
A Markov Random Field Model for Individual Tree Detection from  

Airborne Laser Scanning Data 
 

 

Junjie Zhang, Gunho Sohn 

 

GeoICT lab, Earth and Space Science and Engineering Department, York University, 4700 Keele St., Toronto, ON M3J 1P3, Canada 

– (jason84, gsohn)@yorku.ca 

 

Commission III, WG III/2 

 

 

KEY WORDS: Airborne Laser Scanning, Tree detection, Markov Random Field, Automation, Segmentation 

 

 

ABSTRACT: 
 

Small-footprint Airborne Laser Scanning (ALS) holds great potential in forest inventory as it surpasses traditional remote sensing 

techniques in terms of rapid acquisition of 3D information of trees directly. With the increasing availability of high density ALS data, 

the derivation of more detailed individual tree information, such as tree position, tree height, crown size and tree species, becomes 

possible from ALS data exclusively. However, single tree detection is a critical procedure for tree-wise analysis in order to retrieve 

more accurate individual-tree-based parameters. The presented research highlights a novel Markov Random Field to model the 

configuration of single trees in ALS data in which a global optimum to isolate individual trees can be achieved and addressed 

difficulties of individual tree detection problem in terms of problem representation and objective function. Firstly, local maxima are 

overpopulated from the CHM recovered from ALS data using a circular type of window filter with variable size. Then trees are 

modelled as objects at the centre of the extracted local maxima and attributed with other features retrieved from CHM image. The 

neighbourhood system is set up by TIN and energy functions are carefully designed to incorporate constraints for penalizing false 

trees and favour true ones. Finally, the optimal tree models are obtained through an energy minimization process. The method is 

applied on ALS data acquired from a coniferous forest and experimental results show a good detection rate. 

 

 

1. INTRODUCTION 

Small-footprint Airborne Laser Scanning (ALS), as an active 

remote sensing technology, allows for rapid acquisition of 

accurate 3D information of Earth topography and features in 

large scale. ALS gains popularity in forest survey quickly due 

to its unique capability of penetrating the tree canopy and 

providing relatively direct measurement of 3D structural 

information of trees, as well as the elevation of terrestrial 

surface under the canopy in forested area. This advantage 

makes it an alternative of tradition technology or even preferred 

one in the acquiring some forest parameters.  

 

Recent development of commercial small-footprint and full-

waveform ALS system make the advantage stand even out. The 

practice of ALS in forestry study has extended from the 

formerly extraction of stand-based forest parameters, to the 

derivation of more detailed individual-tree-based information, 

such as tree position, tree height, crown size and tree species, 

with the increase of point density (Brandtberg, 2007; Hyyppä, 

et al., 2008). The potential of ALS data in forest inventory is 

still being exploited by various researches. 

 
However, in order to implement tree-wise analysis of forest, it 

is essential to detect individual trees from ALS data first. 

Extensive researches have been done to isolate single trees 

using ALS data and many of them used the methods extended 

from such procedures using aerial photos or satellite images 

(Chen, et al., 2006). The outer geometry of trees can be directly 

recovered from ALS point clouds and the peaks and valleys on 

the recovered model can be better estimations of treetop 

positions and crown edges, than that obtained from photos or 

images. 

2. RELATED RESEARCH 

In this case, most methods focused on the reconstruction of the 

canopy height model (CHM) and the methods developed for 

optical imagery were transferred to detect trees in CHM. Most 

of those approaches were segmentation-based methods and fall 

in the scope of low-level vision techniques. To the best 

knowledge of the author, those methods include but not limited 

to: seed-based region growing (Solberg, et al., 2006), valley 

following (Leckie, et al., 2003), watershed segmentation 

(Pyysalo and Hyyppä, 2002) and its variance marker-controlled 

watershed (Chen, et al., 2006). One main drawback of those 

methods is that empirical values are often used to set key 

parameters in the solution, which makes them scene sensitive. 

One example is that to increase the detection success rate of 

local maxima, which is helpful in seed-based region growing 

and marker-controlled watershed, in terms of false positives and 

negatives using variable window size, preliminary knowledge 

of tree height and crown size of the study area is needed first, 

whether it is from field survey or experience. Also, in the post-

processing of segmentation results, thresholds were also 

determined subjectively to remove or merge segments with 

certain size or according to other heuristic rules (Chen, et al., 

2006). 

 

Recently, some applications utilizing the information contained 

in the 3D ALS point clouds to detect single trees were reported. 

Reitberger et al. (2009) tried to detect tree stems beneath the 

tree canopy using full-waveform ALS data, and combine them 

with local maxima detected on CHM as seeds to segment trees 

in 3D using a graph-cutting algorithm. One possible limit of this 

method is that stem detection may be influenced by ALS 

resolution, canopy closure, undergrowth vegetation and tree 

species, which determine the straightness of the stem. Raham 

and Gorte (2009) attempted to delineate tree crown based on 

densities of high points from high resolution ALS and got 
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comparable result with CHM-based approach. However, the 

main defect of the method is that the point distribution in the 

tree crown is not only related to tree species, but can be also 

affected by many factors such as scan rate, scan direction, scan 

angle, scan pattern and shadow effects from neighbourhood 

trees. 

 

Under such a situation, there is a reasonable demand in the 

perspective of computer vision that a more generalized way for 

single trees detection from remote sensing data to be developed. 

Perrin et al. (2005) employed marked point process to extract 

tree crown from aerial photo of a plantation. This method 

considered the image as a realization of a marked point process 

and searched for the best configuration in a completely 

stochastic way. The method produced good result from the 

image. However, as the nature of the method ignored any priori 

information can be extracted from the image, the process of 

searching for global optimum takes a long time to converge and 

its computing cost is expensive. Descombes and Pechersky 

(2006) presented a three state Markov Random Field model to 

detect tree crown from aerial image and define the problem as a 

segmentation problem. Although the approach defines a 

template of tree crown and works on a local mask, it actually 

calculates on the pixel level. As well, this model does make use 

of any knowledge can be extracted from the image. 

 

 

3. ORGANIZATION OF THE PAPER 

The presented work places the detection of individual trees in a 

stochastic framework using a novel Markov Random Field 

model, but bring it to high level by addressing the difficulties of 

individual tree detection problem in terms of problem 

representation and objective function. In our approach, trees are 

modeled as objects in the image by extracting priori information 

from ALS image. Then a Markov Random Field model is 

defined on the objects. The configuration is updated towards the 

global optimum at which point we get the detected trees. The 

method is particularly interesting for following reasons: 

 

 i. it extracts priori features from ALS data and models 

trees as objects, so the sites in the Markov Random 

Field model are objects, not pixels; 

 ii. it allows to introduce a priori knowledge of objects, as 

well as consider likelihood between the represented 

object and image, which is the property and advantage 

offered by a Markov Random Field model;  

 iii. it greatly reduces the searching space by modelling 

objects and their relationships at high level and makes 

the computation much less heavy. 

 

To present our method, we first introduce how we represent 

trees as objects in the ALS data and how the neighbourhood 

system is defined. Then we propose the energy formulation 

based on a data term which measures how features extracted 

from the data support the object as an individual tree, and a 

contextual term which take into consideration some interactions 

between neighbouring objects. The model updating and 

optimization are followed at the third place. Finally, 

experimental results of the method on ALS data acquired from a 

coniferous forest are presented. 

 

 

4. THE PROPOSED MODEL 

We introduce in this section about how the proposed Markov 

Field Model is built in three parts: problem representation, 

objective function design and model optimization. 

 

4.1 Markov Random Field 

Markov Random Field (MRF) was first introduced into 

computer vision community by Geman and Geman (1984). The 

appeal of MRF theory is that it provides a systemic framework 

to encode contextual constrains into the priori probability and 

MRF based approaches has been successfully applied to 

modeling both low level and high level vision problems (Li, 

1994).  

 

In a probabilistic frame, a random field 𝑋 is said to be a Markov 

Random Field, if the value of random variable 𝑋𝑠 ∈ 𝑋  only 

depends on its local environment through a neighborhood 

system 𝕍 defined as (Li, 1994): 

 

 
𝑠 ∉ 𝕍 𝑠                                                 
∀𝑟 ∈ 𝑆\{𝑠},   𝑠 ∈ 𝕍(𝑟) ⇔ 𝑟 ∈ 𝕍(𝑠)

   (1) 

 

In the measurable space  Ω, ℱ, 𝑷 , MRF model can be described 

by the probability law 𝐏 𝑋 = 𝑥  the event 𝑥 to be a realization 

of 𝑋 as: 

 

∀𝑥 ∈ Ω, ∀𝑠 ∈ 𝑆, 𝐏(𝑋𝑠 = 𝑥𝑠|𝑋𝑟 = 𝑥𝑟 , 𝑟 ∈ 𝑆\{𝑠})  (2) 

                          = 𝐏(𝑋𝑠 = 𝑥𝑠|𝑋𝑟 = 𝑥𝑟 , 𝑟 ∈ 𝕍𝑠) 

 

The Bayesian model is then used to solve the inverse problem 

of how to retrieve the best configuration 𝑥  given the 

observations 𝐷. By Bayesian law, which relates the a priori and 

conditional probability, the a posteriori probability can be 

written as: 

 

𝑃 𝑋 𝐷 =
𝑃 𝐷 𝑋 𝑃(𝑋)

𝑃(𝐷)
∝ 𝑃 𝐷 𝑋 𝑃(𝑋) (3) 

 

The problem is then converted into maximizing the a posteriori 

probability (MAP) problem: 

 

𝑥 𝑀𝐴𝑃 = arg 𝑚𝑎𝑥
𝑥∈Ω

𝑃(𝑋|𝐷) (4) 

 

Which is equivalent to 

 

𝑥 𝑀𝐴𝑃 = arg 𝑚𝑖𝑛
𝑥∈Ω

 −𝑙𝑜𝑔 𝑃 𝐷 𝑋  − log⁡(𝑃(𝑋)   (5) 

 

 

According to the Hammersley-Clifford theorem (Besag, 1974), 

a MRF field and a Gibbs field are equivalent. The a priori 

probability of 𝑋 can there written as: 

 

𝑃 𝑋 = 𝑥 = 𝑍𝑐
−1 × 𝑒−𝑈𝑐(𝑥)  (6) 

 

Where 𝑍𝑐 =  𝑒−𝑈𝑐(𝑥)
𝑥∈Ω  is normalization constant and 𝑈𝑐  the 

priori energy, or contextual energy as referred to in 4.2. 

 

Let the conditional probability be expressed also in the 

exponential form: 

 

𝑃 𝐷 𝑋 = 𝑥 = 𝑍𝑑
−1 × 𝑒−𝑈𝑑 (𝑥)  (7) 

 

Where 𝑍𝑑 =  𝑒−𝑈𝑑 (𝑥)
𝑥∈Ω  is normalization constant and 𝑈𝑑  the 

likelihood energy, or data energy as referred to in 4.2. 
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Under the Markovian hypothesis, solve equation (5) with 

equation (5) and (7). The problem searching for the MAP 

configuration is equivalent to finding minimum global energy 𝑈 

as sum of data term 𝑈𝑑  and contextual term 𝑈𝑐 : 

 

𝑈 = 𝛼𝑈𝑑 +  1 − 𝛼 𝑈𝑐  (8) 

 

In our problem domain, we aim to model trees as objects in the 

ALS data and fit the detection of individual trees in a high-level 

MRF labeling problem. The problem representation of the 

model is specified below. 

 

4.1.1 Representation of trees: In our study, we represent a 

tree using a treetop point and a crown radius. Later, some other 

features are also extracted from the ALS image as properties of 

trees. The extraction process can be divided into two parts: local 

maxima extraction, and crown boundary points and radius 

calculation. The second part will be described in next section 

4.1.2, which is related with the building of neighborhood 

system. As treetops are good representation of trees, after CHM 

is reconstructed from ALS data, local maxima are over-

populated using a variable circular window with relatively small 

size, to ensure in the set of local maxima contains all the 

treetops in the image as shown in Figure 1. So the goal of the 

MAP-MRF labeling is to label all local maxima which are true 

treetops as “true”, and all the otherwise as “false”. Initially, all 

the local maxima are assumed to be true treetops thus labeled as 

“true”. 

 

4.1.2 Neighborhood system: The sites in a configuration is 

related with each other via neighborhood system, which is 

another important task in the designing of a MRF model. A 

Delaunay TIN is used in our research to build up relationships 

between neighboring treetops, as shown in Figure 1. In this way, 

Delaunay TINs are built and updated during the optimization 

process using the local maxima label as “true”. And “false” 

local maxima will be pruned from the graph during the updating 

process. The neighbor system could then help us examine the 

interaction between two “true” treetops easily. 

 

 
 

Figure 1: The local maxima extracted using variable circular 

window size. Delaunay TIN is used to build the neighborhood 

system. 

 

The neighborhood system designed in such a manner is also 

advantageous for extracting some other properties for the 

treetops, namely crown boundary points and radius as 

mentioned in 4.1.1. A image profile between two adjacent “true” 

treetops is extracted from the CHM image. It is then reasonable 

to say the deepest valley point on the profile is the safest 

separation of the two trees, if the two treetops are “true”. From 

the treetop points to the separation points, we can find all the 

possible boundary points. Those boundary points are then used 

to determine the directional average boundary radius, average 

boundary radius and most possible boundary points on each 

profile. Those features extracted from the image are then used 

with the local maxima to represent a tree object in the MRF 

model. 

4.2 Energy Formulation 

Design of energy functions, or objective functions, is another 

critical issue in MRF. For energy functions will map a solution 

to a real number measuring the quality of the solution in terms 

of goodness or cost, the formulation has to carefully determine 

how various constrains to be encoded into the function, in order 

to get the optimal solution. According to equation (8), the 

global energy U of the model is comprised of data energy 𝑈𝑑  

and contextual energy 𝑈𝑐 . 

 

4.2.1 Data Energy: The data energy indicates the likelihood 

of the objects of trees in relation with the features extracted 

from the ALS data, or how well those features support the 

treetop point as “true”. In the calculation of this term, we 

incorporate four kinds of constrains, which are specified below. 

 

Symmetric (𝑼𝒅
𝒔 ) 

 

The “true” treetops are assumed to locate in the central part of 

the crown, whereas the “false” ones at the edge part of the 

crown. Therefore, the determined crown shapes of “true” 

treetops are expected to be more symmetric. This function (see 

Figure 2) is then used to penalize treetops with asymmetric 

crown given by equation (9). 

 

𝑈𝑑
𝑠(𝑠) =  

sin  
𝜋

2𝜀𝑠

 Δ𝑅(𝑠) − 𝜀𝑠   𝑖𝑓 0 ≤ Δ𝑅(𝑠) ≤ 2𝜀𝑠

1                                 𝑖𝑓 Δ𝑅(𝑠) > 2𝜀𝑠

   (9) 

 

Where s is a treetop, ΔR(s) is the radius difference ratio of s, 

given by equation (10). 

 

∆𝑅 𝑠 =  1

𝑁
  𝑅𝑠

𝑖 − 𝑅𝑠 
2

𝑁
𝑖=1 𝑅𝑠   (10) 

 

Where 𝑅𝑠
𝑖  is the directional average boundary radius of treetop 

𝑠, 𝑅𝑠 is the average radius of 𝑠 and 𝑁 the number of profiles of 

𝑠. 

 

Boundary Radius Constrain (𝑼𝒅
𝒓 ) 

 

This scoring function was set to penalize the local maxima lo-

cated closely to the edge part of a crown according to the num-

ber of radius of most possible boundary points under certain 

threshold given by equation (11). 

 

𝑈𝑑
𝑟 𝑠 =  

   1  𝑖𝑓 𝑛𝑏 𝑠 ≥ 2

   0  𝑖𝑓 𝑛𝑏 𝑠 = 1

−1  𝑖𝑓 𝑛𝑏 𝑠 = 0

   (11) 

 

Where 𝑠 is a treetop and 𝑛𝑏 𝑠  is the number of radius of most 

possible boundary points under threshold, with is set as 

min⁡(3, 0.1𝑅). 

Delaunay Triangulation of Local Maxima: 169
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Figure 2: Symmetric scoring function. 

 

Boundary Point Depth (𝑼𝒅
𝒅) 

 

The valley depth of the most possible boundary point in the pro-

file between two local maxima indicates the possibility of the 

local maxima to be “true” treetops or not. So boundary point 

depth scoring function (see Figure 3) is given by equation (12). 

 

𝑈𝑑
𝑑 (𝑠) =  

𝑠𝑖𝑛  
𝜋

2𝜀𝑑

 𝑑 𝑠 + 𝜀𝑑    𝑖𝑓 0 ≤ 𝑑 𝑠 ≤ 2𝜀𝑑

−1                               𝑖𝑓 𝑑(𝑠) ≥ 2𝜀𝑑

  (12) 

 

Where 𝑠 is a treetop, 𝑑(𝑠) is the boundary point depth ratio giv-

en by equation (13). 

 

𝑑 𝑠 =  𝑕𝑠 − 𝑕𝑏(𝑠)  𝑕𝑠 − 𝑕𝑜   (13) 

 

Where 𝑕𝑠  is the height of treetop s, 𝑕𝑏 𝑠  is the height of the 

most possible boundary point and 𝑕𝑜  is the threshold set for to 

stretch the value of high difference ratio, which is set as 5m.  

 

 
 

Figure 3: Boundary point depth scoring function 

 

Area Constrain (𝑼𝒅
𝒂) 

 

So far data energy can be calculated as equation (14): 

 

𝑈𝑑 = 𝑈𝑑
 𝑠,𝑟 ,𝑑 

= 𝑤𝑠𝑈𝑑
𝑠 + 𝑤𝑟𝑈𝑑

𝑟 + 𝑤𝑑𝑈𝑑
𝑑    (14) 

 

where 𝑤𝑠 + 𝑤𝑟 + 𝑤𝑑 = 1. 

 

However, to more heavily penalize the trees which were appar-

ently not “true” from empirical knowledge and accelerate the 

convergence rate of optimization process, an area constrain is 

added given by equation (15). 

 

𝑈𝑑
𝑎 (𝑠) =  1 𝑖𝑓 𝑅 ≤ 3

−1 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
  (15) 

 

where 𝑠 is treetop s and 𝑅 is the average radius of 𝑠. 

 

Finally, the data energy is computed as equation (16). 

 

𝑈𝑑 = max⁡(𝑈𝑑
 𝑠,𝑟 ,𝑑 

, 𝑈𝑑
𝑎) (16) 

 

4.2.2 Contextual Energy: The contextual energy introduces 

a priori knowledge concerning the objects layout. It is natural 

for us to incorporate a constraint that penalizes severe 

overlapping of tree crowns. However, the design of constrain to 

penalize over-pruning situations might result in too much gaps 

on the tree crowns. To address this problem, the two scoring 

functions are proposed in detail below. 

 

Profile Connectivity (𝑼𝒄
𝒄) 

 

As it is mentioned, this scoring function is used to penalize the 

over-pruning situation during the optimization process which 

leads to gaps between tree crowns. The disconnected ratio of i-

th profile of treetop 𝑠 is defined by equation (17). 

 

𝑐 𝑝𝑠
𝑖 =  𝑅

𝑝𝑠
𝑖

𝑜𝑢𝑡𝑒𝑟 − 𝑅
𝑝𝑠

𝑖
𝑚𝑝

 𝑅𝑠  (17) 

 

where 𝑝𝑠
𝑖  is the i-th profile of treetop 𝑠, 𝑅𝑠 is the average radius 

of s, and 𝑅𝑝𝑠
𝑖

𝑜𝑢𝑡𝑒𝑟 , 𝑅
𝑝𝑠

𝑖
𝑚𝑝

are the radius of the outermost  and most 

possible boundary points of s on the i-th profile. 

 

The disconnect ratio of treetop 𝑠 is then calculated as equation 

(18). 

 

𝑐 𝑠 = max  𝑐 𝑝𝑠
𝑖   (𝑖 = 1~𝑁) (18) 

 

where 𝑁 is the number profiles of treetop 𝑠. 

 

Then the disconnected ratio 𝑐(𝑠) is used as input to calculate 

the profile connectivity score given by equation (19). 

 

𝑈𝑐
𝑐 𝑠 =

 
 
 

 
 1                                       𝑖𝑓 𝑐 𝑠 ≥ 𝑐2

sin  
𝜋

𝑐2−𝑐1
 𝑐 𝑠 −

𝑐1+𝑐2

2
   𝑖𝑓 𝑐1 ≤ 𝑐(𝑠) ≤ 𝑐2

−1                                  𝑖𝑓 𝑐 𝑠 ≤ 𝑐1

  (19) 

 

 

Profile Overlap (𝑼𝒄
𝒐) 
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Similarly, a profile overlap scoring function is designed to pe-

nalize severely overlapped tree crowns. The overlapping ratio 

of i-th profile of treetop 𝑠 is defined by equation (20). 

 

𝑜 𝑝𝑠
𝑖 =  𝑅𝑠 + 𝑅𝑠′ − 𝑙𝑝 𝑙𝑝  (20) 

 

where 𝑝𝑠
𝑖  is the i-th profile of treetop s, 𝑅𝑠 is average radius of s, 

𝑅𝑠′  is the average radius of 𝑠′ which is connected with 𝑠 by pro-

file 𝑝𝑠
𝑖 , and 𝑙𝑝  is the length of 𝑝𝑠

𝑖 . 

 

The profile overlap ratio of treetop 𝑠 is then calculated as equa-

tion (21). 

 

𝑜 𝑠 = max  𝑜 𝑝𝑠
𝑖   (𝑖 = 1~𝑁) (21) 

 

where 𝑁 is the number profiles of treetop 𝑠. 

 

Then the profile overlap score of treetop 𝑠 is given by equation 

(22). 

 

𝑈𝑐
𝑜 𝑠 =

 
 
 

 
 1                                        𝑖𝑓 𝑜 𝑠 ≥ 𝑜2

sin  
𝜋

𝑜2−𝑜1
 𝑜 𝑠 −

𝑜1+𝑜2

2
   𝑖𝑓 𝑜1 ≤ 𝑜(𝑠) ≤ 𝑜2

−1                                   𝑖𝑓 𝑜 𝑠 ≤ 𝑜1

  (22) 

 

 

At last, the contextual energy is computed as equation (23). 

 

𝑈𝑐 = 𝑤𝑐𝑈𝑐
𝑐 + 𝑤𝑜𝑈𝑐

𝑜  (23) 

 

where 𝑤𝑐 + 𝑤𝑜 = 1. 

 

4.2.3 Parameters Settings: There are three categorizes of 

parameter setting in the model: physical parameters, and 

weights and thresholds.  

 

The physical parameters have a physical meaning in the appli-

cation and are fixed according to the scene. There are two phys-

ical parameters in the model, 𝑕𝑜  set as the height of low vegeta-

tion and the threshold used to penalize local maxima which 

locate near the edge of tree crowns, both in the scoring func-

tions of data energy. 

 

Weights are assigned to data energy and contextual energy in 

the calculation of global energy, respectively 𝛼  and  1 − 𝛼 . 

And more are used in the computation of data energy and con-

textual energy respectively, as more than one constrains are in-

corporated in the model. The settings of weights are basically 

intuitive and tuned through trial and errors. 

 

Thresholds are also necessary in the design of the scoring func-

tions, as we want to set tolerances to different constraints. For 

example, we can set a smaller tolerance of 𝜀𝑠 in the symmetric 

scoring function, if we want to penalize more effectively about 

treetops with asymmetric crown.  It is the same case with 𝜀𝑑 , 𝑐1 

and 𝑐2 , 𝑜1  and 𝑜2 . In our application, we set 𝛼 = 0.6 , 𝜀𝑠 =
1, 𝜀𝑑 = 0.25, 𝑐1 = 0.5, 𝑐2 = 1.5, 𝑜1 = 0.4 and 𝑜2 = 0.8.  

4.3 Model Optimization 

In the preliminary tests of our method, we used relatively sim-

ple model evolving scheme to find the configuration of objects 

with “minimum” global energy. This scheme simulates a dis-

crete Markov Chain  𝑋𝑡 𝑡∈ℕ  on the configuration space in 

which only death process is considered. For each iteration, the 

site with the highest global energy in the configuration is re-

garded as the weakest site and removed from the configuration. 

The iteration continues until there are only 3 sites left, which is 

the minimum number of points required to construct a TIN. 

 

As the initial site number is finite and relatively small, the itera-

tions can be completed in a short period of time and the confi-

guration with the minimum global energy during the Markov 

Chain evolving process can be recovered quickly. 

 

5. EXPERIMENTAL RESULTS 

The ALS data used for this study was acquired by Riegl LMS-

Q560 in a coniferous forest area about 60km east to Sault Ste. 

Marie, Canada. The point density is about 30 pt/m2. The ALS 

data was first processed into CHM image with a resolution of 

0.5m. We just used the highest point in each cell to reconstruct 

the CHM and no smoothing operation was done to it. 

 

After CHM was prepared, the a priori information was ex-

tracted from the data and trees are then modeled as object in the 

data using local maxima and crown radius as shown in figure 4. 

As can be seen from the figure, trees are over-populated with a 

total number of 169. Crown radiuses are reasonably extracted 

from the data. 

 

 

 
 

Figure 4: Result of tree detection: (Up) initial configuration 

with 169 tree objects shown in red circle; (Below) optimal con-

figuration when minima global energy reached, with 127 trees 

labeled as true. 
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Figure 5: Global Energy Curve 

 

Figure 5 shows the corresponding global energy curve during 

the searching for optimal configuration. As can be seen from 

those figures, at the beginning, the global energy decreases 

quickly with the removal of false trees, and reaches the minima 

of global energy get at 42 iterations. Later, the global energy 

start to increase when trees are over-pruned, which indicates the 

effectiveness of the designed energy functions in our model.  

Finally, 127 trees are detected from the CHM data. What we 

can interpret as well is that in the optimal configuration, the 

“false” treetops located on the crown edge and trees with over-

lapping crowns are removed at a high accuracy, when compared 

with the initial configuration. At the meantime, trees with big 

crown are kept even with some extend of overlaps.     

 

6. CONCLUSION AND FUTURE WORKS 

We have presented in this paper detecting individual trees from 

ALS data. The innovation of the method is formulating the tree 

detection in the data as a high-level MRF labeling problem, and 

highlights the problem representation and energy function de-

sign in the Markov Random Field model. In this approach, trees 

are modeled as objects with treetops, crown radius and some 

other features extracted from the data and the data is regarded 

as configurations of those objects. Then, neighborhood system 

is proposed to introduce relationships between the objects and 

energy functions are carefully designed to corporate the con-

straints in model. Finally, the optimal configuration is found 

through an energy minimization process. The experimental re-

sult shows a good detection rate of single trees in the data.  

 

The advantage of the method lies in that low level vision me-

thod is first used to extract priori information from the data, and 

trees are abstracted from that information in a high level. Then 

the problem is formulated using a Markov Random Field model. 

In such a way, the size of configuration space is greatly reduced 

and much less computation will be needed in the searching of 

optimal solution. Furthermore, under such a mathematic 

framework, other features or constraints extracted from data or 

even other sources, which help in the detection of trees, e.g. 

stems detected underneath the canopy cover, can be easily add-

ed and integrated into the current model without having to alter 

the structure of algorithm. However, there are still some issues 

to be studied in the future in order to improve the method. The 

first one will be model optimization. A RJMCMC embedded 

simulated annealing is suggested to be introduced for searching 

the configuration space more thoroughly to get the optimal con-

figuration. Secondly, it will also be interesting to explore some 

algorithm can be employed to help find best weighting coeffi-

cients automatically. Finally, more investigation will be imple-

mented to find out which scoring functions designed play more 

significant roles in the penalization of false trees and detection 

of true trees. Also, this method will be applied to more datasets 

to test its feasibility to forests of different types or structures. 
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