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ABSTRACT: Traditional solutions to shortest path problems on time-varying transportation networks only use traffic information at 

definite moment so as to ignore the fact that the travel time through a link is dependent on the time to enter it. In this paper, the 

travel speed instead of the travel time on each link of road networks was modelled as a time-interval dependent variable, and a FIFO-

satisfied computational function of the link travel time was then deduced. At last, a temporally adaptive A* shortest path algorithm 

on this FIFO network was presented, where the time factor was introduced into the evaluation function, and the Euclidean distance 

divided by the maximum possible travel speed was used as heuristic evaluator. An experiment on the real road network shows that 

the proposed algorithm is capable of foreseeing and bypassing those forthcoming traffic congestions, only with a cost of about 10 

percent more computational time than the traditional algorithm. Furthermore, frequent path reoptimization caused by the traditional 

algorithm gets avoided effectively. 
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1. INTRODUCTION 

It is increasingly necessary for a vehicle navigation system or a 

map search website to calculate fastest paths by using real-time, 

historical, or predicted traffic information (Fawcett & Robinson, 

2000; Yamane et al., 2004; Ishikawa, 2005). Traditional 

solutions to this problem only consider traffic information at 

definite moment, and calculate optimal paths by either classic or 

heuristic shortest path algorithms including Dijkstra, A*, branch 

pruning, hierarchical search, etc (Lu & Guan, 2004; Fu et al., 

2006; Klunder et al., 2006;  Cho & Lan, 2009). As a result, 

while travelling, the planned path will have to be re-optimized 

frequently to respond the periodical renewal of that near-real-

time traffic information (e.g., every five minutes). Obviously, 

this process will be considerably time-consuming, even if some 

practical accelerating techniques, such as dynamic window 

scheme (Kim & Jung, 2002) and incremental search approach 

(Huang & Wu, 2007), are introduced into it. Besides, this type 

of algorithms is incapable of computing the path and evaluating 

the travel time for a trip from an overall perspective. The reason 

is that they have overlooked the fact that the travel time through 

a link is dependent on the time to enter it. Therefore, the time-

dependent shortest path algorithms are needed for the dynamic 

route planning. 

 

The time-dependent shortest path problem (TDSPP) models the 

travel time through a link as an arrival-time-dependent variable, 

and can be resolved by some modified labelling algorithms (i.e., 

Dijkstra, A*, etc), only if the First-In-First-Out (FIFO) premise 

is satisfied (Kaufman & Smith, 1993; Sung et al., 2000; Horn, 

2000; Chabini & Lan, 2002; Kanoulas et al., 2006). In practice, 

the travel time through a link is usually taken as time-interval 

dependent in a nutshell, which ignores the fact that the travel 

speed may vary with time intervals during a trip along this link, 

and at the same time, violates the FIFO condition. In view of 

this, this paper defines the travel speed rather than the travel 

time on a link as a time-interval dependent variable, and then 

computes the FIFO-satisfied time-dependent link travel times, 

which will be used for the temporal adaption of the A* shortest 

path algorithm at last. 

 

The remains of this paper are organized as follows. Section 2 

defines a time-dependent network with time-interval dependent 

link travel speeds. Section 3 derives a computational function of 

FIFO-satisfied link travel time. Section 4 presents a temporally 

adaptive A* algorithm. Section 5 tests the proposed algorithm 

on a real road network. Conclusions are drawn in section 6. 

 

 

2. TIME-DEPENDENT NETWORK 

Suppose the time T is segmented into the following intervals: [t0, 

t1), [t1, t2), ..., [tk, tk+1) (k = 0, 1, ..., m–1, tk < tk+1), then the time-

dependent network is defined as G = (N, A, L, V, W), where N = 

{0, 1, ..., n–1} denotes the node set; A  {(i, j)|(i, j)  N × N} 

denotes the directed link set; L = {lij|(i, j)  A, lij > 0} denotes 

the link length set; V = {fij(t)|(i, j)  A, t  T} denotes the set of 

the time-interval dependent link travel speeds, and for each t  

[tk, tk+1), have fij(t) = v(i,j)k; W = {wij(t)|(i, j)  A, t  T} denotes 

the set of the time-dependent link travel times, where wij(t) 

denotes the travel time along link (i, j) when departing from 

node i at time t. 

 

Let Tij(t) denote the arrival time to node j with departure time t 

from node i along link (i, j), have Tij(t) = t + wij(t). Let p = {i1, 

i2, ..., iu} denote a path from node i1 to node iu, then the path 

arrival time function of path p is given by the composition of 

the link arrival time functions along p:  

 

1 2 1 2 3 1 2
( ) ( ( )))

u u u u u up i i i i i i i iT t T T T T t
    

 (  . 

 

Let P(o, d) denote the path set from origin node o to destination 

node d, ETod(t) denote the earliest arrival time while leaving 

from origin node o at time t to destination node d, then: 

 

( ) min{ ( ) : ( , )}od pET t T t p P o d  . 
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Obviously, the time-dependent shortest path problem is just a 

problem of computating the earliest arrival time ETod(t). 

 

(FIFO conditon)  For each link (i, j)  A, if the following 

inequality is satisfied, we call this link FIFO-satisfied: 

 

( ) ( )ij ijT s T t s t   . 

 

If every link of a time-dependent network is FIFO satisfied, we 

call this network a FIFO network. Kaufman & Smith (1993) has 

proved: the shortest path problem on the FIFO network can be 

well dealt with by the traditional labelling algorithms. 

 

 

3. COMPUTATION OF LINK TRAVEL TIME 

Consider a link (i, j)  A of length l (for simplicity, we drop the 

subscript (i, j) in this section) with travel speed vk changing with 

the time intervals [tk, tk+1) (k = 0, 1, ..., m–1). If a vehicle sets off 

from node i at time t and reaches node j at time T(t), then its 

travel time along this link will be T(t) – t. The computational 

procedure of T(t) is as follow:  

 

 

0

l

tk tk+1 tk+2 tk+3

Link

Time
t ...

(1)

(2)

(3)

T(t) T(t) T(t)
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Fig. 1  A trip along a link with time-interval-varying speeds 

 

 

1)  if 1( ) 0k k kl v t t    (See Fig. 1(1)), then 

( ) k kT t t l v  , 

else 

2)  if 1 1 2 1( ) 0k k k kl v t t       (See Fig. 1(2)), then 

1 1 1( ) k k kT t t l v    , 

else 

3)  if 2 2 3 2( ) 0k k k kl v t t       (See Fig. 1(3)), then 

2 2 2( ) k k kT t t l v    , 

else 

  
i)  if 1 1 1( ) 0k i k i k i k il v t t          , then 

1 1 1( ) 2,3...k i k i k iT t t l v i            , 

else 

  

where 

kl l  

1 1( )k k k kl l v t t      

2 1 1 2 1( )k k k k kl l v t t         

  
1 1 1( )k i k i k i k i k il l v t t            

  
 

In practice, if the time intervals are long enough, a travel along 

the link will cover no more than two time intervals, namely, [tk, 

tk+1), [tk+1, tk+2). In this case, the above computational procedure 

can be reduced to: 

 

1

1 1 1 1 1

[ )
( )

[ ( )] [ )

k k k k

k k k k k k k

t l v t t t l v
T t

t l v t t v t t l v t



    

  
 

    

， ，

， ，

                

  
. 

 

The FIFO satisfaction of T(t) is illustrated by Fig. 2 and Fig. 3. 

Assume T(t) violates the FIFO condition, that is, an overtaking 

happens: T(s) > T(t) s  t, two trajectories are sure to intersect 

at some position, e.g., point C in Fig. 2. Thus, there will have 

two different speeds in the same time interval, e.g., [tk+2, tk+3) in 

Fig. 2. In following two figures, speed value is indicated by the 

slope of the trajectory. Apparently, this violates the definition of 

the time-dependent network in Section 2. Consequently, it can 

be surely concluded that T(t) satisfies the FIFO condition. In 

fact, two travel trajectories departing at different times will be 

parallel in the FIFO network, as shown in Fig. 3. 
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Fig. 2  FIFO condition violated 
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Fig. 3  FIFO condition satisfied 

 

 

4. TEMPORALLY ADAPTIVE A* ALGORITHM 

The A* shortest path algorithm was first proposed by Hart et al. 

(1968), and further proved applicable to road networks by Fu et 

al. (2006) and Zeng & Church (2009). The A* algorithm makes 

use of a heuristic evaluation function Fi = Li + e(i,d) as a label for 

node i, where Li is the travel time of the current evaluated path 

from the origin node to node i; e(i,d) is an estimated travel time 

from node i to node d. The sum of these two functions, Fi, is the 

weight of node i, and reflects the likelihood of node i being on 

the shortest path. 
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As for the time-dependent network, it is necessary to introduce 

time factor into the evaluation function: Fi(t) = Ti(t) + e(i,d)(Ti(t)), 

where t denotes the departure time from the origin node; Ti(t) 

denotes the arrival time of the current path from the origin node 

at the time t to the node i; e(i,d)(Ti(t)) is an evaluated travel time 

from the node i at time Ti(t) to the destination node d. e(i,d)(Ti(t)) 

controls the accuracy and efficiency of the algorithm. Chabini & 

Lan (2002) has proved that if e(i,d)(Ti(t)) is not more than the 

real minimum travel time from node i to the destination node d 

with departure time t, the temporally adaptive A* algorithm will 

be strictly optimal. In view of this, let 

 

( , )

( , )

max

( ( ))
i d

i d i

D
e T t

V
 , 

 

where D(i,d) denotes the Euclidean distance from node i to the 

destination node d; Vmax denotes the maximum possible travel 

speed. 
 

Let o denotes the origin node, d denotes the destination node, t 

denotes the departure time, Pi denotes the straight preceding 

node of node i along the shortest path, Q denotes the scan 

eligible node set, and R denotes the permanent labelled node set 

(That is, the shortest path from the origin node to any node in 

this set has been found), then the basic steps of the temporally 

adaptive A* (TAA*) algorithm are as follows: 

 

Step 1: Initialization: Set To = t; Fo = To + e(o,d)(To); Fj = Tj = 

∞ j  o; Po = -1; Q = {o}; R = Ø; 

Step 2: Node Selection: Select and remove the node i with the 

minimum label Fi(t) from the scan eligible node set Q, 

and label it permanently:  

i = argminjQ{Fj}; Q = Q\{i}; R = R∪{i}; 

if i == d, the shortest path has been found, then 

STOP; 

else 

Step 3: Node Expansion: Scan each link outgoing from node i. 

For each link (i, j)  A & j  R, if  

Arri_time((i, j), Ti) + e(j,d)(Arri_time((i, j), Ti)) < Fj,  

then 

Tj = Arri_time((i, j), Ti); Fj = Tj + e(j,d)(Tj); Pj = i;  

insert node j into Q: Q = Q∪{j};  

where Arri_time((i, j), Ti) is a procedure of computing 

the arrival time of link (i, j) according to Section 3; 

Step 4: Termination: If Q = Ø, then STOP;  

else: goto step 2. 

 

 

 

Tab.1  Default speed values of different road types (Speed: km/h) 

 Expressway Arterial Sub-arterial Minor Overpass Ramp 

Monday morning peak (7:00-9:00) & 

Friday evening peak (17:00-19:00) 
35 35 35 28 35 30 

Other peaks (7:00-9:00; 17:00-19:00) 45 40 45 40 30 30 

Nights (21:00-24:00; 0:00-6:00) 60 60 60 50 45 45 

Others (6:00-7:00; 9:00-17:00; 19:00-21:00) 55 55 55 50 55 45 

 

 

 

Tab 2  A naive model for time-dependent turn delays (Time: min) 

 Straight Right Left U-turn Others 

Peaks (7:00-9:00; 17:00-19:00) 1.0 0.5 1.0 0.8 0.3 

Night (21:00-24:00; 0:00-6:00) 0.5 0.0 1.0 0.5 0.5 

Others (6:00-7:00; 9:00-17:00; 19:00-21:00) 0.5 0.1 1.0 0.5 1.0 

 

 

 

5. EXPERIMENT 

This paper implements and tests the proposed algorithm in the 

self-developed Urban Public Travel Path Service System with 

runtime environment: dual-core CPU 1.6GHz, RAM 1.0GB, OS 

Windows XP professional. The experimental data include road 

network data within the Beijing’s Fourth Ring and carriageway-

based floating car traffic data of July, August, and September, 

2007. As for the algorithm, the scan eligible node set is realized 

by quad-heap priority queue (Lu et al., 1999); the maximum 

possible travel speed is set to 60km/h. Besides, in order to deal 

with turn delays and prohibitions in the transportation network, 

an arc-labelling strategy is introduced (Gao & Lu, 2008). To be 

specific, the node and the link exchange their roles each other 

and the turn delays are accumulated into the path arrival time. 

 

5.1 Data Preparation 

The topology of the road network is carriageway-based, and one 

carriageway corresponds to one link of the time-dependent 

network in Section 2. After generalizing those virtual links and 

virtual nodes that represent a same road intersection into one 

topological node, the network contains 53997 links in all.  

 

The traffic data of one day are discreted into 288 time intervals, 

and each interval is 5 minute duration. The traffic data items in 

each time interval include: carriageway ID, carriageway length, 

travel time, and congestion level. In order to support the TAA* 

algorithm, we convert these raw travel time data into the travel 

speed data by the division of carriageway length by travel time. 

Furthermore, in view of the cycling nature of the urban traffic 

flow, we average those speed values with the same day category 

and the same time interval, which results in 7 speed data files.  

 

For the carriageways not covered by floating car traffic data, we 

give them default speed values according to the road type and 

the entrance time, as shown in Tab. 1. Moreover, we build a 

naive time-dependent turn delay model: Turn = 0.5 × f(time, 
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turn_type), where 0.5 denotes the probability of waiting at 

intersections; f(time, turn_type) is evaluated as Tab. 2. 

 

5.2 Experimental Results 

We choose the Beichendong Road as an origin road and the 

Cuiwei Road as an destination road, set 7:00 and 8:00 on 

Tuesday as two departure times, and then compute four least-

time paths by the TAA* algorithm and the real-time A* (RTA*) 

algorithm respectively. Computational results are shown in Fig. 

4 and Fig. 5. As compared with the TAA* algorithm, the only 

and significant distinct of the RTA* algorithm is that the RTA* 

algorithm merely uses the traffic data at the departure time.  

 

As seen from the Fig. 4 and Fig. 5, while departing at 7:00, the 

TAA* algorithm foresees and bypasses the forthcoming traffic 

congestion on the Third Ring Road, but the RTA* algorithm do 

not. While departing at 8:00, the TAA* algorithm predicts that 

the current traffic congestion on the Third Ring Road will die 

away at the entrance time, and therefore avoids an unwanted 

detour caused by the RTA* algorithm. 

 

 

 

(a)  RTA* (b)  TAA*
 

Fig. 4  Comparison of computational results of TAA* and RTA* (Departure time: 7:00) 

 

 

 

 

(a)  RTA* (b)  TAA*
 

Fig. 5  Comparison of computational results of TAA* and RTA* (Departure time: 8:00) 

 

 

 

Furthermore, we select 30 pairs of Origin-Destination (O-D) 

carriageways, set 7:30 on Tuesday as departure time, and then 

calculate the least time path between each O-D pair by the 

TAA* algorithm, RTA* algorithm and RTA*_M algorithm 

separately. The comparisons between them are shown in Fig. 6, 

Fig. 7 and Fig. 8 (The 30 paths are sorted by length). Thereinto, 

the RTA*_M algorithm works as follow: i) At the beginning of 

the trip, compute an optimal path by the RTA* algorithm; ii) 

during the trip, re-optimize the path by the RTA* algorithm as 

long as new traffic information arrives (This is simulated by the 

historical traffic data); iii) repeat step ii) until the destination is 

reached. So the computational time of the RTA*_M algorithm 

is the sum of that of each RTA* algorithm, and the path of the 

RTA*_M algorithm is that actual travelled path. 
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Fig. 6  Comparison of path travel times of TAA* and RTA*_M 
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As seen from the Fig. 6, although the low traffic information 

coverage and the immature of the traffic prediction model and 

the turn delay model make a few paths less differentiated, the 

path travel times of the TAA* algorithm are less than those of 

the RTA*_M algorithm on the whole. 

 

It is concluded from the Fig. 7 that the TAA* algorithm will 

cost about 10 percent more computational time than the RTA* 

algorithm. The extra time is exhausted mainly by the procedure 

of link travel time computation. Its time complexity is O(m), 

where m denotes the number of the time intervals of the link. 
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Fig. 7  Comparison of computational times of TAA* and RTA* 

 

 

It can seen from the Fig. 8 that the TAA* algorithm cost much 

less computational time than the RTA*_M algorithm. The 

reason is that the TAA* algorithm only need to carry out the 

computational procedure once because it has taken the future 

traffic status into account already in advance, but comparatively, 

the RTA*_M algorithm must execute the computational 

procedure again and again because of its “short views”. 
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Fig. 8  Comparison of computational times of TAA* and 

RTA*_M 

 

 

6. CONCLUSIONS 

This paper suggests a novel time-dependent network model, 

where the travel speed instead of the travel time is regarded as 

changing with different time intervals, and from which a FIFO-

satisfied computational function of link travel time is derived. 

Furthermore, this paper develops a temporally adaptive A* 

algorithm to calculate least-time paths on the defined time-

dependent network, where the link-travel-time computational 

function was used to the evaluation function, and the Euclidean 

distance divided by the maximum possible travel speed was 

designed as the heuristic evaluator. An experiment on the real 

road network shows that the proposed algorithm is capable of 

foreseeing and bypassing those forthcoming traffic congestions, 

saving the travel time, and raising the overall efficiency of the 

navigation system. 

 

The implementation of the TAA* algorithm needs the support 

of link travel speed data and turn delay data. This paper only 

takes the simple means of historical link travel speed data as 

future link travel speeds. Besides, turn delays between links are 

set empirically rather than theoretically. Therefore, we will keep 

on our research work on accurate and available link travel time 

prediction method and turn delay measure model in the near 

future. 
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