

 PLANE AND BOUNDRAY EXTRACTION FROM LIDAR DATA USING CLUSTERING

AND CONVEX HULL PROJECTION

Augustine Tsai a, Chun.F Hsu a, I-Chou Hong a, Wen-Kai Liu a

a Institute for Information Industry - (atsai, chunhsu, issac, wkliu)@iii.org.tw

Commission WG III/2

KEY WORDS: Laser Scanner, LiDAR, Geometry Extraction, Planar segmentation, Convex hull

ABSTRACT:

In this paper, we propose a new approach to extract planar patches and boundary from a set of LiDAR point cloud. In the beginning,
the 3D point cloud set is partitioned and assigned to fixed-size cubes. Secondly, local planar patches are generated by extracting
surface normal vectors within each cube. Finally, the global planes are formed by grouping the planar patches. The boundary of
global plans is retrieved by projecting point cloud onto 2D convex hulls.

1. INTRODUCTION

Since the availability of Google Earth to the general public, the
overlay of 3D buildings on top of the aerial images draws great
interests. Microsoft also offers its own Virtual Earth. 3D urban
scenes offer a variety of applications, such as navigation,
location-based services, augmented reality, real estate, GIS and
risk management, etc.

Most of the large scale commercial 3D urban scenes are
captured from aerial imagery or airborne LiDAR data. In recent
years, efforts and systems for street level 3D scanning begin to
flourish (Fruh and Zakhor, 2003; Goulette et al, 2007; Haala et
al, 2008; Pfaff el al, 2007, Zhao and Shibasaki, 2001)

In 3D reconstruction, the street level building facades are
assumed to consist of mainly planar surfaces. Instead of
building triangular mesh directly from the raw point cloud, the
geometry features, such as points, lines and surfaces are
extracted first from the point cloud. Then, their
correspondences on the two dimensional image planes are
located for texture mapping (Stamos2000).

In this paper, we emphasize in geometry processing from
terrestrial laser scan (TLS) data. The geometry of point cloud
data, such as lines, planar surfaces can be extracted by two
major methods: region-based and boundary-based segmentation.

With reference to region-based approaches, Weingarten et al
(2003) proposed a cube sweeping algorithm to extract local
planar patches, and then merge these patches into global planes.
Tseng and Wang (2005) used octree splitting and merging to
extract planar patches. Their approach is referred to the top-
down segmentation.

In boundary based approaches, Jiang and Bunk (1999) used
scan-line approximation, where each 3D point is assigned to an
edge strength, and then a threshold is used to determine the type
of edge. The prerequisite of this method is that the data points
have to be in order spatially. In following researches, the point

projection method for boundary extraction has been proposed
(Zhou and Newmann, 2006).

Our main contributions are in two folds: The first is a novel
bottom-up 3D space partition for local planar patch extraction.
The second is the convex hull projection approach to extract
both straight and curved boundaries.

The rest of paper is organized as follows. In section 2, we
describe the 3D cube partition, point assignments, and surface
normal extraction. Then the merging process is applied to create
a minimum number of planar surfaces with maximum size.
Finally, a method to extract the merged boundaries using
convex hull projection is proposed. In section 3, the algorithm
is applied to a 14-story urban building and a synthetic 3D data.

2. PLANE AND BOUNDARY EXTRACTION

Cube Assignment for Point Clustering 2.1

Our objective here is to extract planar patches from a set of
spatially unstructured point cloud data. Each point of the data is
expressed in a 3-tuple Cartesian coordinate, P = (px,py,pz). For a
typical outdoor building scan project, it can produce over
five million 3D points. It is obvious that data reduction and
feature extraction are necessary.

First, the data points have to be partitioned and assigned to
individual 3D cube space. A plane patch surface normal is then
estimated by fitting the points inside the cube.

In the beginning, a cube C with length l is selected (l is depend
on the sparseness of the data). The following algorithm is the
pseudo-code of the cube creation and assignment process.

Algorithm cubeAssign(p, l)
Function arguments: Npn: number of input points, l: length of
cube, Cs: cube sets, Cmsi : merged cube sets, Ts: threshold of the
minimum points in a cube

1. Cs=Null, Cmsi=Null

In: Paparoditis N., Pierrot-Deseilligny M., Mallet C., Tournaire O. (Eds), IAPRS, Vol. XXXVIII, Part 3A – Saint-Mandé, France, September 1-3, 2010

175

2.2 2. While Npn>0
3. point ← readPoint(p)
4. boundp ← getBoundary(point,l)
5. if (sizeof(Cs) = 0)
6. Cs ← assign(point, boundp)
7. end if
8. Cs ← fitPointToCube(point, boundp)
9. End while
10. removeCube(Cs , Ts)

Line 1: points are read sequentially;
Line 2: compute the cube boundary of the point :
 x_min = floor(px/l), x_max= ceiling(px/l),
 y_min = floor(py/l), y_max= ceiling(py/l),
 z_min = floor(pz/l), z_max= ceiling(pz/l),
Line 5-7: If there is no existed cube enclose the current point,
 a new cube is created and the point is assigned to it
Line 8: If there is an existed enclosed cube, then the current
 point is assigned to it.
Line 9: Iterate through every point.
Line 10: Remove cubes which enclosed points are less than a
 threshold.

The following figure shows an example of cube assignment
process base on function “cubeAssign”.

Figure 1. Cube assignment

Suppose there are 8 points to begin with. The numerals indicate
the order of data appeared in the file. The first two cubes “Cube
1” and “Cube 2” are created to enclose point 1 and point 2,
respectively. Since point 3 is within the range of “Cube 2”, a
new “Cube 3” has to be created to enclose point 4. The same
process is repeated until every point is assigned to an enclosed
cube.

At the end of cube assignment, a point which assigned to cube α
can be denoted as

 , (1)),,(α

β
α
β

α
β

α
β zyx ppp=P

where β is the point index within the cube. The following figure
shows all the points are partitioned by stack-up cubes.

Figure 2. Segmented points data with cube.

Each of the cube and the surrounded points are well clustered. It
is efficient for further analysis such as plane or boundary
extraction and polygon reconstruction. A planar patch (a
surface supported by local points) is a basic component to
formal a globalized planar surface.

Planar Patches Extraction and Visualization

In this section, the local planar patch will be extracted from the
points cloud and available for visualization in corresponding
RGB color space. The so-called planar patch can be explained
as the best-fit plane of the 3D points within a cube. Suppose
there are M points (Pi

α=[xi
α, yi

α, zi
α], i=1...M) distributed in the

cube α (α = 1 ~ K). The vector Nα = [nx
α, ny

α, nz
α] with unit

length, which is the normal vector, N, of the local planar patch,
Θα, can be found by minimizing the objective function S

 . (2)

∑

∑

=

=

+++=

+⋅=

M

i
iziyix

M

i
i

znynxn

S

1

2

1

2

)1(

)1(

αααααα

αα PN

The minimum solution to S can be solved directly by least
square method. As presented in (Weingarten, 2004), the
function S has to be partial differentiated with respect to nx

α, ny
α,

nz
α and set to 0. The optimal N can be evaluated as follow:

 , (3) ααα bAN ⋅=

−1

where

 , (4)

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

∑∑∑
∑∑∑
∑∑∑

2

2

2

ααααα

ααααα

ααααα

α

iiiii

iiiii

iiiii

zzyzx
zyyyx
zxyxx

A

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

=

∑
∑
∑

α

α

α

α

i

i

i

z
y
x

b . (5)

From now on, the planar patch of each cube is found. The
maximum and the minimum value nmax , nmin can be selected as

 . (8)
⎩
⎨
⎧

∈∈≤
∈∈≥

]1[z},y,{x, ,
]1[z},y,{x, ,

min

max

,Kjinn
,Kjinn

j
i

j
i

These two extreme values can be applied to bound the range of
visualization color in RGB format. In a specified cube α, all the
points can be colorized by

 . (9)

⎪
⎩

⎪
⎨

⎧

−−=
−−=
−−=

)/()(
)/()(
)/()(

minmaxmin

minmaxmin

minmaxmin

nnnnB
nnnnG
nnnnR

z

y

x

α
α

α
α

α
α

Based on the framework described above, the distributed plane
is found, and the points can be visualized by corresponding
color from well segmented 3D point data.

2.3 Merging of Planar Patches

The geometry features and the proposed visualization features
are extracted through the above methods. Furthermore, in order
to reduce the computation cost in the following boundary
extraction and to describe the geometry features in a more
semantic and realistic fashion, it is essential to merge the planar
patches

In: Paparoditis N., Pierrot-Deseilligny M., Mallet C., Tournaire O. (Eds), IAPRS, Vol. XXXVIII, Part 3A – Saint-Mandé, France, September 1-3, 2010

176

Merging is similar to region growing in computer vision
problems, in which Weingarten(2004), proposed a dynamic list
structure of cubes and the computation complexity is O(n) after
sorting. In our design, we adopted the dynamic linked list tree
structure to present the data set plane merging in O(n) without
sorting. By run-time encoding of planes, we only pass the
normal vectors and the point of geometric center according to
the index to the merging decision maker. The merging of
planar patches is based on two criterions: proximity and the
surface normal disparity (Stamos and Allen 2000). The
proximity matrix is created by combining one dimension
distance vectors of individual point to planes. Dij denotes the
distance from the geometric center of i-th patch to j-th patch.

 (10)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

OLM

MO

L

21

1211

D
DD

P

Taking advantage of the symmetric property, we can reduce the
matrix memory access by creating the mutual distance matrix
M such as

 M = P + PT, (11)

where the superscript T denotes the matrix transpose. For each
element mij in M, a threshold value t is chosen to merge the
similar patches. Thus, a set m is then obtained according to

 (12) { } ij ijm m= ∀ ≤m t

2.4

The final step is to merge the planar patches with similar
surface normal vectors.

Boundary Extraction Based on Planar Convex-hull

In definition, the convex hull for a points set Χ in a real vector
space V is the minimal convex set containing X. For a planar
convex-hull, the boundary can be used to present an edge of
some plane. In a 2D points set, there exists a convex for all the
point in R2. After a plane in R3 is rotated to x-y plane, the 3D
planar edge detection problem is reduced to a 2D convex hull
problem. By experiment, the computation cost of 3D convex
hull is two times larger than in 2D space. The following
procedure shows the detail to extract the edges of each merged
planes.

Step 1. For each points Pi

α (i = 1...M), we can evaluate the
orthographic projected points P’i

α ∈ R3 on the distributed plane
Θα alone the direction of Nα. In the 3D-Euclid space, P’i

α must
be constrained by the following condition:

 , (12)],1[,' MiCi ∈∀=⋅ ααα NP

where Cα is a constant. Figure 3 shows the projection of Pi

α to
P’i

α.

αΘ

α
iP

α
i'P

Figure 3. The projection of Pi
α to P’i

α.

Step 2. For constructing the planar convex-hull in R2, it is
desired to find a rigid transformation (a rotation matrix
Φα(θ,φ,ϕ)∈SO3 and a translation vector tα(tx

α, ty
α, tz

α)) which is
able to transform P’i

α from Θα to Pi
αT on x-y plane, such as

 , (13) 0ˆ)'(0ˆ =⋅+⋅→=⋅ ztPΦzP αααα
i

T
i

where]1,0,0[ˆ =z is an unit vector along Z axis. The
corresponding Φα and tα can be determined by solving the
above equation through “Levenberg Marquardt” algorithm and
“Rodrigues” algebra. Then, the points Pi

αT have the form [px
αT,

py
αT, py

αT=0] since Pi
αT ∈ [x-y plane]. We can choose the first

two elements to create new points Pi
α = [pxi

αT, pyi
αT] ∈ R2. A

new set Pα which contains Pi
α (i = 1...M) is established for

developing the planar convex-hull.

Step 3. There are various convex-hull algorithms considering
many aspects of constraints, including floating number
precision, computational cost, and the implementation
complexity. The one we adopt is the “2D qhull” (Barber 1996),
the complexity of qhull is O(nlog(n)), it works with double
precision numbers, and it is fairly robust. The basic idea is
applying “Divide-and-Conquer” method after sorting the points
set in the fashion:

() ()10101100 , or),(, yyxxyxyx <=< . (14)

The merge component takes linear time O(n), therefore, the
overall complexity is O(nlog(n)). The procedure below shows
the detail of merge algorithm:

Algorithm 2DConvexHullMerge(HL ,HR)
Function arguments: HL: left convex polygon, HR: right convex
polygon

1. Pi = findMaxX(HL) ;
2. Qi = findMinX(HR) ;
3. while (not tangent(Pi, Qi))
4. Pi-1 = findMaxX(HL – { Pi });
5. Qi+1 = findMinX(HR – { Qi });
6. end while
7. Hull = mergeTwoHull(HL,HR);
8. return createCounterClockHull(Hull);

In order to draw the planar polygon more easily, it is important
to produce a counter-clockwise permuted hull. From above, the
geometric boundary of a plane can be extracted by applying 2D
qhull algorithm. In most cases, the boundary can be considered
as a good approximation to the real geometry shape; it can be a
good starting point when there is an occlusion happened in the
LiDAR data which hull helps to complement some point loss.

The overall algorithm proposed in this paper can be
summarized in the following pipeline.

Figure 4. Processing pipeline

In: Paparoditis N., Pierrot-Deseilligny M., Mallet C., Tournaire O. (Eds), IAPRS, Vol. XXXVIII, Part 3A – Saint-Mandé, France, September 1-3, 2010

177

3. EXPERIMANTAL RESULTS

The presented approach is applied to the test data collected by
laser scanner “RIEGL Z-420i”. The point density is about 120
pts/m2. Figure 5 shows the distribution of the raw data, in which
the color is true color based on the external laser-camera
registration. In segmentation process, the length of the cube is
set to be 0.5cm. After distributed plane extraction and
visualization, the results are shown in Figure 6. The points in
blue indicate that the planes is parallel to the ground, and red
and green colours represent those planes with normal vectors
pointing to the east-west and the north-south directions,
respectively.

The boundary of the extracted planes set is produced using less
than five seconds to compute 500 thousand points by our
proposed algorithm in Intel Duo2 QuadCore 2.83GHz.
However, the overall extracted boundary is hard for eyes to
recognize due to the large scale of data set. Therefore, we show
another result by applying the same procedures as to the
original data to a new data set as illustrated in figure 6. Some of
the modern buildings contain non-straight lines or curved
boundary. In order to illustrate the capability of convex-hull
projection to deal these issues, we created synthetic 3D laser
scan points. It is shown that by adopting our methods, the
boundaries are extracted correctly.

Figure 5. The distribution of the test data.

Figure 6. The visualized points.

In: Paparoditis N., Pierrot-Deseilligny M., Mallet C., Tournaire O. (Eds), IAPRS, Vol. XXXVIII, Part 3A – Saint-Mandé, France, September 1-3, 2010

178

Figure 7. The synthetic 3D point clouds

Figure 7 is the synthetic point clouds; and figure 8 shows the
extracted curved boundary by convex hull projection.

Figure 8. Extracted boundary by convex-hull projection

4. CONCLUSION

The proposed approach can be applied to the general large scale
3D point data in an efficient way without any pre-processing.
All the necessary data structures are well described for
engineering purpose. By the experiment results, the basic
geometry features which include planes and edges are extracted.
Base on these extracted features, the points are colorized
according to the plane normal and connected by corresponding
convex-hull. These characteristic of each points cluster are
additive information and capable for further application.

5. ACKNOLEDEMENTS

The authors are grateful to the scanning assistance from the
Strong Engineering Consulting Co, Ltd. This work is
sponsored by the Ministry of Economics Affairs, Taiwan, with
the project number: 98-EC-17-A-02-01-0809

6. REFERENCES

Barber, C.B., Dobkin, D.P., and Huhdanpaa, H.T., 1996, The
Quickhull algorithm for convex hulls. In: ACM Transaction on
Mathematical Software, 22(4):469-483.

Haala, N., Peter, M., Kremer, J. and Hunter, G., 2008. Mobile
LiDAR Mapping for 3D Point Cloud Collection in Urban Areas
a Performance Test. In: Proceedings of the 21st International
Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, Beijing, China, Vol. XXXVII, Part B5,
pp. 1119.

Goulette, F., Nashashibi, F., Abuhadrous, I., Ammoun, S. and
Laurgeau. C., 2006. An Integrated On-board Laser Range
Sensing System for On-the-way City and Road Modelling. In:
Proceedings of the ISPRS, Paris, Part, III, pp. 43:1-43:6.

Jiang, X. and Bunke. H., 1999. Edge Detection in Range

Images Based on Scan Line Approximation. Computer Vision
and Image Understanding, 2(73), pp. 183-199.

Pfaff, P., Triebel, R., Stachniss, C., Lamon, P., Burgard, W. and
Siegwart, R., 2007. Towards Mapping of Cities. In:
Proceedings of the IEEE International Conference on Robotics
and Automation, Rome, Italy.

Zhao H. and Shibasaki R., 2001. Reconstructing Urban 3D
Model using Vehicle-borne Laser Range Scanners. In: Proc. of
the Third Int. Conf. on 3-D Digital Imaging and Modeling, pp.
349-56.

Stamos, I. and Allen, P., 2000. 3-D Model Construction Using
Range and Image Data. In: IEEE International Conference, of
Computer Vision and Pattern Recognition, Hilton Head, SC
Vol. I, pp. 531-536.

Talaya, J., Alamus, R., Bosch, E., Serra, A., Kornus, W. and
Baron, A., 2004. Integration of a Terrestrial Laser Scanner with
GPS/IMU Orientation Sensors. In: International Archives of
Photogr- ammetry and Remote Sensing, Istanbul, Vol. V.

Tseng, Y-H and Wang. M., 2005. Automatic Plane Extraction
from LiDAR Data Based on Octree Splitting and Merging
Segmen-tation. In: Geoscience and Remote Sensing Symposium,
Seoul, Korea,

Weingarten, J., Grüner, G. and Siegwart, R., 2003. A Fast and
Robust 3D Feature Extraction Algorithm for Structured
Environment Reconstruction. In: International Conference on
Advanced Robotics, Coimbra, Portugal, Vol. III, pp. 390-397.

Q-Y Zhou and Neumann., 2008. Fast and Extensible Building
Modeling from Airborne LiDAR Data. In: SIGSPATIAL Conf.
on Advances in Geographic Information Systems, New York,
USA, pp.1-8.

In: Paparoditis N., Pierrot-Deseilligny M., Mallet C., Tournaire O. (Eds), IAPRS, Vol. XXXVIII, Part 3A – Saint-Mandé, France, September 1-3, 2010

179

