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ABSTRACT:

Routing problem has been studied for decades. In this paper, we focus on one of the routing problems: finding a
path from source to destination on road network with the guidance of landmarks. People use landmarks to identify
previously visited places and reoriented themselves in the environment. When people give direction instructions for
other people, they also like to refer to landmarks. In this sense, we want to find a path such that it visits as many
landmarks as possible but also the distance of the path is as short as possible. However, in some situations, the
wayfinder may not want to see as many landmarks as possible along the way. For example, the wayfinder drives
a car from source to destination. He probably doesn’t want to use many landmarks to guide his driving since it’s
not convenient to switch from one landmark to the other landmark frequently. But he still want to have at least one
landmark to be seen at any point along the way. Therefore, the problem becomes: find a path P from s to t such
that the driver can see at least one landmark at any point along P and the number of landmarks the driver can stick
to is minimized. There are two cases: (a) The same landmark in different road segments counts twice. (b) The same
landmark in different road segments counts once. We give the optimal solutions for those two problems by using
modified Dijkstra’s shortest path algorithm and modified Bellman-Ford algorithm.

1 INTRODUCTION

Routing problem has been studied for decades. The first
routing problem could be traced back to 1959 when Dantzig
and Ramser proposed vehicle routing problem (Dantzig
and Ramser, 1959). Routing problem is very important
not only in the field of transportation, but also in the field
of logistics, distribution, TCP/IP networks, wireless sen-
sor networks and so on (Golden et al., 2008, Campbell
et al., 1997, Campbell et al., 2002, Huitema, 1995, Al-
Karaki and Kamal, 2004). The classic routing problem is
the shortest path problem that is given the road network
and finding the shortest path from source to destination.

In this paper, we focus on one of the routing problems:
finding a path from source to destination on road net-
work (Car and Frank, 1993, Gaisbauer and Frank, 2008).
A good wayfinding system provides precise and enough
indicators of where the wayfinder current location is and
how to get to the destination from his/her current loca-
tion. One of the important indicator for human wayfind-
ing is landmark (Jacob et al., 1999, Lovelace et al., 1999,
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Peebles et al., 2007, Raubal and Winter, 2002, Elias, 2003,
Michon and Denis, 2001).

Landmarks are defined as entities that are salient and eas-
ily distinguishable from their surrounding background.
People use landmarks to identify previously visited places
and reoriented themselves in the environment. When
people give direction instructions for other people, they
also like to refer to landmarks. In this sense, we want to
find a path such that it visits as many landmarks as possi-
ble but also the distance of the path is as short as possible.
However, in some situations, the wayfinder may not want
to see as many landmarks as possible along the way. For
example, the wayfinder drives a car from source to desti-
nation. He probably doesn’t want to use many landmarks
to guide his driving since it’s not convenient to switch
from one landmark to the other landmark frequently. But
he still want to have at least one landmark to be seen at
any point along the way.

Suppose we already know the road network N with n
nodes, m land marks Mi(i = 1, ...,m), the road seg-
ments that could be seen by Mi are painted by color
Ci(i = 1, ...,m) (see Figure 1). Actually, the road net-
work should be directed since the same landmark could
be seen on one direction at one place but couldn’t be seen
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on the other direction at the same place. However, this
will not change the complexity of our algorithms. There-
fore we assume the road network is not directed in the
remaining part of this paper. Suppose the road network
can be segmented. Each segment has unit length. Each
color covers either the whole segment or none of the seg-
ment. Then we can count how many colors cover each
road segment.

Given source and destination s, t in N , the problem be-
comes:

Problem 1 MinLandmarks. Find a path P from s to
t such that the driver can see at least one landmark (or
can be associated with at least one color) at any point
along P and the number of landmarks (or colors) the
driver can stick to is minimized. There are two cases:
(a) The same landmark in different road segments counts
twice. (b) The same landmark in different road segments
counts once.

M1

M2

M3

P

Figure 1: Illustrating the two cases for problem 1. For
the first case, the number of times the driver sees the
landmark M1 (red color) along path P is 3 while in the
second case, that is 1.

Shortest path problem can be divided into two categories:
single-objective shortest path problem (SSPP) and multi-
objective shortest path problem (MSPP). The objective of
SSPP is only one: minimize the distance from source to
destination. Although the objective of MinLandmarks
problem is not to minimize the distance from source to
destination, it can be converted to single-objective short-
est path problem. There are abundant algorithms for single-
objective shortest path problem from the classic Dijk-
stra’s algorithm to the latest evolutionary algorithm (Cor-
men et al., 2001, S. Baswana and Neumann, 2009).

2 MINIMIZE THE NUMBER OF LANDMARKS

In this section, we solve the MinLandmarks problem
defined in section 1. Again, we use the color scheme

introduced in section 1 such that each landmark is as-
signed a color and the road segments that are visible to
that landmark are also painted by the color of that vis-
ible landmark. Furthermore, we insert virtual nodes on
two endpoints of each colored road segments. We call
the original nodes of the road network N are real nodes
(see figure 2). We use nodes to refer both virtual nodes
and real nodes. If the virtual node is coincide with real
node, then the virtual node is deleted. There are two ob-
servations of this new graph.

virtual node

real node

Figure 2: Illustration of virtual nodes and real nodes.

Observation 1 The colors cover the edge between nodes
do not change.

Observation 2 Without loss of generality, we assume the
endpoints of the different color road segments are not in
the same places. Therefore, for a virtual node, there are
only two edges adjacent to it and the number of colors
covering those two edges is only different by one.

Since one landmark could be seen by different discon-
nected road segments, the different road segments with
same color could be seen more than once along a cer-
tain path. Depending on how we count the same color
road segments, it leads to two different objective func-
tions thus leads to two different algorithms.

2.1 The same landmark in different road segments
counts twice

In this section, we discuss the scenario that along some
path if we see the same landmark on two disconnected
road segments, the same landmark is treated as two dif-
ferent landmarks. In other words, we count the landmark
or the color twice.

Our algorithm is similar to Dijkstra’s single source short-
est path problem. The input is the graph G = (V,E),
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Algorithm MIN-LANDMARK-TWICE(G,w, s)
1. INITIALIZE-SINGLE-SOURCE(G, s)
2. S ← ∅
3. Q← V [G]
4. while Q ̸= ∅
5. do u← EXTRACT-MIN(Q)
6. S ← S ∪ {u}
7. for each vertex v ∈ Adj[u]
8. do RELAX(u, v, w)

Algorithm INITIALIZE-SINGLE-SOURCE(G, s)
1. C1[s], C2[s]← ∅
2. counter[s]← 0
3. for each node u ∈ V \s
4. do C1[u], C2[u]← ∅
5. counter[u]←∞

where G is the road network with virtual nodes, V are the
nodes and E are the edges between nodes. However, the
weight w of each edge (u, v) ∈ E is not the distance be-
tween u, v. The weight w is actually the list of colors that
cover edge (u, v). For each node u, we maintain two sets
C1, C2 and one integer variable counter. C1, C2 store
the colors that are visible just before node u. counter
records the minimum number of colors needed to cover
the optimal path from s to u so far.

Actually, C1[v] denotes the latest possible colors people
stick to on the optimal path from source to node v, the
colors in C1[v] ∪C2[v] are the colors covering the edge
(u, v). We should stick to one of the color in C1[v] for
the edge (u, v). Choosing which one to stick depends
on which color lasts the longest but we can not decide
that up to node v unless there is only one color left in
C1[v]. The colors in C2[v] are the colors might be used
as guidance color later and will be moved to C1[v] only
after C1[v] is empty. Of course, some road segments
may not be covered by any colors. In that case, we may
not find a path satisfying our requirement. We consider
this case in our algorithm.

The algorithm MIN-LANDMARK-TWICE looks exactly
the same as Dijkstra’s algorithm. However, the three sub-
routines are different. The first two are straightforward.
We explain the third subroutine RELAX(u, v, w) in de-
tail.

In line 1, the colors appear in both C1[u] and w are as-

Algorithm EXTRACT-MIN(Q)
1. output the node u ∈ Q such that counter[u] is the

minimum

Algorithm RELAX(u, v, w)
1. C1′ ← C1[u] ∩ w
2. C2′ ← w − C1′

3. if w = ∅
4. then exit
5. else if C1′ = ∅
6. then counter′ ← counter[u] + 1
7. C1′ ← C2′

8. C2′ ← ∅
9. if counter′ < counter[v]
10. then counter[v]← counter′

11. C1[v]← C1′

12. C2[v]← C2′

13. if counter′ = counter[v]
14. then C1[v]← C1′ ∪ C1[v]
15. C2[v]← C2′ ∪ C2[v]− C1[v]

signed to the temporary color list C1′ because we want to
stick to the colors in C1[u] as long as possible for travel-
ing edge (u, v). In line 2, the colors appear in w but not
in C1[u] are put into another temporary color list C2′

because currently we don’t need to stick to those colors
but we probably need them later. Line 3 to 6 deal with
the situation if C1′ is empty. That means all colors in
C1[u] disappear in w. We have to switch to the colors
in w and the counter needs to increase by one. Line 7 to
10 just substitute counter[v], C1[v], C2[v] with the new
values counter′, C1′, C2′ if the new counter is smaller
than the old one. If the new counter is the same as the
old one, line 11 to 13 just merge C1[v], C2[v] with the
new values C1′, C2′ and take off the colors appearing in
updated C1[v] from updated C2[v]. The correctness of
line 7 to 13 is given as follows:

Lemma 1 For a path passing through nodes v1, v2, v3
consecutively, counter[v3] is larger than counter[v2]
only by one at most, that means counter[v2] ≤ counter[v3] ≤
counter[v2] + 1.

Proof. Suppose the color lists of edge (v1, v2) and (v2, v3)
are w1 and w2, if w1 and w2 are the same, which could
happen when v2 is a real node, then the color we stick to
on w1 can be still used on (v2, v3), thus counter[v3] =
counter[v2]. If w1 and w2 are different, then if the
color we stick to in w1 is still appear in w2, thus we
can continue to use that color, that means counter[v3] =
counter[v2]. Otherwise we just stick to a new color in
w2, that means counter[v3] = counter[v2] + 1. Thus
the lemma follows.
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Lemma 2 For a node v, we only need to keep the small-
est counter[v] and corresponding C1 and C2.

Proof. If v is a virtual node, from observation 2, we know
there are only one incoming edge of v, then there is only
one value of counter[v].

If v is a real node, there could be multiple incoming
edges. Without loss of generality, we assume there are
two incoming edges, (u1, v) and (u2, v) and one outgo-
ing edge (v, x). Let the color lists for (u1, v), (u2, v),(v, x)
be w1, w2, w3 respectively and counter[v]1, counter[v]2,
counter[x]1, counter[x]2 be counter numbers from u1, u2

to v and then to x respectively. From lemma 1, we know
counter[v]1 ≤ counter[x]1 ≤ counter[v]1 + 1 and
counter[v]2 ≤ counter[x]2 ≤ counter[v]2 + 1. There
are three cases:

• counter[v]1 and counter[v]2 are different by one
such that counter[v]2 = counter[v]1+1(if counter
[v]1 = counter[v]2 + 1, the proof is symmetric).
In worst case, counter[x]1 = counter[x]2 that
means the colors we could stick to on edge (u1, v)
(which are actually the colors in C1[v]) are disap-
pear and we have to switch to the colors on edge
(v, x). According to the algorithm RELAX, C1[x]1 =
w3 ⊇ C1[x]2. Therefore, C1 will be empty ear-
lier if the path goes through u2. Because the color
counter increases only when C1 is empty, the path
going through u1 is better than the path going through
u2.

• counter[v]1 and counter[v]2 are different more than
one. Suppose counter[v]2 ≥ counter[v]1+2. Ac-
cording to the proof of above case, the counter for
the path going through u1 will never be larger than
the counter for the path going through u2. Thus we
only need keep smaller one.

• counter[v]1 = counter[v]2. According to the al-
gorithm RELAX, C1[v]1 and C1[v]2 are merged into
C1[v]. Suppose if we keep C1[v]1 and C1[v]2 sep-
arately and C1[v]1 becomes empty first, then C1[v]
becomes empty when C1[v]2 becomes empty. That
means we implicitly follow the optimal path going
through C1[v]2.

The proof of the correctness of our algorithm is the same
as that of Dijkstra’s algorithm except we use counter[v]
instead of d[v]. The running time of our algorithm is also

similar to that of Dijkstra’s algorithm except in relax step,
the transactions of intersection and union of two lists C1
and C2 take extra O(m) time where m is the number
of landmarks. So the total running time is O(|V |2 +
|E|m) = O(n2m).

Theorem 1 For the road network with n vertices and m
landmarks, we can find an optimal path from s to t in
O(n2m) time for the MinLandmarks problem if the
same landmark counts twice when it is seen twice at two
disconnected road segments.

2.2 The same landmark in different road segments
counts once

For this problem we use different data structures. Orig-
inal input is the road network graph G = (V,E) with
each edge covered by different color road segments. We
augment G to G′ = (V,E′) as follows: for each edge
(u, v) ∈ E, we compute all the combinations of colors
that could cover the whole edge. Each combination is
represented by an edge from u to v (see figure 3). Then
each edge (u, v) in G could be augmented to many edges
in G′ and each edge in G′ is associated with a color list
C[u, v]i where 1 ≤ i ≤ k and k is the number of combi-
nations of colors that could cover the whole edge (u, v).
Let |C[u, v]i| denote the number of colors in the list and
(u, v)i denote the ith augmented edge of (u, v).

u v
G

c1

c2

c3 c4

u v
G

′

c1

c2c3

c4

c4

c3

c1
c2

Figure 3: Augmentation from G to G′.

This problem is more complicated than counting twice
case and we can not use Dijkstra’s algorithm. This is be-
cause the optimal path from s to t passing through node
v may not consist of the optimal path from s to v and the
optimal path from v to t. For example, in figure 4, the
optimal path from s to t consists of P1 and P3 which are
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covered by three colors c1, c2, c3. While the optimal path
from s to v is P2 which is covered by two colors c4, c5
and the optimal path from v to t is P4 which is covered
by two colors c6, c7. To solve this problem, it seems that
we have to record all the color lists for all possible paths
form s to v. Fortunately, we don’t need to do that. We
can use the Bellman-Ford algorithm with different data
structure. Let Ci[v] be the ith color list for node v that
could cover some paths from s to v.

s v t

P1

P2

P3

P4

c1

c2

c3 c1

c2

c3

c4 c5
c6

c7

Figure 4: The example shows that the optimal path from
s to t passing through node v may not consist of the op-
timal path from s to v and the optimal path from v to
t.

Lemma 3 If the optimal path from s to v is p =< v0, v1,
..., vk > where v0 = s and vk = v, the color list cor-
responding p is Copt[v], then after kth passes over the
edges of G′ in MIN-LANDMARK-ONCE, Copt[v] is one
of the color lists of v.

Proof. Actually, Copt[v] = C[v0, v1]i1 ∪ C[v1, v2]i2 ∪
... ∪ C[vk−1, vk]ik where C[vj−1, vj ]ij is the color list
for the ij th augmented edge of edge (vj−1, vj). Af-
ter first pass over the edges of G′, we can get the list
C[v0, v1]i1 for v1 and after second pass over the edges
of G′, we can get the list C[v0, v1]i1 ∪ C[v1, v2]i2 for
v2, and so on. We can get C[v0, v1]i1 ∪ C[v1, v2]i2 ∪
... ∪ C[vk−1, vk]ik for vk. Thus the lemma follows.

After the algorithm MIN-LANDMARK-ONCE, we can get
color lists C1[v], C2[v], ..., Ck[v] for each node v. Ac-
cording to lemma 3, we know that Ci[v] is Copt[v] if
the number of colors of Ci[v] is the smallest among all
color lists of v. However, we can not report the optimal
path from s to v since we does not provide any backtrack
scheme in the algorithm and data structure. Actually, we
only need to add a pointer for each color list Ci[v] of

Algorithm MIN-LANDMARK-ONCE (G′ ,C[u, v],s)
1. INITIALIZE-SINGLE-SOURCE(G′, s)
2. for i← 1 to |V (G′)| − 1
3. do for each edge (u, v) ∈ E(G′)
4. do RELAX(u, v, C[u, v])

Algorithm INITIALIZE-SINGLE-SOURCE(G, s)
1. for each node u ∈ V
2. do C[u]← ∅

Algorithm RELAX(u, v, C[u, v])
1. for each color list C[u] of u
2. do C[v] = C[u] ∪ C[u, v]

v. This pointer points to the color list Cj [v
′] that gen-

erates Ci[v]. To report the optimal path from s to t, we
first find Copt[t] and get the pointer for Copt[t]. Suppose
the pointer points to Ci[v], then the predecessor of t is
v and we backtrack the path from Ci[v] recursively until
we reach C[s].

The running time of this algorithms is O(|V (G)|·|E(G′)|·
l · m) = O(n3lm) since each edge relaxation needs
O(l) times of two color lists union operations and each
union takes O(m) time where l is the maximum num-
ber of color lists for one node. The running space is
O(|V (G)| · l ·m) = O(nlm) since each color list needs
O(m) space.

Theorem 2 For the road network with n vertices and m
landmarks, we can find an optimal path from s to t in
O(n3lm) time and O(nlm) space for the MinLandmarks
problem if the same landmark counts once when it is seen
twice at two disconnected road segments, where l is the
maximum number of color lists for one node.

3 DISCUSSION

In this paper we presented O(n2m) time algorithm for
the MinLandmarks problem when the same landmark
counts twice and O(n3lm) time and O(nlm) space al-
gorithm when the same landmark counts once where n
is the number of vertices of road network and m is the
number of landmarks and l is the maximum number of
color lists for one node. For the latter case, we know that
the running time and space of the optimal algorithm are
all related to l. In worst case, l = O(Cm

1 + Cm
2 + ... +

Cm
m ) = O(mm). If m is constant, that optimal algo-

rithm is a polynomial time and space algorithm. Other-
wise, that is exponential time and space algorithm which
is unacceptable. Thus it’s worth investigating whether
there exists an approximation algorithm with polynomial
running time and space of n,m.

The other interesting open problem is to finding a path
such that it visits as many landmarks as possible but also
the distance of the path is as short as possible. This prob-
lem is much harder than MinLandmarks problem and
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actually is a multiobjective shortest path problem which
has been proved to be NP-complete. Therefore propos-
ing an approximation algorithm for this problem is also
a challenge.
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