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ABSTRACT:

This paper presents a simple yet efficient apprdaclutomatic blur detection in aerial images fded by a multi-channel digital
camera system. The blur in consideration is dubdeairplane motion and causes anisotropy in thei€oTransform of the image.
This anisotropy can be detected and estimatedcvee the characteristics of the motion blur, boé @annot disambiguate the
anisotropy produced by a motion blur from the passspectral anisotropy of the underlying sharpgenal'he proposed approach
uses a camera with channel-dependent exposure tinaekiress this issue. Under this multi-exposetng), the motion blur kernel
is scaled proportionally to the exposure-time, whsrthe phase differences between the underlyiagp stolour channels are
assumedly negligible. We show that consideringphase of the ratio of the Fourier Transforms of thannels enhances blur

detection. Results obtained on 2000 images corfieoperational efficiency of our method.

1. INTRODUCTION

For more than fifteen years, mapping agencies amattop
grammetric companies have been working on digitddoane

image acquisition, phasing out traditional silvéimf This

important change brought many improvements, eslheaiahe

radiometric quality of images where each pixel ddu given a
physical value after a radiometric calibration bE tcamera,
which was not the case with silver film. The chemhjgrocess of
film development cannot be entirely under contmdl.good

radiometric quality is often required in order tmguce ortho-
images (i.e. mosaics of images that can be gearakyri
superposed with a map) without visible boundarkeaséer &
Egels, 2002).

To provide high quality images, the flights oftexke place in
summer, when the brightness is optimal. Howeveindlyin

summer has one drawback: the significant tree delisauses
problematic occlusions when studying the charesties of the
ground level (topography, path, rivers, etc.). Timy way to
have leafless trees is to fly the mission betweeturan and
spring when the luminosity is weak. Thus, the expesime
should be increased, at the risk of causing motiduar.

Fortunately, the images in which the blur is sigaifit (more
than 2 pixels) represent a very small proportiothefmission.

In preparation for photogrammetric and remote senstudies,
aerial acquisitions are planned with an importaneriap
between two images. The strong overlaps generdilysen
ensure that a ground point appears on at leaspfotures. This
redundancy is the reason why it can be chosemrplgiremove
blurred images without trying any restoration. Thlmice is
justified by the fact that it is almost impossilitehave all the
images seeing the same ground point blurred. Ui the
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removal of blurred images was done manually by perator.
We propose in this article an automatic method Hftur
detection that makes this long and tedious worleeas

First, we will describe the channel-dependent ewpodime
camera for which our method is designed. Then Wergiiew
the state of the art, which will show that bluretgton is less
discussed than blur correction. Our method of lletection
will then be presented in two parts: first, a simphd mono-
channel approach based on the module of the Fotnd@sform
of the image, then an improvement based on a lidtirnel
approach. A test on 2000 images eventually illtssrathe
reliability of the method.

2. DATA ACQUISITION

The images are provided by a multi-channel camgsiem
(Figure 1). This multi-sensor system has been pedeto a
classical Bayer sensor for many reasons. Among tteemack
of coloured artefacts, a better dynamic range & ghadowed
areas and the possibility of using a fourth charmehe near
infra-red wavelengths for remote sensing applicatidn our
study, only the visible wavelengths (between 386 a80 nm)
are considered.

The relative response of the three channels (R, GarB)
influenced by the KAF-16801LE sensor performané&es{man
Kodak Company, 2002) and by the colour filter traission

(CAMNU, 2005) as illustrated on Figure 2. In partamy the
response in the blue channel is very low relativeother
channels. There are two solutions to deal with pihiblem. The
first idea is to simply multiply the blue signal layconstant to
enhance the blue channel, but its noise will betiplidd
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accordingly. This is the solution used in most Bagensors,
because their exposure time is the same for althlanels. But
the designers of the system that we present caesidihe
possibility of physically separating the three eslghannels on
three independent sensors (Thom et al., 2001). Thace

yields the possibility of enhancing the blue signay

augmenting the exposure time which ensures a gigmélisto

noise ratio (SNR) along with a better dynamic raimgihe blue
channel. This is for instance useful in the shadbareas.

Conversely, for highly luminous scenes, the respamsiee red
channel is very high, such that it may cause sesaturation,
even for small exposure times (Figure 2). To atbid, another
correction, has been brought to the red camerathycing its
aperture. The following table summarises the sju#td#s of the
airborne camera system that provided the data ieglin this
study:

Channel Red Green Blue
Aperture /8,0 /5,6 /5,6
Exposure time 8,0 ms 15,2 m$ 28,0 ms

Table 1. Aperture and exposure time for each cblann

Figure 1. Four channels digital camera used instuay

Reponse curves of the R,G,B cameras
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Figure 2. Cameras response for constant exposdraparture
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All the cameras are linked together by BNC connectdrss
system provides a good synchronisation of the adipn for
the three R G B images that are superimposed to farm
coloured image (Thom et al., 2001). In additior, thotion blur
produced by the movement of the airplane (whichirisfirst
order approximation, rectilinear and uniform) isrreacted by
Time Delayed Integration: the charge on each piast
physically shifted in the sensor matrix in ordercmmpensate
the airplane’s uniform movement knowing its elevatiand
speed. The device reaches a precision of halfel [GAMNU,
2005) and allows long exposure time acquisitionswever, it
has some limits: the compensation is only madeafonotion
blur induced by the principal movement of the a@ind and
doesn’t take into account perturbations such agdtsdior
rotations. They may cause a motion blur rangingfome to ten
pixels in some images. Until now, an operator washarge of
visualising all the pictures one by one to sort the blurred
ones. In this production context, a tool automating sorting
would be highly beneficial.

3. STATEOF THE ART

Developments in Computer Science and the arrivaligital
photography brought new hopes in the domain of énag
restoration. Even if blur kernel determination arodur
correction appear as major topics in image prongssiery few
papers focus on blur detection.

A first description of blur can be done by considgrthe image
edges. Such an approach is proposed by Tong wiso Hesar
wavelets to discriminate between blurred and sharages
(Tong et al., 2004). The method is independent fthenblur
kernel and the tests on our data have shown gaadtsesven
on images with a small blur extension. Nevertheléss very
sensitive to hot pixels (hardware flaw), which nmzguse too
many false detections.

Another solution has been developed for partiallyrred
images (Liu et al., 2008) where different metrios defined by
considering some pieces of local information incégze, spatial
and colorimetric domain. Image regions are segndefiriéo
sharp, focus blurred and motion blurred classethissholding
the different metrics. The parameters are chosengus
machine learning process. This method is local #émg not
optimal for uniformly blurred images.

Other studies (Krahmer et al., 2006) suggest ta¢hsaotion of
“cepstrum” defined byC(s) = FT(log(FT(s)|)) whereFT(s) is
the Fourier Transform of the signal s. In the aafseotion blur
that follows a rectangular function, its cepstruhows two
peaks, which distance and orientation gives infdionaon the
characteristics of the motion blur kernel. It par»é acceptable
results on images with a motion blur of large sgr@aore than
10 pixels), but is not at all adapted for our cabere we want
to sort out images with a motion blur of only orréwo pixels.

The estimation of the blur kernel is often the mdjottleneck

in image restoration. This estimation may be pengat through

a probabilistic approach (Shan et al.,, 2008) andtenative
optimisation. This kind of method returns intenegtresults but
its complexity makes it quite time consuming, whisbcomes
somehow incompatible with the large number of insage
acquired during a single aerial mission. In additiove are
merely looking for a simple detector.
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Contrary to the previous examples, other approafitieset al.
2008, Yuan et al. 2007) do not limit themselvesataingle
image but exploit information from two images: asi®t with a
short exposure time (which provides a noisy imagej one
with a long exposure time (which provides a motldarred
image). Even if this method is applied to imagdarsgion, its
concern is close to ours as motion blur estimatian be a
means to achieve blur detection. During an aeriakion, a
same spot is always seen on several pictures (@venage of
four pictures), but the parallax resulting from tbleange of
point of view makes this method inappropriate to @ntext.

Eventually, Raskar proposes a hardware solution @graskal.,

2006) using a coded exposure camera. The exposur® i
longer a rectangular function but a succession roglier

rectangular functions of different temporal width3his

technique cannot be applied to the digital cameseelbped by (E2). Binarization
the IGN because time exposure cannot currentlydmralled

below a certain threshold.

4. MONO-CHANNEL APPROACH

As the camera acquiring the blue channel has timgekt
exposure time, the images provided by this camezanre
sensitive to motion blur than the ones providedtthy other
channels. Consequently, in this part, we focus @sdhblue

. (E3). Smoothing l
channel images.

In the first place, some simplifying hypotheseswtide stated

in order to justify some choices made in our work:

(H1). The blur kernel is a rectangular function centradzero
along a single direction. The exposure time is sspd

to be short enough not to integrate non-uniform
movements from the airplane. The fact that thereeoit l (E4). Edge detection

mass of the airplane does not correspond to thersam
centre allows us to neglect rotation blurs thatncarbe
represented by a convolution (1).

(H2). The cameras have a very good SNR, such that tlse noi
may be neglected in our images.

(H3). A sharp image can be considered as roughly isayopi
such that its Fourier Transform is also roughlyrispic:
it has no preferred direction. The module of therriey (E5). Fitting an ellipse
Transform then also follows such a radial distridouit

The best way to represent a linear blur followingdtheses
(H1) and (H2) is to consider the blurred imalig, as a
convolution of the sharp imadga., by a blur kernet:

Ly = o OF (1)
e (E6). Decision

Applying a Fourier TransfornT to the previous equation

yields: a/b > B0% a/b < 60%
SHARP BLURRED

FT (e )= FT (I g )< FT() @)

Figure 3. Our first approach for blur detectioragrial images
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Figure 4. The sharp image (A) has an anisotromarier
Transform (B) which causes bad sorting with ouriahitnono-
channel approach. Conversely, the difference ofel@pis an
isotropic signal (C) which will allow for a propelassification
as not blurred.

In the case of images with motion blur, the higigfrencies are
cut down in a given direction and therefore the niedf the
Fourier Transform is not isotropic anymore. The posed
method to discriminate between sharp and blurreaigés is
somehow intuitive and consist on looking whethere th
coefficients with high value module are concenttate
preferentially in a circle (isotropic case) or im &llipse
(anisotropic case). This method could be divided Bix steps
that are summarized on Figure 3:
(E1). Apply a Fourier Transform to the blue channel image
(E2).
highest values. This statistic criterion is indegpemt of
the dynamic range of the image.
(E3). Smooth this binary image by convolving it with a
median filter to get rid of some artefacts suchttas
spikes caused by the periodic structures of thgirai
image.

(E4). Compute the edges of this binary image.

(E5). Fit an ellipse to the edges by estimating its patensd

(orientation), a (major axis) and b (minor axis).
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(H3).

(E6). Sort between blurred and sharp images by thresipldi
the ratio a/b. We determined empirically that a¢hiold
of 60% achieves the best compromise between under

and over-detection.

This approach returns mostly good results but kadimits,
especially when hypothesis (H3) is not respected.ekample,
images of ploughed fields are often detected asdaubut can
be detected as sharp if they have a motion blyrgueticular to
the furrows (Figure 4).

In order make our method more robust and in pdaicio get
rid of hypothesis (H3), we propose the followingegach that
takes into account the channel-dependent spegifimit our
imaging system.

5. MULTI-CHANNELSAPPROACH

Beforehand, let us replace hypothesis (H3) by:

The Fourier Transforms of the intensities of thee¢éh
channels "¢ |19"¢"®d composing a sharp natural colour
image have similar phases. According to (Oppenhetim
al., 1981), the structure of an image is mostlydhsy
the phase of its Fourier transform. This justifités
hypothesis as the three channels of a natural irage

a common structure (in particular the same conjolfrs
we call ¢ the phase of the Fourier Transform, this
hypothesis writes:

p(1)=pl7=)=00™) @

Our idea is now to get rid of the possible natargkotropy of
our images (due to periodic structures presentldar areas or
on ploughed fields) based on this property of redtimages. It
is somehow related to the idea of (Lim et al., 200Bhe
exposure time table shows that the red channeth®ashortest
exposure and therefore is the least affected byiomdblur.
Conversely, the blue channel has the longest expa@sut is the
most affected (Table 1). Thus we will now consitter red and
blue channels separately:

red _ | red red
Iqur - Isharp of (4)
blue _ | blue blue
Iqur - Isharp of

If we take the difference of the phase of the Feruriansform of
these two equations, we get:

Binarize the module image by keeping only the 10%

#(15)- ol )= o
ol 52, )= o1 5, )+ 91 ) - o)

Finally by applying (H’3) to the sharp image, weséa

Dol )=0(1 )-p(122)=g(f)-0(t™) ©
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This indicates that\g (ly,) depends much more on the blur original 4096x4096
characteristics than on the actual content of thages. Based considered the best.
on this remark, we propose a new multi-channel @ggr based
by replacing steps (E2) of the mono-channel apprdacthe
new steps (E'2):

images where the optical quality

Even if Table 2 cannot be rigorously considered asnfusion
matrix, it emphasizes the reliability of this methdnly one
sharp image has been sorted as blurred by the ¢emgud all
(E'2). Binarize the Ao (lnw)| image by thresholding the the other blurred images have been well detected.
coefficients overn/4. The empirical choice off4 seems

to make a good delimitation between the two areaghis method is semi automatic because the imagea the
where the frequencies are correlated or not (Figurén  “dubious” class should still be sorted by an opmratowever,
case the phase is not defined, the pixel can fssifikd  the computer has already made 95% of the work whésles a
indifferently as these rare outliers will be remodvay  significant amount of time in production.

the smoothing (E3)

The whole validation process took around 11 hothe €ode
was not optimized). We also validated the choiceuohing the
algorithm on centre crops by comparing the reswith full

. .. size images on a smaller subset of 38 images. rEkidted in
Sort between blurred and sharp images by consgleringe exact same classification for a division of frecessing

the same ratio a/b: if it is over 50%, the imagé b&  {ime py 16 between full images and crops, whichifies this
classified as “sharp”, if it is less than 35%, theage  hoice operationally.

will be classified as “blurred”, and if the rati® between
those two values, the image will be classified as
“dubious”.

We also propose to modify the hard classificatiBf)(into the
following three way classification (E’6):

(E'6).

The third class “dubious” releases the classifitaprocess and
provides a good confidence to “sharp” and “blurred”
classification (Section 6). These thresholds hasenbchosen
empirically on a representative set of 38 images.

6. VALIDATION OF THE MULTI-CHANNELS
APPROACH

For the validation phase, the algorithm has bestedeon a
mission from April 2007, in rather poor conditior{fow

illumination). This mission is composed of 6271tpies with
various typologies (compact urban area, countrysitustrial
area, forest...).

HUMAN OPERATOR
Sharp Blurred Unclassi TOTAL
Shar 1280 0 514 1797
P | 6400% | 000% | 2570% | 89,85%
. 25 10 48 83
Q| Dubious 4550, | 05006 | 240% | 415%
g Blurred 1 81 32 114
o 005% | 405% | 1,60% | 570%
2 Unclassif 0 6 0 6
| 000% | 030% 0% 0,30 %
1309 97 594 2000
TOTAL | 654506 | 485% | 2970% | 100,00 %

Table 2. Validation by a human operator

To validate our approach, a manual sorting has beepleted  Figure 5. The images A and A’ are crops of twocessive

by a human operator. The operator has sorted thgaminto
two classes “sharp” and “blurred”. Some images wietfe

“unclassified” by the operator. For instance, foresages are
usually neglected to focus on inhabited areas, evtiee needs
of ortho-images are stronger. For practical reasadhe

validation concerned only a subset of 2000
representative of the aerial mission. The imagesl der this
validation were 1024x1024 crops taken at the cenfrghe

images of an aerial mission focusing on the sarea.arheir
respective Fourier Transforms are given by B and Bie
absolute value of the difference of phases (6)spldyed in C
and C’ with bright colours for low values and dadaur for

value near. The frequency peaks generated by urban structures
imaged$ave vanished.
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7. CONCLUSIONS

This paper presents a simple method for motion 8&iection
in channel-dependent exposure time images, expipiti
efficiently this specificity.

The main contribution of this paper is to leverage multi-
exposure sensing of the motion blur kernel, whiotargoes an
exposure-time linear scaling, whereas the phaskerelifces
between the underlying sharp colour channels asanasdly
negligible.

The successful validation on 2000 aerial images allibw the
use this technique in the operational context gfr@duction
chain.

In the future, the possibility of using the infortioa provided
by the difference (6) to estimate the blur kerrelracteristics is
a foreseeable lead. Eventually, this informationldde used in
order to restore the images detected as blurred.
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