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ABSTRACT: 
 
In this paper, we propose a new approach to extract planar patches and boundary from a set of LiDAR point cloud. In the beginning, 
the 3D point cloud set is partitioned and assigned to fixed-size cubes. Secondly, local planar patches are generated by extracting 
surface normal vectors within each cube. Finally, the global planes are formed by grouping the planar patches. The boundary of 
global plans is retrieved by projecting point cloud onto 2D convex hulls.  
 
 

1. INTRODUCTION 

Since the availability of Google Earth to the general public, the 
overlay of 3D buildings on top of the aerial images draws great 
interests.  Microsoft also offers its own Virtual Earth. 3D urban 
scenes offer a variety of applications, such as navigation, 
location-based services, augmented reality, real estate, GIS and 
risk management, etc. 
 
Most of the large scale commercial 3D urban scenes are 
captured from aerial imagery or airborne LiDAR data. In recent 
years, efforts and systems for street level 3D scanning begin to 
flourish (Fruh and Zakhor, 2003; Goulette et al, 2007; Haala et 
al, 2008; Pfaff el al, 2007, Zhao and Shibasaki, 2001) 
 
In 3D reconstruction, the street level building facades are 
assumed to consist of mainly planar surfaces. Instead of 
building triangular mesh directly from the raw point cloud, the 
geometry features, such as points, lines and surfaces are 
extracted first from the point cloud. Then, their 
correspondences on the two dimensional image planes are 
located for texture mapping (Stamos2000). 
 
In this paper, we emphasize in geometry processing from 
terrestrial laser scan (TLS) data. The geometry of point cloud 
data, such as lines, planar surfaces can be extracted by two 
major methods: region-based and boundary-based segmentation. 
 
With reference to region-based approaches, Weingarten et al 
(2003) proposed a cube sweeping algorithm to extract local 
planar patches, and then merge these patches into global planes.  
Tseng and Wang (2005) used octree splitting and merging to 
extract planar patches. Their approach is referred to the top-
down segmentation. 
 
In boundary based approaches, Jiang and Bunk (1999) used 
scan-line approximation, where each 3D point is assigned to an 
edge strength, and then a threshold is used to determine the type 
of edge. The prerequisite of this method is that the data points 
have to be in order spatially. In following researches, the point 

projection method for boundary extraction has been proposed 
(Zhou and Newmann, 2006). 
 
Our main contributions are in two folds: The first is a novel 
bottom-up 3D space partition for local planar patch extraction. 
The second is the convex hull projection approach to extract 
both straight and curved boundaries. 
 
The rest of paper is organized as follows. In section 2, we 
describe the 3D cube partition, point assignments, and  surface  
normal extraction. Then the merging process is applied to create 
a minimum number of planar surfaces with maximum size. 
Finally, a method to extract the merged boundaries using 
convex hull projection is proposed. In section 3, the algorithm 
is applied to a 14-story urban building and a synthetic 3D data. 
 
 

2. PLANE AND BOUNDARY EXTRACTION 

Cube Assignment for Point Clustering 2.1 

Our objective here is to extract planar patches from a set of 
spatially unstructured point cloud data. Each point of the data is 
expressed in a 3-tuple Cartesian coordinate, P = (px,py,pz). For a 
typical outdoor building scan project, it can produce over  
five million 3D points. It is obvious that data reduction and 
feature extraction are necessary.  
 
First, the data points have to be partitioned and assigned to 
individual 3D cube space.  A plane patch surface normal is then 
estimated by fitting the points inside the cube. 
 
In the beginning, a cube C with length l is selected (l is depend 
on the sparseness of the data). The following algorithm is the 
pseudo-code of the cube creation and assignment process. 
 
Algorithm cubeAssign(p, l) 
Function arguments: Npn: number of input points, l: length of 
cube, Cs: cube sets, Cmsi : merged cube sets, Ts: threshold of the 
minimum points in a cube 

 
1. Cs=Null, Cmsi=Null 
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2.2 2. While Npn>0 
3.  point ← readPoint(p) 
4.   boundp ← getBoundary(point,l) 
5.    if (sizeof(Cs) = 0) 
6.     Cs ← assign(point, boundp) 
7.    end if 
8.       Cs ← fitPointToCube(point, boundp) 
9. End while 
10. removeCube(Cs , Ts) 

 
Line 1: points are read sequentially; 
Line 2: compute the cube boundary of the point :  
             x_min = floor(px/l), x_max= ceiling( px/l), 
             y_min = floor(py/l), y_max= ceiling(py/l), 
             z_min = floor(pz/l),  z_max= ceiling(pz/l), 
Line 5-7: If there is no existed cube enclose the current point, 
               a new cube is created and the point is assigned to it 
Line 8: If there is an existed enclosed cube, then the current 
             point is assigned to it. 
Line 9:  Iterate through every point.  
Line 10: Remove cubes which enclosed points are less than a 
              threshold. 
 
The following figure shows an example of cube assignment 
process base on function “cubeAssign”.  
 

 
 

Figure 1. Cube assignment 
 
Suppose there are 8 points to begin with. The numerals indicate 
the order of data appeared in the file. The first two cubes “Cube 
1” and “Cube 2” are created to enclose point 1 and point 2, 
respectively. Since point 3 is within the range of “Cube 2”, a 
new “Cube 3” has to be created to enclose point 4. The same 
process is repeated until every point is assigned to an enclosed 
cube. 
 
At the end of cube assignment, a point which assigned to cube α 
can be denoted as 
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where β is the point index within the cube. The following figure 
shows all the points are partitioned by stack-up cubes. 
 

 
 

Figure 2. Segmented points data with cube. 
 

Each of the cube and the surrounded points are well clustered. It 
is efficient for further analysis such as plane or boundary 
extraction and polygon reconstruction. A planar patch (a 
surface supported by local points) is a basic component to 
formal a globalized planar surface.   

Planar Patches Extraction and Visualization 

In this section, the local planar patch will be extracted from the 
points cloud and available for visualization in corresponding 
RGB color space. The so-called planar patch can be explained 
as the best-fit plane of the 3D points within a cube. Suppose 
there are M points (Pi

α=[xi
α, yi

α, zi
α], i=1...M) distributed in the 

cube α (α = 1 ~ K). The vector Nα = [nx
α, ny

α, nz
α] with unit 

length, which is the normal vector, N, of the local planar patch, 
Θα, can be found by minimizing the objective function S 
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The minimum solution to S can be solved directly by least 
square method. As presented in (Weingarten, 2004), the 
function S has to be partial differentiated with respect to nx

α, ny
α, 

nz
α and set to 0. The optimal N can be evaluated as follow: 
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From now on, the planar patch of each cube is found. The 
maximum and the minimum value nmax , nmin can be selected as 
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These two extreme values can be applied to bound the range of 
visualization color in RGB format. In a specified cube α, all the 
points can be colorized by  
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Based on the framework described above, the distributed plane 
is found, and the points can be visualized by corresponding 
color from well segmented 3D point data. 
 
2.3 Merging of Planar Patches 

The geometry features and the proposed visualization features 
are extracted through the above methods. Furthermore, in order 
to reduce the computation cost in the following boundary 
extraction and to describe the geometry features in a more 
semantic and realistic fashion, it is essential to merge the planar 
patches 
 

In: Paparoditis N., Pierrot-Deseilligny M., Mallet C., Tournaire O. (Eds), IAPRS, Vol. XXXVIII, Part 3A – Saint-Mandé, France, September 1-3, 2010

176



 

Merging is similar to region growing in computer vision 
problems, in which Weingarten(2004), proposed a dynamic list 
structure of cubes and the computation complexity is O(n) after 
sorting. In our design, we adopted the dynamic linked list tree 
structure to present the data set plane merging in O(n) without 
sorting. By run-time encoding of planes, we only pass the 
normal vectors and the point of geometric center according to 
the index to the merging decision maker.  The merging of 
planar patches is based on two criterions: proximity and the 
surface normal disparity (Stamos and Allen 2000). The 
proximity matrix is created by combining one dimension 
distance vectors of individual point to planes. Dij denotes the 
distance from the geometric center of i-th patch to j-th patch. 
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Taking advantage of the symmetric property, we can reduce the 
matrix memory access by creating the mutual distance matrix 
M such as 
 
                                   M = P + PT,                                        (11) 
 
where the superscript T denotes the matrix transpose. For each 
element mij in M, a threshold value t is chosen to merge the 
similar patches. Thus, a set m is then obtained according to  
 
                                              (12)  { } ij ijm m= ∀ ≤m t

2.4 

 
The final step is to merge the planar patches with similar 
surface normal vectors.  
 
 

Boundary Extraction Based on Planar Convex-hull 

In definition, the convex hull for a points set Χ in a real vector 
space V is the minimal convex set containing X. For a planar 
convex-hull, the boundary can be used to present an edge of 
some plane. In a 2D points set, there exists a convex for all the 
point in R2. After a plane in R3 is rotated to x-y plane, the 3D 
planar edge detection problem is reduced to a 2D convex hull 
problem. By experiment, the computation cost of 3D convex 
hull is two times larger than in 2D space. The following 
procedure shows the detail to extract the edges of each merged 
planes. 
 
Step 1. For each points Pi

α (i = 1...M), we can evaluate the 
orthographic projected points P’i

α ∈ R3 on the distributed plane 
Θα alone the direction of Nα. In the 3D-Euclid space, P’i

α must 
be constrained by the following condition: 
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where Cα is a constant. Figure 3 shows the projection of Pi

α to 
P’i
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Figure 3. The projection of Pi
α to P’i

α. 

 
Step 2. For constructing the planar convex-hull in R2, it is 
desired to find a rigid transformation (a rotation matrix 
Φα(θ,φ,ϕ)∈SO3 and a translation vector tα(tx

α, ty
α, tz

α)) which is 
able to transform P’i

α from Θα to Pi
αT on x-y plane, such as 
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where ]1,0,0[ˆ =z is an unit vector along Z axis. The 
corresponding Φα and tα can be determined by solving the 
above equation through “Levenberg Marquardt” algorithm and 
“Rodrigues” algebra. Then, the points Pi

αT have the form [px
αT, 

py
αT, py

αT=0] since Pi
αT ∈ [x-y plane]. We can choose the first 

two elements to create new points Pi
α = [ pxi

αT, pyi
αT] ∈ R2. A 

new set Pα which contains Pi
α (i = 1...M) is established for 

developing the planar convex-hull.  
 
Step 3. There are various convex-hull algorithms considering 
many aspects of constraints, including floating number 
precision, computational cost, and the implementation 
complexity. The one we adopt is the “2D qhull” (Barber 1996), 
the complexity of qhull is O(nlog(n)), it works with double 
precision numbers, and it is fairly robust. The basic idea is 
applying “Divide-and-Conquer” method after sorting the points 
set in the fashion: 
 

( ) ( )10101100    , or   ),(, yyxxyxyx <=< .         (14) 
 
The merge component takes linear time O(n), therefore, the 
overall complexity is O(nlog(n)). The procedure below shows 
the detail of merge algorithm: 
 
Algorithm 2DConvexHullMerge(HL ,HR) 
Function arguments: HL: left convex polygon, HR: right convex 
polygon 
 

1. Pi = findMaxX(HL) ;               
2. Qi = findMinX(HR) ;                
3. while ( not tangent(Pi, Qi))           
4.    Pi-1 = findMaxX(HL – { Pi }); 
5.    Qi+1 = findMinX(HR – { Qi }); 
6. end while 
7. Hull = mergeTwoHull(HL,HR);         
8. return createCounterClockHull(Hull);  
 

In order to draw the planar polygon more easily, it is important 
to produce a counter-clockwise permuted hull. From above, the 
geometric boundary of a plane can be extracted by applying 2D 
qhull algorithm. In most cases, the boundary can be considered 
as a good approximation to the real geometry shape; it can be a 
good starting point when there is an occlusion happened in the 
LiDAR data which hull helps to complement some point loss. 
 
The overall algorithm proposed in this paper can be 
summarized in the  following pipeline.  
 

 
 

Figure 4. Processing pipeline 
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3. EXPERIMANTAL RESULTS 

The presented approach is applied to the test data collected by 
laser scanner “RIEGL Z-420i”. The point density is about 120 
pts/m2. Figure 5 shows the distribution of the raw data, in which 
the color is true color based on the external laser-camera 
registration. In segmentation process, the length of the cube is 
set to be 0.5cm. After distributed plane extraction and 
visualization, the results are shown in Figure 6. The points in 
blue indicate that the planes is parallel to the ground, and red 
and green colours represent those planes with normal vectors 
pointing to the east-west and the north-south directions, 
respectively. 
 

The boundary of the extracted planes set is produced using less 
than five seconds to compute 500 thousand points by our 
proposed algorithm in Intel Duo2 QuadCore 2.83GHz. 
However, the overall extracted boundary is hard for eyes to 
recognize due to the large scale of data set. Therefore, we show 
another result by applying the same procedures as to the 
original data to a new data set as illustrated in figure 6. Some of 
the modern buildings contain non-straight lines or curved 
boundary. In order to illustrate the capability of convex-hull 
projection to deal these issues, we created synthetic 3D laser 
scan points. It is shown that by adopting our methods, the 
boundaries are extracted correctly.  

 
 

 
 

Figure 5. The distribution of the test data. 

 
 

Figure 6. The visualized points. 
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Figure 7. The synthetic 3D point clouds  
 

Figure 7 is the synthetic point clouds; and figure 8 shows the 
extracted curved boundary by convex hull projection.  
 

 
 

Figure 8. Extracted boundary by convex-hull projection 
 
 

4. CONCLUSION 

The proposed approach can be applied to the general large scale 
3D point data in an efficient way without any pre-processing. 
All the necessary data structures are well described for 
engineering purpose. By the experiment results, the basic 
geometry features which include planes and edges are extracted. 
Base on these extracted features, the points are colorized 
according to the plane normal and connected by corresponding 
convex-hull. These characteristic of each points cluster are 
additive information and capable for further application.  
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