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ABSTRACT: 

 

The remote sensing based Production Efficiency Models (PEMs), springs from the concept of “Light Use Efficiency” and has been 

applied more and more in estimating terrestrial Net Primary Productivity (NPP) regionally and globally. However, global NPP 

estimats vary greatly among different models in different data sources and handling methods. Because direct observation or 

measurement of NPP is unavailable at global scale, the precision and reliability of the models cannot be guaranteed. Though,  there 

are ways to improve the accuracy of the models from input parameters. In this study, five remote sensing based  PEMs have been 

compared: CASA, GLO-PEM, TURC, SDBM and VPM. We divided input parameters  into three categories, and analyzed the 

uncertainty of (1) vegetation distribution, (2) fraction of photosynthetically active radiation absorbed by the canopy (fPAR), (3) light 

use efficiency (ε), and (4) spatial interpolation of meteorology measurements. Ground measurements of Hulunbeier typical grassland 

and meteorology measurements were introduced for accuracy evaluation. Results show that a real-time, more accurate vegetation 

distribution could significantly affect the accuracy of the models, since it’s applied directly or indirectly in all models and affects 

other parameters simultaneously. Higher spatial and spectral resolution remote sensing data may reduce uncertainty of fPAR  up to 

51.3%, which is essential to improve model accuracy. We also figured out a vegetation distribution based on Maximum value of 

light use efficiency (ε*) and ANUSPLIN method for spatial interpolation of meteorology measurement is also an effective way to 

improve the accuracy of remote sensing based  PEMs. 
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1. INTRODUCTION 

Terrestrial net primary productivity (NPP), defined as the rate 

of atmosphere carbon uptake by vegetation through the process 

of net photosynthesis minus dark respiration(Ruimy et al. 1994), 

is the central-related variable summarizing the interface 

between plant and other processes(Field et al. 1995). NPP is 

sensitive to the environmental factors and is highly various in 

space and time. Thus, estimating NPP more precisely is a key to 

understanding the terrestrial carbon cycle.  

 

There are two methods available to estimate terrestrial NPP: (1) 

extrapolating field measurement for local NPP to the biosphere 

through a vegetation map; (2) modeling plant productivity at the 

biosphere level(Ruimy et al. 1994). Since direct observation or 

measurement of NPP is unavailable on a global scale, the 

modeling method has been widely accepted. There are three 

main types of productivity model: (1) statistical model: 

estimating NPP by meteorology measurement and experimental 

parameters, regardless of physiological and ecological 

characteristics of vegetation, such as: Miami(Lieth 1972), 

Thornthwaite(Lieth et al. 1972), Chikugo(Zenbei UCHIJIMA et 

al. 1985) and Zhou Guang-sheng (Zhou et al. 1995); (2) 

process model: based on plant physiological ecology principles, 

estimating NPP by simulating process of photosynthesis. This 

model has been widely used in local areas, such as: 

CENTURY(Parton et al. 1993), CARAIB (Warnant et al. 1994, 

Nemry et al. 1996), KGBM (Kergoat 1998), SILVAN (Kaduk 

et al. 1996), CEVSA(Cao et al. 1998), TEM(McGuire et al. 

1995) and BIOME-BGC (Running et al. 1993).  (3) production 

efficiency models (PEMs). The “Light Use Efficiency (ε)” 

concept (Monteith 1972) has been adopted to decompose into 

independent parameters such as incoming solar radiation, 

radiation absorption, and conversion efficiency. The main 

PEMs include CASA(Potter et al. 1993, Field et al. 1995), 

GLO-PEM(Prince 1991, Prince et al. 1995), SDBM(Knorr et al. 

1995), VPM(Xiao et al. 2004a, Xiao et al. 2004b) and 

TURC(Ruimy et al. 1996). 

 

Along with the increasing availability of remote sensing 

measurement, (1) most parameters can be obtained by remote 

sensing data, and (2)with easy access to regional data, reducing 

errors caused by interpolation is possible, thus the remote 

sensing based PEMs has been applied more and more to 

estimatting terrestrial NPP.  

 

However, it is very difficult to evaluate the accuracy of the 

models for two reasons: (1) acquisition of direct observation is 
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unavailable on a regional or global scale, and (2) different 

models come from different data sources and handling methods, 

impossible to determine which one is more accurate. 

 

Under the scientific sponsorship of the IGBP, such a model 

intercomparison has been carried out at the Potsdam Institute 

for Climate Impact Research(Cramer et al. 1999, Ruimy et al. 

1999). Result shows that global NPP estimates (Fig.1) vary 

greatly between different models. However, since no field data 

are available to validate the models, we have no way to 

determine which result is closer to “true value”. 

 

 
 

Figure 1. Comparison of global NPP estimations of PEMs 

 

In this study, we focus on the methods of improving the 

accuracy of remote sensing based on PEMs rather than 

determining the better one. The input parameters of PEMs are 

divided into three categories according to acquisition source 

and the analysis of of each category’s influence is performed. 

We compare the 5 models by taking different data sources as 

input for each parameter and  combining with ground 

measurement in Hulunbeier and Tibet in order to determine the 

uncertainty of parameter. The purpose of this study is, first, to 

identify the most influential input parameters in NPP estimation 

among the 5 models, and second, to seek access to improvement 

in model accuracy. 

 

 

2. PARAMETERS ANALYSIS IN PEMs 

PEMs develops from the concept of light use efficiency: NPP 

has a strong linear relationship in ideal environment with light 

use efficiency (ε) and absorbed photosynthetically active 

radiation (APAR): NPP=ε ∙APAR. 

 

APAR is calculated from global solar radiation and fraction of 

photosynthetically active radiation absorbed by the canopy 

(fPAR) which can be obtained from remote sensing data, and ε 

is regarded as a conversion scale of APAR to NPP, as a result of 

the interaction of environmental constraints and based on 

“Maximum value of light use efficiency (ε*)”. These models 

include various parameters (Tab.1) and focus on different levels 

of mechanism with inhibition process taken into account. The 

parameters can be divided into three categories (Tab.2) 

according to acquisition source. 

 

2.1 Remote Sensing Data 

PEMs uses remote sensing data to acquire the land surface 

condition, especially vegetation type and fPAR. In the 

simulation process, remote sensing data mainly provide the 

following three types of information: 

 

Model Influenced by: 

CASA NPP=f (ε*, RS, fPAR, T, EET, PET ) 

GLO-PEM NPP=f (ε*, RS, fPAR, T, VPD, SW, RA ) 

TURC NPP=f (ε*, RS, fPAR, RA, T ) 

SDBM NPP=f (ε*, RS, fPAR, CO2 ) 

VPM NPP=f (ε*, RS, fPAR, T, W, PL ) 

RS: Solar radiation    RA: Plant autotrophic respiration 

PET: Potential evapotranspiration EET: Estimated evapotranspiration 

PL: Leaf phenology  T: Temperature W: Water capacity 

 

Table 1. Parameters of PEMs 

 

 

Model 

Vegeta-

tion 

Distri-

bution 

Satellite 

fPAR 

Meteorological 

measurements 

Plant 

Physioe- 

cology 

Other  

satellite data 

CASA × × RS,T,EET,PET ε*
  

GLO-PEM  ×  ε*
,RA RS,T,VPD,SW 

TURC × × RS,T ε*
,RA  

SDBM  × RS,CO2 ε*
  

VPM × × RS,T ε*
,PL W 

 

Table 2. Parameters classification of PEMs 

 

1. Vegetation Distribution Information: According to 

different spectral characteristics and temporal variation, the 

accurate and real-time vegetation distribution on the earth 

can be obtained through appropriate classification 

algorithm. 

2. Vegetation Index: Spectral reflectance of vegetation is 

influenced by vegetation type, species composition, 

vegetation cover, chlorophyll content, plant water and so 

on. Vegetation index is a comprehensive performance of 

the spectral reflectance, which bears a strong relationship 

with NPP estimates. 

3. Vegetation growth environment information: The 

environmental factors can be obtained by means of remote 

sensing in recent years, such as temperature, precipitation, 

soil moisture and other relevant information, though 

further study is to be made on the applicability and 

accuracy . 

 

GLO-PEM is unique among the 5 models because all variables 

about climate and vegetation distribution are derived from 

remote sensing data. 

 

2.2 Meteorology Measurement 

The process of plant growth appears responsive to 

environmental conditions. Therefore, the formation of 

vegetation NPP depends on the regional light, heat, water 

conditions and so on, as well as the biome production 

capacity(Zhou et al. 1995). Climate factors’ control over 

vegetation productivity is not only present in the vegetation 

diversity, but also in photosynthesis inhibition. The 

meteorology measurements in the models such as radiation, 

temperature, precipitation are all obtained from meteorology 

stations except GLO-PEM. 
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2.3 Plant Physiological Data 

The plant physioecology mainly concerns how and to what 

extent the plant growth responds to the environmental factors 

such as: increasing CO2 concentration, ultraviolet radiation 

enhancement, temperature change, sunlight irradiation and the 

enlargement of salty habitats. All of these factors are closely 

associated with the process of global climate change.  

 

ε is a fundamental element in PEMs. It was used for the 

conversion of APAR to biomass, and affected by many 

environmental factors. Each model illustrates its own approach 

of simulating the process in which environmental factors 

influence mode.  

 

 

3. UNCERTAINTY OF INPUT PARAMETERS 

Obviously enough, parameters are highly similar in these 

models. The main differences lie in (1) the way of obtaining and 

applying vegetation distribution, (2) the way of obtaining fPAR 

and ε and (3) the use of meteorology factors. Thus, it is 

important for improving model accuracy to analyze uncertainty 

of each parameter. 

 

3.1 Vegetation Distribution 

Vegetation distribution is considered to be the most important 

determinant of carbon storage, uptake and release from the 

terrestrial biosphere, and it affects model accuracy mainly in 

two ways: 

 

3.1.1 Applying Vegetation Distribution: All remote sensing 

based PEMs assumes the world is covered by vegetation. CASA 

and VPM uses an actual vegetation distribution from remote 

sensing including human land use. SDBM and GLO-PEM does 

not use a vegetation map directly, but the parameters via remote 

sensing such as temperature , vapour pressure deficit and APAR 

also explain the vegetation cover change. Only TURC uses 

potential vegetation regardless the human land use. A 

comparison between actual vegetation data set and potential 

vegetation data set shows that the human land use and 

agriculture affect up to 40% of NPP estimate in temperate 

mixed forests and deciduous forest on a global scale(Ruimy et 

al. 1999). Regionally the simulated NPP with land use 

constraint in the south portion of NSTEC was about 65% of that 

without land use constraint(Gao et al. 2003). On the other hand, 

a better classification accuracy has testified its improvement for 

NPP estimate(Zhu et al. 2006). 

 

3.1.2 Determination of other parameters: Vegetation 

distribution is applied directly or as an intermediate variable to 

determine the precision of other parameters such as ε*, RA, PL 

and EET. In most models, these parameters are assumed 

constant or determined by the vegetation maps. However, these 

plant physiological-related parameters apparently depend on the 

vegetation type with the classification accuracy taken into 

account. 

 

It is impossible for us to know exactly how much vegetation 

distribution is affected, but we definitely know that a real-time, 

more accurate vegetation distribution can significantly affect the 

accuracy of the models. 

 

3.2 Remote Sensing Based fPAR 

fPAR, a significant parameter for calculating APAR, truly 

reflects the status of vegetation canopy’s absorption of 

photosynthetically active radiation, and has a direct impact on 

the uncertainty of PEMs. Remote sensing provides a means to 

estimating fPAR globally. Most models (CASA, GLO-PEM, 

SDBM and TURC) utilizes Normalized Difference Vegetation 

Index (NDVI) to obtain fPAR (apply different algorithms), while 

VPM uses Enhanced Vegetation Index (EVI) (Tab.3).  

 

 

CASA fPAR=min{(SR−SRmin)/(SRmax−SRmin), 0.95} 

GLO-PEM fPAR=(SR−SRmin)(fPARmax−fPARmin)/(SRmax−SRmin) 

TURC fPAR= −0.1914+2.186∙NDVI 

SDBM fPAR= −0.025+1.25∙NDVI 

VPM fPAR=1∙EVI 

SR=(1+NDVI)/(1−NDVI) 
 

Table 3. fPAR estimation in PEMs 

 

However, some researches indicate that there are limitations in 

application of NDVI, such as (1) tending to be saturated in well-

vegetation cover area(Wang et al. 2003), and (2)which is  

sensitive to the soil structure in the low vegetation cover 

area(Huete et al. 1994). One possible solution is using EVI 

which introduced the blue-ray band aiming to reduce 

atmosphere effect(Huete et al. 1994, Huete et al. 1997). 

Although EVI was used in VPM for estimating forest NPP, and 

considered superior in grassland NPP estimation over 

NDVI(Kawamura et al. 2005), the further application in 

different environment on a global scale is still necessary.  

 

It remains unsolved which fPAR is more accurate in these 

models since we cannot have fPAR from ground measurement. 

However, we can improve the precision by using higher spatial 

resolution NDVI and EVI. All the models calculate the fPAR 

with a 8km resolution NDVI derived from NOAA/AVHRR. For 

the ease of  comparison, we use MODIS NDVI and EVI data 

(obtained at 2009-07-28 from USGS) with 1km, 500m and 

250m spatial resolution, and ground measured spatial data 

(obtained at 2009-08-02 by FieldSpec® HandHeld 

Spectroradiometer) from Hulunbeier grassland (Fig.2). The 

calculation is strictly in accordance with the MODIS algorithm. 

It should be known that  we are not saying the ground measured 

data is “true”, but it is of great reference value. The relative 

error (Fig.3) shows that the better spatial resolution brings the 

higher precision. In some extra point, relative error from the 

1km resolution can reach up to 51.3%.  
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Figure 2. Comparison of NDVI and EVI 

 

 
 

Figure 3. Relative error of NDVI and EVI 

 

3.3 Estimating Maximum Value of Light Use Efficiency 

The light use efficiency (ε) determines the capability that the 

plants capture and transform environmental resources to dry 

matter production, and fluctuate with the environmental index 

such as temperature, moisture, soil, nutrition, plant ontogeny, 

etc. (Prince 1991). In remote sensing based PEMs, these 

affections present as constraints of Maximum Value of Light 

Use Efficiency (ε*) ranging between 0 and 1. Therefore, ε*is 

influential for NPP estimates.  

 

In early researches, ε* is empirically derived as a conservative 

quantity(Monteith 1972). CASA takes it as 0.389gC∙MJ−1. 

However, several researches indicate that ε* varies due to 

different vegetation types. And in view of its importance, there 

is controversy about the value range. Ruimy believes it ranges 

between 0.108 and 1.580 gC∙MJ−1 and GLO-PEM adopts it 

between 0.2 and 1.2 gC∙MJ−1. In Guangdong Province of China, 

the result shows that ε* range between 0.69 and 1.05 gC∙MJ−1 

(Peng et al. 2000). Since ε cannot be measured directly, studies 

about determination of ε generally fall into two types: (1) 

simulating the plant growth process with the principle of plant 

ecology, and (2) remote sensing retrieval through PEMs and 

ground measured NPP. The latter one seems more feasible as 

plant ecology simulation can hardly be extended to a global 

scale. By means of remote sensing retrieval, there are methods 

for improving the precision of PEMs: 

 

1. ε* should not be considered as a conservative quantity, 

for it shows difference between different biome. 

2. A more accurate and real-time vegetation map could 

be used which shows the biome distribution.  

3. More accurate remote sensing data are uesd for 

retrieval and plant ecology data have been counted for a 

more accurate ε*. 

 

3.4 Spatial Interpolation of Meteorology Measurements 

Based on different models, climate factors affect the NPP 

estimation working as the inhibition of ε* (Tab.4). However, 

they are hardly obtained directly through remote sensing data 

with high accuracy.  

 

In most cases, the regional and global meteorology distribution 

are based on station measurement and spatialized by means of 

interpolation. Therefore, interpolation precision is important in 

improving accuracy of NPP estimates(Price et al. 2000, Wong 

et al. 2003). The precision of meteorology interpolation is 

mainly influenced by: (1) site’s latitude and longitude, (2) site’s 

elevation and (3) regional terrain.  

 

Model Influenced by 

CASA RS, T, EET, PET 

GLO-PEM a RS, T, VPD, SW 

TURC RS, T, RA 

SDBM RS, CO2 

VPM RS, T, W 
a 

All factors in GLO-PEM are obtained from remote sensing data 

 

Table 4. Climate factors in PEMs 

 

A comparisive study of several interpolation method shows that 

the multiple regression equation had a better performance by 

introducing elevation and location(Collins 1995). Lin’s research 

demonstrated that Gradient Plus Inverse-distance-squared 

(GIDS) method is better than others in reflecting temperature 

change with elevation(Lin et al. 2002), but researchers also 

proved that ANUSPLIN method is better than GIDS(Price et al. 

2000, Feng 2004). The 88 meteorology station data in Tibet was 

spatialized using ANUSPLIN method (Liu 2008) combining 

with 1km×1km DEM. The result (Fig.4) proved to be more 

accurate than other methods.   
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Figure 4. Meteorology interpolation in Tibetan transact 

 

4. CONCLUSION AND DISCUSSION 

Remote sensing based PEMs takes good use of  the “light use 

efficiency” theory and adopts several approaches to estimate 

NPP. Each approach has a theoretical basis for its own. It is not 

possible to tell which model is “better” since none of them is 

perfect and cannot be verified on a global scale. NPP estimate 

varies greatly among models in a comparative research and we 

have no way to know which result is closer to the “true value”. 

However, there are ways to improve the model accuracy. 

 

Vegetation distribution is the fundamental element among all 

parameters and has been used directly or indirectly  in all 

models. Apparently, actual vegetation distribution performs 

much better than potential vegetation distribution while human 

land use has a great impact on the NPP estimation. Meanwhile, 

vegetation distribution determines the accuracy of the 

application of other parameters to a large extent. The 

uncertainty of vegetation distribution is caused by: (1) 

inconsistent and ambiguous vegetation types, (2) time 

inconformity from classification time to current time, (3) mixed 

pixel of different vegetation types and (4) inconsistent scaling. 

The developing remote sensing data and techniques provide the 

possibility to these uncertainties. Overall, a real-time and 

accurate vegetation map is helpful in greatly improving the 

accuracy of the PEMs. 

 

The vegetation index is close to photosynthesis by means of 

determining the fPAR. The NOAA/AVHRR NDVI is the most 

common data for NPP estimate. But the 8km or lower spatial 

resolution caused large errors because of mixed pixel. 

Advanced sensors with better spectral and spatial resolution can 

provide more accurate fPAR. Our experiment in Hulunbeier 

shows that the better resolution brings higher precision, 

especially in mixed pixels which have 51.3% relative error.  

 

New vegetation index was introduced for NPP estimate. 

Although EVI proves better to perform vegetation status than 

NDVI, there are still questions about the interrelationship 

between fPAR and EVI. It is regarded as a potential solution and 

needs more research work. 

 

ε* varies greatly among literatures for there is no convincing 

method for ground measuring or evaluation. Since ε* depends 

on vegetation types, we can enhance the model accuracy by (1) 

using more accurate vegetation map and (2) combining remote 

sensing retrieval with plant ecology. Nowadays, ε* can be 

obtained precisely by measuring fluxes of CO2 over whole 

canopies, and analyzing the relationship between CO2 exchange 

and photon flux density. It is generally possible to extract ε* 

more representatively though the uncertainty remains to be 

developed.  

 

Being as constraints of ε*, meteorology measurement and ε*  

determine the plant conversion efficiency together. Spatial 

interpolation method determines the accuracy of spatialized 

meteorology data. The chosen method should involve all 

relating factors, including location, elevation and terrain. Our 

research shows that the ANUSPLIN method can improve 

accuracy. 

 

Here, we developed methods to improve parameter accuracy, 

though the overall accuracy improvement for the model still 

remains unquantified. Meanwhile, although we are not sure 

about the interrelation response mechanism between each 

parameter, it is possible to estimate NPP at a higher precision 

through applying more accurate parameters. 
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