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ABSTRACT: 
 
Semantic interoperability is a key issue for the meaningful sharing of geospatial data between multiples geospatial databases. It 
requires the establishment of semantic mappings between concepts databases’ ontologies. Semantic mappings can be discovered 
only when semantics is explicit. However, existing concepts’ definitions are not always sufficient to represent the semantic richness 
of geospatial concepts. In addition, semantics may be implicit, refraining from using it during semantic mapping process. This paper, 
proposes a new representation for geospatial concepts, called Multi-View Augmented Concept (MVAC), which takes into account 
these drawbacks. We propose a method to generate a MVAC, based on: (1) extraction of the different views of a concept that are 
valid in different contexts, and (2) augmentation of a concept with implicit dependencies between its features based on rule mining 
theory. We believe that the proposed approach will play an important role to improve the quality of the semantic interoperability 
between multiple geospatial databases since it takes into account the implicit semantic relations between different concepts. 
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1. INTRODUCTION 

Semantic interoperability is a major research topic for ensuring 
data sharing and reuse among heterogeneous systems [Bian and 
Hu 2007]. It is the knowledge-level interoperability that 
provides cooperating databases with the ability to resolve 
differences in meanings of concepts [Park and Ram 2004]. 
Resolving those differences requires that meaning is available 
to machines into an explicit representation so it can 
automatically be processed during semantic mapping, that is, 
the discovering of semantic relations between concepts of 
different ontologies. However, current semantic mapping 
approaches rely on poor concepts’ definitions that are not 
suitable for representing all the richness of geospatial concepts. 
For example, not considering explicitly the semantics of spatial 
and temporal properties of a concept reduces its expressivity. In 
addition, it may contain implicit knowledge that can be inferred 
from existing knowledge. The structure of the concepts is also 
important. Considering a concept as a bag of features is not 
sufficient. To address these problems, we propose a new 
representation of geospatial concepts, the Multi-View 
Augmented Concept Model (MVAC) (presented in section 3), 
and a method to generate MVAC representation (presented in 
section 4). In this method, we add two additional layers to the 
definition of the concept. First, we extract the different views it 
can have in different contexts, and then, we augment it with 
dependencies between its features. The contribution of the 
MVAC model is to improve semantic interoperability with a 
concept that has richer semantics, and a structure that allow 
discovering semantic relations between concepts of different 

ontologies that were hard to discover with traditional, lexical-
based semantic mapping approaches. This paper is organized as 
follows. In section 2, we review related work on definition of 
concepts. In section 3, we propose the MVAC model. In section 
4, we propose the MVAC generation method. In section 5, we 
discuss with a case study how the MVAC can help to improve 
semantic interoperability. In section 6, we conclude this paper. 
 

2. RELATED WORK ON THE DEFINITION AND 
REPRESENTATION OF GEOSPATIAL CONCEPTS 

Knowledge representation is the problem of encoding the 
knowledge that human have about the reality, in such a way 
that it supports reasoning [Kavouras and Kokla 2008]. A 
knowledge representation is not a complete and perfect picture 
of the reality; but an abstraction of a portion of reality that is 
relevant in a domain. Knowledge representation is a 
fundamental issue for improving semantic interoperability 
because it supports knowledge sharing (between humans and 
between machines). The theoretical basis of knowledge 
representations depends on the different theories of the concept. 
Cognitively, concepts are mental representations of a category 
[Medin and Rips 2005], and a category denotes a set of real 
world entities that have similar properties [Kavouras and Kokla 
2008]. It is very difficult to give a framework that would guide 
the assignment of properties to concepts in a universal way, 
even if such attempts were made [Bennett 2005]. The choice of 
a concept’s properties depends on the intended purpose [Tomai 
and Kavouras 2004]. In the geospatial domain, proposed 
definitions of the concept aim at identifying the special 
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properties of geospatial objects. Kavouras and Kokla [2008] 
define a concept with a term, a set of semantic elements 
(properties and relations) and their values. This is similar to the 
definition of the concept in Schwering and Raubal [2005] 
where concepts are defined by properties (represented as 
dimensions in a conceptual space) and property values 
(represented as values of those dimensions). Kavouras and 
Kokla have identified features such as: purpose, agent, shape, 
size, location; frequency, duration, is-a, part-of relations; 
relative position relations (upward, downward, behind, etc.); 
proximity, direction and topological relations (adjacency, 
connectivity, overlap, etc.). Rodriguez and Egenhofer [2003] 
have classified features as attributes, functions (representing 
what is done to or with an object) and parts (structural 
component of an object). This classification aims at facilitating 
the separate manipulation of each type of properties in the 
context of semantic similarity assessment. Brodeur and Bédard 
[2001] give another set-based definition of concepts. They 
proposed a definition based on the four-intersection model of 
Egenhofer [1993]. A concept has an interior, defined by its 
intrinsic properties (e.g. identification, attributes, attribute 
values, geometries, temporalities), and a boundary, defined by 
its extrinsic properties (e.g. relationships and behaviours). The 
whole set of intrinsic and extrinsic properties forms the context. 
Keßler et al. [2007] argue that the context has two components: 
the internal context specifies the domain of application and the 
external context is a set of rules that allows to modify the 
concept in different circumstances. Bennett [2005] has 
attempted to provide a generic definition of the concept. He 
proposes that properties of an object may be classified as 
physical (including geometry and material properties); 
historical (how the object came into existence; the events it has 
undergone, etc.); functional, including static and dynamic 
functions; conventional properties (related to the fiat nature of 
objects). Bennett mentions "objects that exhibit one property, 
will very often also exhibit another property", but he does not 
explicit further those types of dependencies between properties. 
A first problem with the above approaches is that they define 
the concept as unstructured set of features. However, features 
are related through dependencies. For example, position of a 
moving object depends on time, the value of an object's 
temperature depend on the value of its altitude, etc. However, if 
those dependencies are not stated in the concept's definition, it 
may be possible to discover implicit dependencies by looking 
in the instances of the concept. A second problem is that in 
most of the definitions, spatial and temporal properties are not 
explicit but merged into other classes of properties. This makes 
the separate manipulation of spatial or temporal properties 
difficult. Most approaches define properties with their name 
and range of values, for example, "geometry of house" is a 
"polygon". This is not sufficient to understand the exact 
semantics of this spatial property. The polygon may represent 
"roof of house'' or ''foundation of house". Spatial and temporal 
properties have to be described in a more explicit manner. 
Finally, there are different ways to define a concept depending 
on the context [Parent et al. 2006]. Several researchers have 
investigated the multi-view paradigm for concepts and propose 
modelling views in geospatial databases [Bédard and Bernier 
2002; Parent et al. 2006] and in ontologies [Bhatt et al. 2006; 
Wouters et al. 2008]. Beside the strict representation issues, 
multiples views of a same concept can also provide multiple 
ways to achieve semantic interoperability. However, existing 
representation of geospatial concepts tend not to include this 
paradigm explicitly, nor to demonstate its usefullness in 
semantic interoperability.  
 

3. THE MULTI-VIEW AUGMENTED CONCEPT 
(MVAC) MODEL  

The new definition of the concept we propose is intended to 
address the drawbacks of concept definitions identified above, 
an its contribution is a more rich and structured definition as a 
basis for improved semantic interoperability. The MVAC adds 
two additional layers to the original definition of a concept: a 
set of views valid in different contexts, and a set of 
dependencies between features of the concept (Fig. 1).  

 

   

Concept 

Inferred dependencies 
between features of 

views of concept 

Views of the 
concept 

MVAC

 
 

Figure 1.  MVAC Model 
 
At the first level, a concept, denoted by c, is defined as: c = 
<n(c), {p(rp)}, {r(rr)}, {spatial_d(rsd)}, {temporal_d(rtd)}>, 
where: 
 
- n(c) is the name of the concept; 
- {p(rp)} is the set of properties of the concept. The set of 

possible values of a property, called the range and denoted 
rp, is given in brackets. 

- {r(rr)} is the set of relation that c has with other concepts. 
rr represents the range of the relation r, that is, the set of 
concepts c is linked with through relation r.  

- {spatial_d(rsd)} is a set of properties, called spatial 
descriptors, which role is to describe the spatiality of the 
concept. For example, the concept watercourse could have 
the spatial descriptor geo-entity (axis of watercourse), 
meaning that the line geometry representing the 
watercourse corresponds to the axis of the watercourse. 
The range od spatial descriptor is denoted rsd. 

- {temporal_d(rtd)} is a set of properties, called temporal 
descriptors, which role is to describe the temporality of the 
concept. The range of temporal descriptors is denoted rtd. 
For example, the concept watrecourse may have temporal 
descriptor waterlogged period (average flooded period) 
which means that the waterlogged period correspond to the 
average time the watercourse is flooded overs years. 

 
We provide an example for the concept “watercourse”: 
 
c = <watercourse, {flooding, tourism, transport}, {water 
level(low, medium, high), category(intermittent, stable), spatial 
extent(polygon, moving polygon), function(navigation, skating, 
evacuation area), state(frozen, unfrozen)}, 
{Connect(Waterbody)}, {geo-entity(bed of watercourse, 
flooded area, frozen area)}{waterlogged period(average 
flooding period)}> 
 
This concept may represent different realities in different 
contexts. For each context, we want to create a view that can be 
used in that context. In a previous work (Bakillah et al. 2009) 
we have stated that the view paradigm support ontology reuse, 
by selecting only parts of a concept that are relevant in a given 
context. We have defined views as the result of inference over 
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logic rules. We precise that views are inferred from rules on 
context. A view of a concept is a selection of its features that 
are valid in a given context. The context represents a given real 
world situation, for example, a disaster. A view is defined as: 
 
View(c): Context(Name of context) → <{p(rpv)}, {r(rrv)}, 
{spatial_d(rsdv)}, {temporal_d(rtdv)}> 
 
This expression means that in the named context, the concept c 
takes its value for a property, a relation or a descriptor in a 
restricted range rpv, rrv and rsdv, rtdv respectively. For example, 
two possible views of the concept watercourse are: 
 
Context(flooding) → function (watercourse, evacuation area) 
Context(tourism) → function(watercourse, [navigable, skating]) 
 
Meaning that in the context of a flooding, the watercourse has 
the function of evacuation area to allow boats rescuing people. 
A view is a spatial view when the condition is imposed on a 
spatial property, a spatial relation (topology, proximity, 
orientation) or a spatial descriptor: 
 
Spatial View: Context(Name of context) → spatial property 
(concept, value of spatial property) 
Spatial View: Context(Name of context) → spatial relation 
(concept, range of spatial relation) 
Spatial View: Context(Name of context) → spatial descriptor 
(concept, value of spatial descriptor) 
 
A view is a temporal view when the condition is imposed on a 
temporal property, a temporal relation or a temporal descriptor: 
 
Temporal View: Context(Name of context) → temporal 
property (concept, value of temporal property) 
Temporal View: Context(Name of context) → temporal relation 
(concept, range of temporal relation) 
Temporal View: Context(Name of context) → temporal 
descriptor (concept, value of temporal descriptor) 
 
Besides views, dependencies between features can be inferred 
to semantically augment a concept. Dependencies express that a 
first feature's values are related to a second feature's values. For 
example, property “temperature” depends on property 
“altitude”. We formalize dependencies with rules head → body. 
The body in the rule is a consequence of the head. Here are 
examples of thematic, spatial and temporal rules respectively:  
 
Altitude(land, low)→ FloodingRisk(land, high) 
Width(watercourse, larger than 7m)→ Geometry(surface) 
Flooding frequency(land, more than twice a year)→ 
Status(land, periodically waterlogged). 
 
Dependencies are rarely represented. However, they may be 
implicit in the concept's instances; for example, cities with 
similar values of average temperature have similar values of 
altitude. The concept, the views and the augmented 
dependencies form the MVAC: 
 
cMVA = < n(c), {p(c)}, {r(c)}, {spatial_d(c)}, {temporal_d(c)}, 
{v(c)}, {ctx}, {dep(c)} > 
 
where {v(c)} is the set of views, {ctx} is a set of different 
contexts for the concept, and {dep(c)} is the set of augmented 
dependencies. The methodology that will augment a concept to 
a MVAC is composed of two main methods, a view extraction 
method, and a method to discover dependencies.   

4. MVAC GENERATION METHOD 

We have developed this method to transform a concept into a 
MVAC. The method integrates view extraction paradigm, 
mining rules techniques and ontology reasoning principles. Fig. 
2 shows the MVAC generation method. It consists of two 
phases: 1) the view extraction phase, 2) the augmentation 
phase. The method takes as input an ontology with original 
concepts as defined in section 3. The first step involves the user 
in specifying the context extraction rules. 
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Figure 2. MVAC and Ontology Generation Method 
 
Step 1. Specification of Context Extraction rules. This step 
requires interaction between users and the view extraction 
algorithm. The users specify with context rules the values of the 
properties, relations and descriptors of a concept that are valid 
in a context. For example, considering the concept 
“watercourse” with properties “depth” and “category of 
watercourse”, the user specifies their possible values in the 
context of dryness: 
 
Context(dryness) → water level(watercourse, low)         (rule 1) 
Context(dryness)→ category of watercourse (watercourse, 
intermittent)                                                                  (rule 2) 
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The contexts of a concept are inferred from those rules. 
 
Step 2. Inference of new Extraction rules. Having a set of 
extraction rules on contexts of the concept, we verify if new 
extraction rules can be inferred by combining them. We also 
use other existing rules that are part of the ontology, and which 
represent the knowledge of domain experts. This is a way of 
reusing the existing knowledge to produce new one. The 
inference of new extraction rules (1) takes as input the 
extraction rules specified in step 1, plus the rules that are part of 
the ontology, (2) send them to an inference mechanism, (3) 
produces new inferred rules, and (4) restart the cycle from (1) 
to (3) until no new rules are inferred. The inference mechanism 
determine that if the body of a rule implies the head of a second 
rule, then the head of the first rule implies the body of the 
second rule. For example, consider a rule saying that 
intermittent watercourse are represented with moving polygon: 
Category of watercourse(watercourse, intermittent) → 
geometry(watercourse, moving polygon). From this rule and the 
ones that were specified by the user in step 1, we can infer the 
following new rule: Context(dryness) → 
geometry(watercourse, moving polygon) (rule 3). New inferred 
rules are added to the set of rules that will be used to extract 
views of the concept. 
 
Step 3.  Validation of extraction rule consistency.  Before us-
ing those rules to extract the views of a concept, we verify if the 
inferred rules are correct, that is, if they are consistent with the 
reality. In this case, the reality corresponds to the instances of 
the concept, which are representation of real world objects 
stored in the database. To verify is the rules are correct, we as-
sess the consistency between the rules and the instances. Con-
sistency can be defined as the degree of consistency of the data 
with respect to its specifications (Mostafavi et al. 2004). In our 
context, data corresponds to instances whereas specifications 
correspond to rules (since rules define the semantic). Therefore, 
a rule is consistent if the instances of the concept verify this 
rule. For example, if we have a rule Context(dryness) → water 
level(watercourse, low), we verify if instances of the concept 
“watercourse” which have the context “dryness”, also have 
“low water level”. To determine whether an extraction rule is 
consistent enough, we propose a ratio that will compare the 
number of instances that respect the rule (denoted with 
|verifying instances| ) with the total number of instances which 
have for context the one indicated in the rule (denoted with 
|targeted instances| ). Only those rules that have a sufficient de-
gree of consistency are used for view extraction: 
 

verifying instances
Degree of consistency 

targeted instances
=               (1) 

 
Step 4. View Extraction. View extraction, as we have defined 
in (Bakillah et al. 2009), includes two main steps, the extraction 
of partial views and the merging of partial views. First, in the 
extraction of partial views, each extraction rule is applied to the 
concept to create the subconcept that will always respect this 
rule. For example, for the concept watercourse defined in 
section 3, applying rule 1 gives the following partial view: 
 
Partial view: Context(dryness) → <watercourse, {water 
level(low), category(intermittent, stable), spatial 
extent(polygon, moving polygon), function(navigation, skating, 
evacuation area), state(frozen, unfrozen)}, 
{Connect(Waterbody)}, {geo-entity(bed of watercourse, 

flooded area, frozen area)}{waterlogged period(average 
flooding period)}> 
 
This partial view imposes a restriction only on the values of 
property “water level”. In the second step of the view 
extraction, all partial views that pertains to a same context and 
that are non contradicting are merged into a single view. This is 
the partial view merging process. For example, merging partial 
views generated by rule 1 to 3 would lead: 
 
view: Context(dryness) → <watercourse, {water level(low), 
category(intermittent), spatial extent(moving polygon), 
function(navigation, skating, evacuation area), state(frozen, 
unfrozen)}, {Connect(Waterbody)}, {geo-entity(bed of 
watercourse, flooded area, frozen area)}{waterlogged 
period(average flooding period)}> 
 
During the view extraction, relations between views of a 
concept and other concepts of the ontology are inherited from 
the definition of the concept when it applies; for example, the 
above view is linked to the concept “waterbody” with the 
spatial relation “connect”.  
 
Step 5.  Validation of view completeness. When all views of a 
concept are created, we verify if they are complete, that is, the 
union of all views of the concept result in the concept itself. 
The restricted range of a property pi (or relation Ri, descriptor 
di) in a view vj is rij. The view completeness can be validated if 
the following generic expression is verified: c = < n(c), {p1(r11 
∪ r12 ∪ r13 ...), ... pn(rn1∪ rn2 ∪ rn3 ...) }, {R1(r11 ∪ r12 ∪ r13 ...), 
... Rn(rn1∪ rn2 ∪ rn3 ...) }, {d1(r11 ∪ r12 ∪ r13 ...), ... dn(rn1∪ rn2 ∪ 
rn3 ...) }>, that is, by taking, for all features of the concept, the 
union operator on the restricted ranges of all views of the 
concept. The next steps are about augmenting the concept (with 
its views) with implicit dependencies. 
 
Step 6. Formulation of possible dependencies. Possible 
dependencies are dependencies that have to be verified against 
data. For every view of a concept, our method formulates 
dependencies that express relations between each pair of their 
features (properties, relations or descriptors). Those 
dependencies are expressed as rules. For example, for a concept 
"watercourse" with properties "state (frozen, unfrozen)" and 
"function (skating, navigable)", we can have: 
 

''If state of watercourse = frozen, then function  = skating" 
''If state of watercourse = frozen, then function  = navigable" 
''If state of watercourse= unfrozen, then function = skating" 

''If state of watercourse= unfrozen, then function = navigable" 
 

''If function of watercourse = skating then state = frozen" 
''If function of watercourse = skating then state = unfrozen" 
''If function of watercourse = navigable then state = frozen" 

''If function of watercourse = navigable then state = unfrozen" 
 
Because the number of possible dependencies may be high, 
they can be classified (the first series being classified as 
“function depends on state” rules, and the second as “state 
depends on function” rules) so that the user can reject the ones 
that seems non-verifiable. Once we have formulated a set of 
possible dependencies, we have to validate which ones are true 
among instances of a view. 
 
Step 7. Computation of rule validation measures. For each 
rule expressing a possible dependency, we determine the values 
of two measures that will help to determine if we can retain it 
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as a valid dependency. Those measures, which are support and 
confidence, are adapted from the rule-mining domain, which 
aims at finding correlations between items in datasets (Ceglar 
and Roddick, 2006). The support measure how many instances 
respects either the head (Ihead) or the body(Ibody) of a rule, 
with respect to the total set of instances (Itotal), and the 
confidence measures how many instances respect the body of 
the rule among those that respect the head of the rule: 
 

Ihead Ibody
Support

Itotal 
∪

=                             (2) 

 
Ibody

Confidence
Ihead

=                                      (3) 

 
Step 8. Validation of dependencies. For the validation of 
dependencies, we choose those dependencies for which support 
and confidence are satisfying. Those measures complete each 
other since a high confidence but a low support means while 
this rule is usually respected, it is not frequent in the instance 
set, so it may be less interesting.  
 
Step 9. Formulation of dependencies into rules. If the rule 
checked in step 4 is determined to be true, then it is added to 
the definition of the view in a form: Feature 1(concept, value of 
feature 1) → Feature 2(concept, value of feature 2). 
Now that views and dependencies are extracted, the concept’s 
definition is rewritten with those new elements. However, 
relations between views and augmented concepts need to be re-
computed to form the MVA ontology.  
 
Step 10. The inference of Relations.  Views needs to be linked 
together by generalisation/specialisation relations to create the 
MVA ontology. Those links are established between the 
different views of a same concept, and between views of 
different concepts. Generalisation is when the instances of a 
first view /concept include all instances of a second 
view/concept. To perform this task, we can, for example, 
express MVACs with OWL-DL language and use subsumption-
reasoning mechanism provided by reasonign engines. For 
example, if we have the following view: 
 
View1: Context(dryness) → <watercourse, {water level(low), 
category(intermittent), spatial extent(moving polygon), 
function(non navigable, skating), state(frozen, unfrozen)}, 
{Connect(Waterbody)}, {geo-entity(bed of watercourse, frozen 
area)}{waterlogged period(average flooding period)}>, 
 
it would generalise the following view: 
 
view2: Context(dryness in summer) → <watercourse, {water 
level(low), category(intermittent), spatial extent(moving 
polygon), function(non navigable), state(unfrozen)}, 
{Connect(Waterbody)}, {geo-entity(bed of 
watercourse,)}{waterlogged period(average flooding period)}> 
 
which represents a smaller number or real world objects. 
Therefore, views can be categorised within the MVA ontology. 
 

5. CASE STUDY 

Having defined the MVA model and a method to generate it 
from an existing concept, we aim to show with the following 
examples that the MVAC can help to improve semantic 

interoperability. Consider the user of a geospatial database 
which ontology contains the following concept “watercourse”: 
 
C1: <watercourse, {water level(low, high), spatial 
extent(polygon, moving polygon), function(navigable, non 
navigable}, {Connect(Waterbody)}, {geo-entity(bed of 
watercourse, waterlogged area)}> 
 
Suppose that this user search a network of geospatial databases 
for “watercourses” in the context of “dryness”. 
 
Consider the concept “stream” which is included in the 
ontology of another database of the network.   
 
C2: <stream, {depth(low, high), spatial extent(surface, moving 
surface), role(navigable, non navigable)}, {Meet(Lake)}, {geo-
entity(bed of watercourse, waterlogged area)}> 
 
First, with no views being defined, and therefore no contexts 
being specified, we are unable to find if “stream” and 
“watercourse” can be in a similar context of “dryness”. With a 
lexical matching approach, we would however find pairs of 
synonyms: “watercourse” ↔ “stream”, “polygon”↔ “surface”, 
“connect” ↔ “meet”, “waterbody” ↔ “lake”, “function” ↔ 
“role”.  With semantic mapping rules such as those that were 
presented in (Bakillah et al. 2009), we would find that 
“watercourse” overlap “stream”, but note that we would be 
unable to identify that water level corresponds to depth since 
those properties are not lexically related. Now consider that we 
employ the MVA generation method we have developed and 
we build MVACs for “watercourse” and “stream”. Suppose we 
have extracted two views for the concept watercourse, 
corresponding to contexts dryness, and flooding: 
 
MVAC1: Watercourse  
View1(watercourse): Context(dryness) → {water level(low), 
spatial extent(polygon), function(non navigable}}, 
{Connect(Waterbody)}, {geo-entity(bed of watercourse)}> 
View2(watercourse): Context(flooding) →  <watercourse, 
{water level(high), spatial extent(moving polygon), 
function(navigable)}, {Connect(Waterbody)}, {geo-
entity(waterlogged area)}>. 
In addition to the following dependencies being extracted for 
“watercourse”: 
{(d1:water level(watercourse, low)→ function(watercourse, not 
navigable), (d2:water level(watercourse, high)→ 
function(watercourse, navigable)} 

For the concept “stream”, we have for example extracted: 
 
MVAC2: Stream 
View1(stream): Context(lack of rain) → <stream, 
{depth(low), spatial extent(surface), role(non navigable)}, 
{Meet(Lake)}, {geo-entity(bed of watercourse)}> 
View2(stream): Context(rain season) → <stream, {water 
level(high), spatial extent(moving surface), role(navigable)}, 
{Meet(Lake)}, {geo-entity(waterlogged area)}> 
And the following dependencies: 
{d3:(depth(stream, low)→ role(stream, not navigable), 
(d4:depth(stream, high)→ function(stream, navigable)}. 

We show how the MVAC will enable to improve answering to 
the user query by detecting implicit matches using the structure 
of the MVAC. After having deduced the lexical matches 
indicated above, comparing the different dependencies of C1 
and C2, we find that d1 has the same structure as d3, and d2 the 
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same structure as d4, which allow proposing the following 
match: Water level↔Depth. We were able to find this match 
only because we augment the concept with dependencies that 
brings a richer structure. Comparing the contexts of the 
different views of “watercourse” and “stream” from a lexical-
based approach does not allow finding that “lack of rain” 
corresponds to “dryness”.  However, if we compare the 
definitions of View1(stream) and View1(watercourse), 
knowing the previous matches, we find that View1(stream) is 
equivalent to View1(watercourse), which allow to propose the 
following match: Context(lack of rain) ↔ Context(dryness). 
This allows the user finally to retrieve “stream” as a concept 
similar to “watercourse” in the context of dryness. This 
example shows that augmenting the concept with new 
structures (views and dependencies) can help to match 
concepts, contexts or features of concepts that seems dissimilar, 
and supports improving semantic interoperability between 
geospatial databases. 
 

6. CONCLUSIONS 

In this paper, we have argued that for improving semantic 
interoperability approaches, one main problem is the poor 
definition of concepts. This is especially true regarding the 
geospatial domain where concepts are defined by spatial and 
temporal features, in addition to multiple contexts and implicit 
dependencies between features. To address this issue, we have 
proposed the Multi-View Augmented Concept Model (MVAC), 
and a MVAC generation approach that includes a view 
extraction and semantic augmentation methods. We have shown 
that with the MVAC, we can improve semantic interoperability 
because we can discover more semantic relations between 
concepts of different ontologies. Therefore, the MVAC can 
play an important role in a global semantic interoperability 
approach designed for ad hoc networks where ontologies of 
databases are very heterogenous, such as in disaster 
management and in environmental and health domains. The 
future research will consider the MVAC as a basis for such an 
approach, with the goal of developing a semantic 
interoperability approach that is adapted to the MVAC model, 
since the quality of semantic interoperability depends on the 
ability of the semantic mapping approach to consider all the 
characteristics of the input concepts (Bakillah et al. 2008).  
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