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ABSTRACT:

Virtual navigation in remote environments can be achieved by building an image-based model made of multiple panoramas gathered 
from cameras moving around the scene. In such models, it could be useful to acquire knowledge of the 3D structure of the scene. In 
this paper, we propose a method that constructs a sparse but rich 3D representation of a scene, given a set of calibrated panoramic 
images. The proposed method is a heuristic search algorithm that, given calibrated panoramic images, finds 3D points that correspond 
to the surfaces of objects in the scene. The algorithm constructs a set of 3D points by searching for matching edge pixels in pairs of 
images using the epipolar constraint. Empirical results show that the proposed method performs well at locating 3D points of interest 
in different scenes.

1 INTRODUCTION

A goal of tele-presence applications is to allow someone to vi­
sually experience a remote environment such that they can freely 
navigate through the environment with the impression of “being 
there”. One way to reach this goal is to create an image-based 
models of the scene composed of a multitude of panoramas cap­
tured in the scene of interest. Starting from a user-selected geo­
referenced panorama, virtual navigation is then achieved by al­
lowing the user to move from one panorama to a neighboring 
one. thus simulating motion along some path in the scene. Under 
such a framework, knowledge of the 3D structure of the scene is 
not a necessary requirement; however extracting 3D information 
from the scene can be beneficial in many ways: i) it allows to 
more accurately register the panoramic images one with respect 
to the other and with respect to maps or other representations of 
the scene; ii) the image-model can then be augmented with vir­
tual objects or virtual annotation that can be coherently displayed 
on the different panoramic images; iii) 3D measurement in the 
scene can be made and non feasible motions can be invalidated 
(e.g. going through an obstacle); iv) it facilitates the generation of 
photo-realistic virtual views in order to simulate smooth motion 
while navigating through the scene, from a finite set of images.

The purpose of this work is. given a sparse set of calibrated panoramic 
images, to obtain a rich set of 3D points that correspond to the 
surfaces of the objects in a scene. Towards this goal we have de­
veloped a search method that searches for matches using features 
that appear more frequently in each image than the features used 
during the calibration procedure. Our method uses a multi-start 
search methodology which is a variation of the method proposed 
in (Louchet, 1999).

The rest of this paper is organized as follows: Section 2 gives 
a brief description of methods that have been developed to esti­
mate the 3D structure of a scene; our proposed heuristic search 
algorithm is presented in Section 3; the results of testing our pro­
posed algorithm on sets of real calibrated images can be found in 
Section 4; and finally, our conclusions are given in Section 5.

2 STRUCTURE FROM MOTION

The purpose of structure from motion algorithms is to estimate 
the position and orientation of each image in a set of images, and 
to estimate the 3D structure of the scene.

Recent work has been done by Snavely et al. (Snavely et al., 
2008) on calibrating images of a scene taken from different view 
points, and in turn estimating the 3D structure of the scene. In 
both cases, camera calibration is carried out by (1) finding cor­
respondences between pixels among subsets of the images using 
the scale invariant feature transform (SIFT) (Lowe, 2004), (2) es­
timating the camera parameters (internal and external) using the 
epipolar constraint and the RANSAC algorithm, and then (3) us­
ing bundle adjustment to optimize these parameters, minimizing 
the reprojection error over all correspondences. The correspon­
dences constitute a sparse description of the 3D structure of the 
scene. Goesele et al. (Goesele et al., 2007) then proceed to es­
timate the complete 3D structure of the scene from these sparse 
3D points. Both of these methods were tested using large, densely 
located sets of non-panoramic images.

An alternative to SIFT, called speeded up robust features (SURF), 
is proposed by Bay et al. (Bay et al., 2008). SURF claims to be 
faster to compute and more accurate than SIFT.

Although this calibration method is very effective at estimating 
the camera parameters, it may result in a set of 3D points that are 
too sparse to adequately describe the 3D structure of the scene. 
Figure 1 shows an example of how SURF detected correspon­
dences may not adequately cover the scene.

Pollefeys et al. (Pollefeys et al., 2008) and Comelis et al. (Cor­
nells et al., 2008) designed systems that perform 3D reconstruc­
tion of urban environments from video sequences. Camera pose 
estimation is carried out using camera calibration techniques that 
are similar to the technique summarized above. In order to per­
form faster and more accurately in urban environments, both sys­
tems use simplifying geometric assumptions of the scene to model 
the objects, such as roads and buildings. The system designed by
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Figure 1: An image with green dots drawn on it to show the sparse 
3D points found during calibration using SURF.

Comelis et al. also detects the location of any cars in the scene 
to improve its visual reconstruction. Lhullier et al. (Lhuillier 
and Quan. 2005) proposed a quasi-dense approach to 3D surface 
model acquisition from uncalibrated images. Sparse matching is 
first applied, then in the neighborhood of the matched points, new 
matches are found based on a combination of local constraints 
such as correlation, gradient disparity, and confidence.

The method proposed in (Louchet. 1999) searches for 3D points 
using the images from two calibrated cameras for the purpose 
of detecting obstacles in front of a moving robot. They use an 
evolutionary algorithm in which a set of 3D points is evolved to 
correspond to the surfaces of objects, and to not be too closely 
concentrated in one area of the scene. These goals are achieved 
by assigning a fitness value to each point that depends on (1) the 
image gradient of the point’s projection onto one of the images. 
(2) the similarity measure between the point’s projections onto 
the two images, and (3) the proximity of this point to other points 
in 3D. A linear weighted average of a small subset of points from 
the current generation, along with random mutations, are used to 
evolve the next generation of points.

3 A 2D IMAGE AND ID DEPTH HEURISTIC SEARCH

This heuristic attempts to find points in the 3D world coordinate 
frame that correspond to the surfaces of stationary objects that are 
visible in the scene. The input to this algorithm is comprised of a 
set of calibrated images such that any point in the world reference 
frame can be projected onto each of these images with reasonable 
accuracy. Optionally, in addition to the calibrated images, a set of 
image points that are known to match in two or more of the input 
images can also be used to initialize the algorithm.

The algorithm first detects a set of candidate pixels in a refer­
ence image I r . In this paper, a candidate pixel is any pixel that 
lies on an edge since edges are useful features for detecting ob­
jects in the scene, and edges occur more frequently than SURF 
and SIFT features. The location A" of a candidate point in the 
three dimensional world coordinate frame is found by searching 
for the pixel in a neighboring image I n that most closely matches 
the pixel in I r . This search is performed along the corresponding 
epipolar curve in /„ . The coordinates of A' are computed using 
the matching image pixels in I,  and To further test that A" is 
indeed correct, X  is projected onto each of the images, except I r 
and to see if any of these projections match with the projec­
tion of A" onto I r .

To carry out the detection of edge pixels, a multi-start search 
method similar to the flies algorithm (Louchet, 1999) is used. 
The multi-start search methodology uses a set of agents that each 
behave according to a set of rules. In this algorithm each agent 
searches i T for an edge pixel using a combination of local and 
line searches, and random jumps.

For each combination of pairs of images (Ir , I„)  in the set of 
input images, the algorithm proceeds as follows:

1. Each agent randomly chooses a pixel in Tr as its starting 
point.

2. While the stopping condition (Section 3.3.1) is not satisfied, 
each agent does the following:

(a) Search for an edge pixel using the line search (Section
3.2.1). If the line search finds an edge pixel that has 
already been found by any agent, then go to Step 2e.

(b) Search along the epipolar curve in T,, for the pixel that 
best matches the corresponding pixel in I r (Section
3.1).

(c) If the match search is successful then check the condi­
tions (Section 3.3) to determine if the 3D point corre­
sponding to this match will be added to the set of good 
points, and add or discard the match accordingly. If 
the match is discarded then go to Step 2e.

(d) Perform a local search (Section 3.2.2) to find the next 
edge pixel. If the local search is successful then go to 
Step 2b.

(e) Change this agent’s location in I r by adding a nor­
mally distributed random two dimensional vector to 
its current position. The normal distribution has a 
mean of 0 and a standard deviation that is set as a mul­
tiple of the desired density of good solution points in 
Ir-

(f) Go to Step 2a.

3.1 Match Search

The search for a pixel in an image I n that matches a given pixel p r 
in the reference image I r is performed by searching every pixel 
p n along the corresponding epipolar curve in I n . This search is 
performed if and only if p r is an edge pixel. Let X r be the three 
dimensional point corresponding to p r in the coordinate frame of 
I r . Each pixel on the epipolar curve in /„  is found by quantis­
ing the distance drx  between X r and the focal point f r of I r 
so that two or more values of X r do not project onto the same 
pixel in This contrasts with the method proposed by Louchet 
(Louchet, 1999), which treats drx  as a continuous value. Since 
there are many values of drx  that correspond to the same pixel 
in I„, treating drx  as a continuous value may result in wasted 
computation time.

The similarity measure M,xn used in this paper is computed us­
ing Equation 1. It is the normalized sum of square differences 
between the intensities I r (p) of all pixels p  within a square neigh­
borhood N r of p r, and the corresponding intensities I „ (p _ „ ) ) ,  
where p ^ n is the projection of p  onto

M r n  =

\J~l2peNr  X EpeJVr I r ( p ^ n ) ) ~
(1)

The sum of square differences is used assuming that the images 
were captured under similar lighting conditions. Projecting pixels 
in I n onto I T in this way reduces the effect of scale differences 
and image warping on the similarity measure. This assumes that 
every part of the surface in the scene that is projected onto N rn 
is the same distance from the focal point of I r . Although this 
assumption is not generally correct, neighborhood projection still 
works better than not using it. N rn is centered on p r and has a 
size of 21 x 21.

All of the following conditions must be true for pn to be consid­
ered as a match for pr . Note that p r is an edge pixel.
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1. pn must be an edge pixel;

2. M *  <  0.05:

Finally, in order for X  to be deemed a good 3D point. p r must 
also match its projection onto at least k  other images according 
to the above criteria. Setting k  =  2 works fairly well at reducing 
the number of false matches.

3.2 Finding edge pixels

When searching for edge pixels, it is desirable to find a suffi­
cient number of them in an acceptable amount of time. Searching 
through every pixel in an image will guarantee that the maximum 
number of edge pixels will be found, but it will likely take an 
unacceptable amount of time. Therefore, to quickly find edge 
pixels, we use two search methods within a multi-start methodol­
ogy-

In this paper the Canny algorithm, as implemented in OpenCV. is 
used to detect edges in an image. This differs from the method 
proposed in (Louchet, 1999) in which a Sobel operator is used 
to compute the image gradient which is then used to compute a 
fitness value. A consequence of this is that their approach allows 
points that do not project onto edges to be considered for match­
ing. It should be noted that the values of the thresholds used in 
the canny algorithm should depend on the input images. A simple 
method to do this is to choose an input image and. using trial and 
eiTor, experiment with different values until a satisfactory amount 
of detail in the edges is achieved.

Our multi-start search method begins by placing each agent ran­
domly in the reference image I r , where each agent then proceeds 
to search for edge pixels using a random line search (Section
3.2.1) and a local search (Section 3.2.2).

3.2.1 Random Line Edge Pixel Search If the agent is not on 
an edge pixel then, starting at this pixel, search I r along a straight 
line in a randomly chosen direction until either an edge pixel is 
found, or a maximum number of pixels have been searched at 
which point a new direction is randomly chosen and the search is 
continued. This search method tends to find edge pixels that are 
adjacent to large areas that are void of edge pixels.

3.2.2 Local Edge Pixel Search Since edge pixels tend to be 
adjacent to other edge pixels, a local search is performed to try 
and find an edge pixel at which a match search has not yet been 
performed. This search proceeds by searching the perimeter of 
a square neighborhood Arej around the current edge pixel until 
either a new edge pixel is found, or all the pixels on the perimeter 
have been searched. Arej is centered on the current edge pixel, 
and the length of each side is 5 pixels. The size of this square 
is chosen according to how densely distributed one desires the 
matches to be in the scene.

3.3 Assembling Good 3D Points

Once the match search finds a 3D point A' that satisfies all of the 
match criteria (Section 3.1). it will be added to the set of good 3D 
points S  except if at least one of three conditions concerning its 
relative quality and proximity to 3D points already in S  is true. 
The process of searching for good 3D points using (Jr , /„ )  is 
then stopped when the detail and quality of S  stops improving.

The quality measure of 3D points is used to decide which points 
to keep in S  if they all cannot be kept. The quality measure Q x  
of A" is computed using Equation 2.

Q x  =  dr,n /M*n (2)

M *rl is the similarity measure between the projection pr of X  
onto I r and the projection p n of X  onto and dr,n is the dis­
tance between the focal points of I r and We make Q x  pro­
portional to dr,n because a larger value of dr,n corresponds to a 
better resolution of the depth of X  from the focal point of I r . It 
should be noted that S  can be built upon using, in turn, different 
combinations of input image pairs for I r and I n .

There are two conditions concerning the proximity of X  to 3D 
points already in S  that, if true, will prevent X  from being added 
to S.

The purpose of the first condition is to ensure that the points in 
S  are not too densely crowded in the scene. Therefore. X  is not 
added to S  if:

{Q x  < Q y ) H Y  e S ) & (Y „r  e Npr),

where Y  is a point in S  that projects onto I r within a square 
neighborhood N pr of p r . N pr is centered on pr with the length 
of each side set to 3 pixels. Note that N pr is smaller than N ej.  
Recall from Section 3.2.2 that N ej  is the neighborhood used to 
search for local edge pixels. Setting the size of N pr this way 
reduces the frequency of X  being discarded because of this con­
dition.

The second condition is based on the idea that a group of adjacent 
pixels in an image usually corresponds to the same surface in 
the scene, therefore the distance from f r to X  and from f r to 
Y  should not be too different if X  and Y  project onto adjacent 
pixels in I r . Recall that f r is the focal point of I r . Therefore. 
X  is not added to S  if Q x  <  Q y  and Y  £ S  and Y ^ r e  Ndx 
and \d(X,  f r ) — d ( Y , f r ) | >  t a x  where d ( A , B)  is the distance 
between the points A  and B.  N d x  is a square neighborhood of 
p r , and t d x  is a threshold. Ndx is centered on pr and is the 
same size as N rn. Recall that N rn is the neighborhood used to 
compute the matching similarity measure (Section 3.1). A good 
value of t dx  is half of the minimum d, .,, over all possible pairs 
of input images I r and /„ . Setting the value of t d x  this way 
compensates for the 3D scale given to the scene when calibrating 
the images.

The third condition for which X  may be rejected is used to en­
sure that, if there is an upper limit to the number of points in S,  
then only the highest quality points are kept. Therefore. X  is not 
added to S  if:

(|S | =  rS 'l)& (Q x  <  Q y V Y  G S).

where \S\ is the number of points in S,  and \S] is the upper 
bound on the number of points in S.

When a new point is added to S,  all points in S  that satisfy at least 
one of the three conditions described above are removed from S.

3.3.1 Stopping Condition The search for new points to add 
to S  is halted for a given (Ir , I n ) pair when, after a minimum 
number of iterations that each agent performs while searching 
for edges, the number of points in S  does not increase and the 
average quality of the points in S  does not improve.

4 EXPERIMENTS AND RESULTS

We tested our proposed algorithm on a few small sets of cali­
brated images of various scenes. The experimental setup and re­
sults are presented in the following two sections.
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(Set 4)

Figure 2: A sample image from each of the five sets.

4.1 Experimental setup

Five sets of live cylindrical panoramic images each were used to 
test our proposed algorithm. These images are shown in Figure
2. These images were captured using the Ladybug camera and 
are each I608:c512 pixels in size. Each set was calibrated using 
SURF features and descriptors, the RANSAC method, and trian­
gulation.

In our experiments we used 200 agents to search for edges with a 
minimum 5 of iterations per agent and a maximum number of 3D 
points allowed in the final solution set to 1000. The algorithm 
was implemented in C++ using Microsoft Visual Studio 2005, 
and executed on an Intel Pentium F4600 2.4 GHz processor run­
ning the Windows XP operating system.

4.2 Results

In this section we will demonstrate how the proposed algorithm 
performs at finding 3D points corresponding to the surfaces of 
stationary objects in the scene.

We first used Set 0 to test the proposed algorithm, which needed 
less than 12 minutes to complete and was able to find more than 
double the number of 3D points than were found during calibra­
tion. Figure 3 shows each image in Set 0 with the projections 
of the 3D points found using the proposed algorithm drawn on 
them. These images show how the points are distributed through­
out the scene. Set 0 represents a rectangular room in which the 
measurements of its structure can easily be taken, so we tested 
the accuracy of these 3D points by estimating the rectangular di­
mensions of this room using these 3D points and then comparing

Figure 3: Images showing the 3D points found in Set 0 repre­
sented as black circles.

Figure 4: An image showing the projections of 3D points corre­
sponding to four walls in the scene.

these estimates to the actual dimensions of the room. We did this 
by first picking all points that, in their projection onto an image, 
appear to lie within a predefined region on each of four walls that 
form a rectangle in the scene.

The regions corresponding to each wall are hand chosen such 
that: (a) they correspond to a flat wall, (b) they have at least 50 
points in them, and (c) the points in each region are distributed 
so that a good estimate of the best fit plane can be computed. Let 
Wf ,  Wb. Wi,  and W r represent the sets of points in the chosen 
regions corresponding to the front, back. left, and right walls re­
spectively. The projection of these points onto an image is shown 
in Figure 4. The front wall corresponds to the middle of this im­
age. The best fit plane R f  for the front wall is then estimated by 
minimizing the sum of squared distances between R f  and each 
point in W f .  The planes Rb. Ri,  and R r are likewise computed 
from Wb, Wi ■ and W r respectively.

The angle between the normal vectors of R f  and Rb is 10°. The 
angle between the normal vectors of Ri  and R r is 18°. Since R f  
and Rb are not parallel, an estimate of the distance Dfb  between 
R f  and Rb is computed as follows.

•  let Gfb  =  the average distance between Rb and the points 
in Wf .
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Table 1: The estimated (Dfb, D ir) and actual (Dfb, Dir ) dis­
tances between opposing walls in the scene.

G f b 4.1615 G lr 4.0521
Gbf 4.4122 Grl 4.1312
Dfb 4.2869 Dlr 4.0917
Dfb 12.49 m Dlr 12.24 m

Error in Estimated vs Measured Distance
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Figure 5: A plot of the error in the estimated distances versus the 
corresponding measured distances.

•  let Gbf  =  the average distance between R f  and the points 
in W b.

•  D fb =  (Gfb +  Gbf)/2

The above procedure is also used to compute Dir using the cor­
responding planes and sets of points. Table 1 shows that Gfb 
and Gbf  are similar in value, as are Gir and G ri- The esti­
mated aspect ratio of the rectangle formed by the four walls. 
D f b /D i r =  1.0477. is very close to the actual aspect ratio. 
D f b /D i r =  1.0204. Dfb  and Dir being the actual distances 
(in meters) from the front wall to the back wall and the left wall 
to the right wall respectively. When computing the scale factor 
needed to convert the coordinates of the 3D points to meters . 
using either Df b / Df b  =  0.3432 or Dir/ D i r =  0.3343 yields 
similar results, so the scale factor is approximately 0.34.

We tested this scale value by choosing 10 detected 3D points in 
the scene that were not used to estimate the scale, estimating the 
distance in metres between 15 pairwise combinations of them 
using the estimated scale factor, and comparing the result with 
the measured distance. These pairs of points were chosen such 
that the distances between them can be measured with reason­
able accuracy. Figure 5 shows that the estimated distances are 
mostly within 6% of the measured values, the worst estimate be­
ing 12.5% from the measured value.

We then used Sets 1 to 4 to test the proposed algorithm, which 
needed less than 10 minutes to complete and was able to find 
more than double the number of 3D points found during calibra­
tion for each set. Figures 6 to 10 show the 3D points found in 
each set of images using the proposed algorithm. Figure 7 shows 
a 3D rendering of the points found in Set 1, where we can easily 
see the structure of a building and a tall chimney. These sets of 
images were captured outside where a number of buildings are 
visible, so the accuracy of these 3D points is shown by projecting 
them onto a map of the scene. The 3D points found in a given 
set are converted to the coordinate system of the map by hand 
picking three points whose corresponding pixel coordinates can 
be found on this map, and then using these correspondences to 
compute the scale, rotation, and translation factors between the 
world and map coordinate frames. This process was carried out

Figure 6: Images showing the 3D points found in Set 1.

Figure 7: A 3D rendering of the points found in Set 1.

for the 3D points found using each of Sets 1 to 4. All of the 
converted points, as well as the camera positions, are shown on a 
map in Figure 11. It should be noted that 3D points that are close 
to the ground are not shown on the map to more clearly show the 
points corresponding to objects that are visible in the map. This 
map shows that each set of 3D points found from a correspond­
ing image set can all be combined to fit fairly well in the same 
coordinate frame, even though each set of 3D points was found 
independently of the others.

5 CONCLUSION

An heuristic search algorithm is presented that finds 3D points 
corresponding to the surfaces of stationary objects in the scene 
represented by a sparse set of panoramic images. The results pre­
sented in Section 4 show that the algorithm performs reasonably 
well at finding 3D points of objects despite the sparsity of each 
image set and the highly textured areas of the scene. Although the 
algorithm requires too much processing time for it to be suited for 
real-time applications, it is not impractical for off line processing, 
which is acceptable since only stationary objects are of interest.
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Figure 8: The 3D points found in one image of Set 2.

Figure 9: The 3D points found in one image of Set 3.

Future research will focus on speeding up the algorithm, espe­
cially since it will be used on larger sets of images. Since a large 
proportion of the computation time is spent searching the epipo- 
lar line for a matching pixel, working towards speeding up this 
part of the search will likely have the greatest effect on speeding 
up the algorithm.
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