from the stochastic sensor errors of the MEMS grade gyroscope 
and the nonlinear inertial system errors (Noureldin et al., 2009). 
Although the linear part of azimuth errors can be removed by 
KF, its higher order residual errors (ΔAz) still exist and may 
accumulate over time. They can deteriorate the overall RISS 
accuracy seriously and, therefore, require the nonlinear analysis. 
 
In case of the vehicular navigation, due to the possible 
misalignment and system error propagation, ΔAz may depend 
on the power or cross products of the linear error state elements 
(δX) as well. Thus, the discrete version of Eq (6) can be 
described as Eq (9), where Pm(n) contains arbitrary powers or 

cross products of current or previous error state elements 
(including the linear part of rotation rate error δωz); e(n) 
represents the residual. 
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Once all the Pm(n) and their weight coefficients αm are figured 
out, the nonlinearity of the azimuth error model can be uniquely 
identified. 
 
 
3. FOS-BASED NONLINEAR MODELLING OF RISS 

ERRORS 

3.1 Fast Orthogonal Search Algorithm 

Fast Orthogonal Search (FOS) was introduced by Korenberg, 
1987. It is a general-purpose algorithm to build the difference 
equation or functional expansion representations of systems 
with unknown structure (Korenberg, 1987). Without loss of 
generality, any nonlinear systems can be approximated as Eq 
(10), where Pm(n) are possible candidate terms; x(n) and y(n) 
are system inputs and outputs, respectively; N0 denotes the 
maximum system delay. 
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FOS essentially establishes a nonlinear model of y(n) using an 
arbitrary set of Pm(n). To achieve this, it performs the 
orthogonal searching on a functional expansion to produce an 
economical orthogonal series (Korenberg, 1989): 
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where gm are the weights of the orthogonal functions in sense of 
least-mean-square model-fit; e(n) is the residual error; 
orthogonal functions wm(n) can be derived from the non-
orthogonal candidates Pm(n) using the Gram-Schmidt 
orthogonalization. The advantage of FOS here is that it is able 
to compute gm without explicitly deriving wm(n), thus saving 
lots of system memory space and the calculation time. By 
implicitly decomposing the nonlinear system output y(n) in an 
orthogonal function space defined by {wm(n)}, FOS 
systematically examines each possible candidate term Pm(n). It 
selects the best one to include in the model such that this 
candidate offers the maximum reduction of model-fit mean-



square-errors (m.s.e.) defined in Eq (12). The over-bar denotes 
the time average from n = N0 to n = N. 
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Recursively, the updated m.s.e. is fed back to conduct the next 
iteration of searching till the stopping criteria have been met. 
Eventually, an accurate system model is reconstructed from the 
orthogonal function space. More details about FOS can be 
found in the references (Korenberg, 1987; Korenberg, 1989; 
Paarmann and Korenberg, 1992). 
 
3.2 Application of FOS to 3D RISS/GPS Integration 

To reduce both linear and nonlinear RISS errors, an augmented 
KF/FOS module is suggested. During GPS availability, the KF 
operates in a standard loosely coupled style to conduct 3D 
RISS/GPS data fusion. In parallel, its prediction of linear 
azimuth error δAz

KF
 can be used together with mechanization 

results Az
mec and GPS aiding Az

gps
 to compute the true nonlinear 

azimuth error ΔAz = Az
mec – δAz

KF – Az
gps. As the desired model 

output, ΔAz is used to train the FOS modelling of higher order 
azimuth errors. Also, all the KF predictions are sent to FOS to 
construct the possible candidates. Figure 2 depicts the 
procedure of FOS training stage. 
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Figure 2. FOS training stage 
 

During GPS outages, the FOS module works in prediction 
scheme. The pre-built FOS model predicts nonlinear azimuth 
error ΔAz

* from KF estimations. ΔAz
* can then be used together 

with KF prediction δAz
KF and the original mechanization result 

Az
mec to derive corrected azimuth Az

* in Eq (13).  
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Finally, another standalone 3D RISS mechanization can start 
and benefit from the feeding of Az

*. It is supposed to offer more 
accurate position P* and velocities V*. 
 
 

4. EXPERIMENTAL RESULTS 

The proposed method was examined with road test experiments 
in a land vehicle. The gyroscope and two accelerometers used 
in this research are from a Crossbow MEMS grade IMU300CC-
100. The on-board diagnostic version II (ODB II) interface was 
utilized to log in the odometer readings. The results of the 
proposed navigation solution are evaluated with respect to a 
reference solution offered by NovAtel G2 Pro-Pack SPAN unit. 
In this high-end module, a Honeywell HG1700 tactical grade 
IMU is integrated with the GPS receiver in a tightly coupled 
scheme developed by NovAtel. See Table 1 and Table 2 to 
compare the performances of low cost Crossbow MEMS grade 
IMU and Honeywell’s high-end tactical grade IMU. 
 
 

Crossbow IMU300CC (MEMS grade IMU) 
Z-Axis Gyroscope X/Y-Axis Accelerometers 
Bias (deg/sec) < +/- 2.00 Bias (mg) < +/- 30.00
Scale Factor 
(%) 

< 1.000 Scale Factor 
 (%) 

< 1.000 

Random Walk 
(deg/hr1/2) 

2.250 Random Walk 
m/(s⋅hr1/2) 

0.150 

 
Table 1. Bias, scale factor and random walk of Crossbow IMU 

 
 

Honeywell HG1700 (Tactical grade IMU) 
Gyroscopes Accelerometers 
Bias (deg/hr) < 1.000 Bias (mg) < 1.000 
Scale Factor 
(ppm) 

< 150.000 Scale Factor 
(ppm) 

< 300.000 

Random Walk 
(deg/hr1/2) 

< 0.125 Random Walk 
m/(s⋅hr1/2) 

N/A 

 
Table 2. Bias, scale factor and random walk of HG1700 IMU 

 
The trajectory used in this paper, shown in Figure 3, was 
carried out in the suburbs of Kingston, Ontario, Canada. It 
includes several urban streets and suburb roads around 
Kingston as well as parts of the nearby highway. The road test 
lasted for about 80 minutes of continuous vehicle travel and a 
distance over 75 kilometres. To examine the KF/FOS 
performance in denied GPS environments, up to seven artificial 
GPS outages of 120 seconds each (indicated by circle overlaid 
on the map in Figure 3) were intentionally introduced such that 
they involve straight portions and turns. A 60-second sliding 
window is used for the FOS modelling. 
 
Figure 4 and Table 3 show the maximum errors in the estimated 
horizontal position during the seven 120-second GPS outages 
for both KF-only and KF/FOS methods. Clearly, during all the 
GPS outages, KF/FOS performs better than KF-only in the 
reduction of horizontal position errors. In case of sharp turns 
(GPS outage #1, #2, #4), lower speeds with stops (GPS outage 
#7), and higher speeds (GPS outage #3), the proposed approach 
provided more than 50% accuracy enhancement over the KF-
only solution. Most of the improvement relies on the FOS-
based reduction of relatively larger nonlinear azimuth errors. In 
fact, as shown in Eq (6) – (8), the azimuth error mainly 



influences the accuracy of horizontal velocities and position 
instead of vertical navigation parameters. This explains why the 
KF/FOS method used in this paper is more successful in 
horizontal positioning. 
 
 

 
 

Figure 3. Kingston suburb trajectory 
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Figure 4. Maximum horizontal position error of KF-only and 

KF/FOS methods during 120-second GPS outages 
 

GPS  
outage # 

KF-only Max 
Pos. Err. (m) 

KF/FOS Max 
Pos. Err. (m) 

KF/FOS 
improve (%) 

1   90.16 27.62 69.37 
2   75.21 31.81 57.71 
3 120.32 22.97 80.91 
4   87.61 31.83 63.67 
5   75.09 25.78 65.67
6   34.99 18.38 47.47 
7   63.31 25.80 59.25 

Average   78.10 26.31 66.31 
 
Table 3. Maximum horizontal position error of KF-only and 

KF/FOS methods during 120-second GPS outages 
 
In GPS outage #1 (shown in Figure 5), while decelerating from 
a speed around 75 km/hr to a stop (shown in Figure 6), the 
vehicle experienced an 110o turn at an average speed of 65.70 
km/hr. The maximum position errors of KF/FOS and KF-only 
methods are 27.62 meters and 90.16 meters, respectively. The 
over 69% accuracy enhancement in horizontal position 
demonstrates the advantage of FOS-based reduction of 
nonlinear azimuth errors. This advantage was confirmed again 
in GPS outage #2 and #4, where the vehicle conducted a 125o 
turn and a 95o turn, respectively. In both cases, the KF/FOS 

solution shows superior performance by introducing over 55% 
accuracy enhancement in horizontal position over KF-only 
solution. All the above results verified the effectiveness of 
KF/FOS in case of sharp turns. 
 
 

 
 

Figure 5. Performance during GPS outage #1 
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Figure 6. Speed and Azimuth during GPS outage #1 
 
To evaluate the KF/FOS performance in case of higher speeds, 
GPS outage #3 (shown in Figure 7) is examined. During this 
outage, the vehicle firstly accelerated from a speed over 80 
km/hr to reach the highway and then kept on a high speed over 
105 km/hr (See Figure 8). It conducted a 70o turn when entering 
the highway as well. The maximum horizontal position error of 
KF-only here is 120.32 meters. KF/FOS method decreases this 
value to 22.97 meters and offers more than 80% accuracy 
enhancement. This demonstrates the great advantages of 
KF/FOS at providing reliable navigation performance even in 
case of high vehicle speeds with headings angle dynamics. 
 
 

 
 

Figure 7. Performance during GPS outage #3 
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Figure 8. Speed and Azimuth during GPS outage #3 

 
 

5. CONCLUSION 

This paper explored an enhanced approach to a low cost 3D 
vehicular navigation system using a MEMS grade gyroscope, a 
vehicle built-in odometer, two single axis MEMS grade 
accelerometers, and a GPS receiver. Owing to its ability of 
detecting and reducing nonlinear inertial errors, FOS was 
proposed to be cascaded to KF and was used to conduct MEMS 
grade RISS/GPS integration. The road test experimental results 
show that the proposed method is able to correct the nonlinear 
RISS errors such as higher order azimuth errors and horizontal 
position errors. This enables the KF/FOS solution to provide 
superior navigation accuracy over KF-only approach during 
GPS outages with different vehicle dynamics. 
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