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ABSTRACT:

This paper describes a system to generate 3D model from isegence taken in complex environment including variabbeind
surface, buildings and trajectory loops. Here we use a $t@@dioptric camera and approximate knowledge of its cifn. This
contrasts to current systems which rely on more costly hardwuch as the (calibrated) spherical vision camera Lagyhll steps of
the method are summarized. Experiments include a campasstaction from thousands of images.

1 INTRODUCTION Our over-segmentation is defined by triangle mesh in imagh su
that (1) super-pixel is a list of connected triangles andti{@n-
The automatic 3D modeling of environments from image secgien gles of the view-centered model are back-projected trizsglf
is a long-term and still active field of research. Wide viewdie the image mesh. In work (Zitnick and Kang, 2007, Micusik and
camera is a natural choice for ground-based sequence. r€urreKosecka, 2009), super-pixel is pixel list and is unused tfase
systems include multi-camera and accurate GPS and INS(Poll meshing. Our choice has several advantages. Mesh regsariz
feys et al., 2008) at high cost-$100K), the Ladybug multi-  super-pixel shape and defines the resolution of final recamst
camera (www.ptgrey.com, 2010) at medium ces${2K). Here  tion by view field sampling. This is useful to compress large
we use a catadioptric camera at low cost$(K): a mirror of  scene. Besides, we obtain triangles in 3D such that the sonsi
revolution (www.0—360.com, 2010) mounted on a perspective tency with image contours can not be degraded by depth error
still camera (Nikon Coolpix 8700) thanks to adapter ring.eTh unlike (Chai et al., 2004). This is not a luxury because degth
medium and high cost systems are more convenient since theyation is difficult in uncontrolled environment. Our sugsxels
provide video sequences and wide view field without sacn§ici  are not restricted to be planar in 3D contrary to those inn(Zk
image resolution. and Kang, 2007, Micusik and Kosecka, 2009).

The first step is the estimation of successive camera po&&$ Us The last step is filtering of triangles in view-centered medét
Structure-from-Motion (SfM). Recent work (Micusik and Keka,  reduces the redundancy and removes the most inaccurateand u
2009) suggests that bundle adjustment (BA) is not needeif s expected triangles. Here we accept non-incremental metfitbd
eral good experimental conditions are met: large resalytiode  complexity greater than linear in the number of camera poses
view field, and accurate knowledge of calibration. Here we dosince the main calculations are done in the previous stefchwh

not require accurate calibration since this depends on mith  has linear complexity and is parallelizable using multies).
ror profile (mirror manufacturer may not like to reveal thes)d

the pose between the perspective camera and the mirrohefurt  This paper improves work (Lhuillier, 2008a, Lhuillier, 28i6)
more, we would like to avoid calibration pattern handlingéad-  thanks to polygons for super-pixels, drift removal using"CBc-
users. For these reasons, BA is needed to estimate simoilsige ~ celerations for larger sequence (feature selection in thiesgep,
camera poses, reconstructed points and intrinsic parasnete ~ complexity handling in the triangle filtering step), redandy re-

) ) ) ) duction, experiments on more challenging sequence.
Drift or error accumulation occurs in SfM of long image sences.

It should be detected between images taken at similar totsin
the scene (Anan and Hartley, 2005, Havlena et al., 2009) &nd r
moved using BA (Cornelis et al., 2004). Here we remove dsft u
ing constrained bundle adjustment (CBA) based on (Triggs. et
2000), instead of a re-weighted version of the standard Bér-(C
nelis et al., 2004) which relies considerably on heuristitial-

ization. 2.1 Camera Model

The next step is the estimation of the 3D scene. Like (Poue'AsingIe view-point camera model with a general radial diito

feys et al., 2008, Micusik and Kosecka, 2009), we apply densgnction and a symmetry axis is used (Lhuillier, 2008a) irttysii-

stereo method on a small number faf consecutive images, it- e the reconstruction process for non-single view-paémhera
erate this process several times along the sequence, amg MeXif any), assuming that depth is large enough.
the obtained view-centered 3D models into the global and fina '

3D model. Furthermore, we use an over-segmentation in fhe re We assume that the projection of the whole view field is delim-
erence image of view-centered model in conjunction withséen ited by two concentric circles which can be detected in insage
stereo (Zitnick and Kang, 2007, Micusik and Kosecka, 2009) Furthermore, the mirror manufacturer provides the lowet ap-
Super-pixels (small regions) are useful to reduce sterduigum  per bounds of the “ray angle” between observation ray and the
ity, to constrain depth discontinuities at super-pixeld®s se- symmetry axis. The initial calibration is that of equiareyutam-
lected among image contours, to reduce computational @mpl era: the mapping from the ray angle of 3D point to the distance
ity. between the point projection and the circle center is linear

2 OVERVIEW OF THE RECONSTRUCTION METHOD
This Section has six parts describing camera model, Stetctu

from-Motion, drift removal, over-segmentation mesh, ieen-
-tered model and triangle filtering.
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2.2 Structure-from-Motion 2.4 Over-Segmentation Mesh

Structure-from-Motion (Lhuillier, 2008a) is applied totiesate | NiS mesh has the following purposes. It makes image-based s
geometry (camera poses and a sparse cloud of 3D points) usir&?lflcatlor! of the scene su_ch that the view field is qnlfornﬁyrs

the calibration initialization of Section 2.1: estimate tview  Ped. This is useful for time and space complexities of ferth
and 3-view geometries of consecutive images from matched HaProcessing and more adequate than storing depth maps for-all
ris points (step 1) and then estimate the whole sequencegggom 29€s- Furthermore, it segments the image into polygonstsath
using bundle adjustment (BA) applied in a hierarchical feam depth discontinuities are constralneq to be at polygon dysrd
work (step 2). Another BA is applied to refine simultaneously These borders are selected among image contours. If csntour
radial distortion parameters and the 3D assuming that ttiielra '® lacking, borders are preferred on concentric circlesadial

distortion is constant in the whole sequence (step 3). segments of th? donut ima_ge. This _rpughly correspond_S_iie hor
zontal and vertical depth discontinuities for standaremtation

Although it is important to get a maximum number of recon- of the catadioptric camera (if its symmetry axis is verfjcal
structed features for 3D scene modeling, we noticed thaethe | ghort, the image mesh is build in four steps: initializati
are many more 3D points than needed to initialize the gegmetr op e crerhoard (rows are concentric rings, columns haverai
in our wide view field context. Indeed, this is not uncommon t0 . tions cells are two Delaunay triangles), gradient eidge
have more th_an 2000 features per ou_tdoo_r image involved in BAgration (perturb vertices to approximate the most prormiiien
and this implies a waste of computation time. So the number - 44e contours), optimization (perturb all vertices to mirienthe
of features per image is limited to 500 in all BAs of steps :2- g for all triangles, of color variances, plus the sum alover-
3D points are randomly selected and removed whilés larger icas of squared moduluses of umbrella operators), angtypal
than 500 in all images. In practice, this S'm,f’le scheme halds qoqmentation (triangles are regrouped in small and conely p
good point distribution in the view field. The" step is the fol- gons). In practice, lots of polygons are quadrilateralsilginto

lowing: step 3 is applied a second time without limit to get  {,05a of the initialization checkerboard.
a maximum number of reconstructed features consistenttivith

poses and calibration. 2.5 View-Centered 3D Model

Our BAis the sparse Levenberg-Marquardt method assumatg th View-centered 3D model is build from image mesh (Section 2.4
there are more structure parameters than camera onesiudasc ~ @ssuming that the geometry is known (Sections 2.1, 2.2 &@)d 2.
profile Choleski decomposition (Triggs et al., 2000) of tee r

Depth Map in the Reference Image We reproject catadioptric
duced camera system. p P g proj p

image onto the 6 faces of a virtual cube and apply match prop-
agation (Lhuillier and Quan, 2002) to two parallel faceswb t
cubes. The depth map in th€' image is obtained by chaining

matches between consecutive imaged/df). In the next steps,

Drift or error accumulation is unavoidable in the geometsji€  {he gyer-segmentation mesh in the image is back-projected to
mation of long sequence. Methods (Havlena et al., 2009, Anag,nroximate the depth map.

and Hartley, 2005, Cornelis et al., 2004) detect the drifadeen
two reconstructed imagesand j if these images are taken at Mesh Initialization  For all polygons in image, a plane in 3D
similar locations. These methods also provide list; of point  (or nil if failure) is estimated by a RANSAC procedure apglie
matches betweeinandj, which is used to remove drift. Without on depths available inside the polygon. A depth is inlieresf-t
drift removal, scene part visible inand; is reconstructed twice. tative plane if the corresponding 3D point is in this planetap
thresholding (Appendix A). The best plaredefines 3D points
Adequate BA and its initialization are applied to removeorec  which are the intersections betweemand the observation rays of
struction duplicates while maintaining low re-projectiemors in  the polygon vertices in thé" image. These 3D points are called
the whole sequence of imaggs, 1---n — 1}. Once the 2D fea- “3D vertices of polygon” although the polygon is 2D.
ture match listL;,; is given for pair{s, j}, we remove the drift . . ' . .
betweeni andj as follows. First, we choose integkrsuch that qu all edgeg in Image:, we deflm_e booleah, Wh'.Ch will d_eter-
the neighborhoodV () of i is the list{i — k---i---i+ k}. Sec-  MinNe th_e connection qf trlqng_les in both edge s_ld_e_s._ Sinpéhde
ond, /(i) and its data (3D geometry and image features) are duglscontlr_luny is proh_lblted inside polygons, we initi®iz. = 1
plicated in images\'(n + k) = {n- - -n + 2k} such that images if both triangles are in the same polygon (other cages: 0).
n+ k and: are the same. Third, we use RANSAC to fit the simi- connection Connections between polygons are needed to ob-
larity transformations of 3D points matched by.;,; and applys  tain a more realistic 3D model. Thus edge booleans are faced
to obtainV (n + k) geometry in the same basis - -n — 1} 1 it peighboring polygons satisfy coplanarity constrainor &ll
geometry. Fourth{0 - - - n 4 2k} geometry is refined by BA tak-  ho1ygonsp with a plane in 3D, we collect in lisk,, the polygons
ing into accountly,ix,; (Ln+k,; is @ copy ofL;; with image i ,-neighborhood (including) such that all 3D vertices of
index changes). Now/'(n + k) geometry is the drift correction are in the plane of up to thresholding (Appendix A). If the sum
of V(i) geometry. Fifth, constrained bundle adjustment (CBA) of solid angles of polygons it is greater than a threshold, we
is applied to minimize the global re-projection error subjeo have confidence in coplanarity between all polygond.jnand

constrainte(x) = 0, wherex concatenates 3D parameters of \ya set, = 1 for all edgese between two polygons df,,.
{0---n 4+ 2k} andc¢(x) concatenates the drifts between poses

of N (i) and N'(n + k) (more details in Appendix B). At this Hole Filling We fill hole H if its neighborhoodN is copla-
point, the drift between andj is removed butV'(n + k) is re- nar. BothH and N are polygon lists. The former is a connected
dundant. Last, we remove data involving(n + k) and apply ~ component of polygons without plane in 3D and the latter con-
BAto {0---n — 1} geometry by taking into accoud; ;. tains polygons with plane in 3D. Neighborhoddis coplanar if
there is a planer (generated by random samples of vertices of
This scheme is applied using a limit ofy = 500 features per  N) such that all 3D vertices iV are in7 up to thresholding
image to avoid waste of time as in Section 2.2, with the only(Appendix A). If N is coplanar, all polygons off get planer
difference that_; ; andL,,.«,; are not counted by this limit. and we seb. = 1 for all edges between two triangles BfU N.

2.3 Drift Removal
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View-Centered Mesh in 3D Now, 3D triangles are generated
by back-projection of triangles in the image mesh using goty
planes and edge booleans. Trianglmside a polygorp with
plane in 3D is reconstructed as follows. L&t be the circularly-
linked list of polygons which have vertexof ¢. We obtain sub-
list(s) of C\, by removing the”,-links between consecutive poly-
gons which share edgessuch thath. = 0. A C,-link is also
removed if one of its two polygons has not plane in 3D. Bét
be the sub-list which contains The 3D triangle of is defined
by its 3 vertices: the 3D vertex reconstructed #ds the mean of
3D vertices of the polygons i85 which correspond te.

Refinement Here we provide a brief overview of the refine-
ment, which is detailed in (Lhuillier, 2008b). The view-tered
mesh (3D triangles with edge connections) is parametrigatdo
depths of its vertices and is optimized by minimizing a wéégh

Reliability 3D modeling application requires additional filter-
ing to reject “unreliable” triangles that filters above mighese
triangles includes those which are in the neighborhood efitte
supporting thec;,j € N (i) (if any). Inspired by a two-view
reliability method (Doubek and Svoboda, 2002), we rejeit
has vertex such thatmax; e nr(;) angl€v — c;, v —ci) is less
than thresholdy,. This method is intuitive: is rejected if ray
directionsv — c;, j € N (i) are parallel.

Redundancy Previous filters provide a redundant 3D model in-
sofar as scene parts may be reconstructed by several mesh par
selected in several view-centered models. Redundancgédses
with thresholduo of the uncertainty-based filter and the inverse
of thresholday of the reliability-based filter. Our final filter de-
creases redundancy as follows: 3D triangles at mesh boaders
progressively rejected in the decreasing uncertaintyrafdbeey

sum of discrepancy _and s_moothing terms. The discrepanﬂy ter are redundant with other mesh parts. Triangkeredundant if its
is the sum, for all pixels in a triangle with plane in 3D, of the neighborhood intersects triangle of t}ié view-centered model
squared distance between the plane and 3D point defined @y pix(; -« ;). The neighborhood of is the truncated pyramid with

depth (Appendix A). The smoothing term is the sum, for alleig
which are not atimage contour, of the squared differenocsédsen
normals of 3D triangles in both edge sides. This minimizai
applied several times by alternating with mesh operatidmsh-
gle Connection” and “Hole Filling” (Lhuillier, 2008b).

2.6 Triangle Filtering

baset and three edges. These edges are the main axes of the 90%

uncertainty ellipsoids of theverticesv defined byC, .

Complexity Handling We apply the filters above in the in-
creasing complexity order to deal with large number of trian
gles (tens of millions in our case). Filters based on pricovida
edge and reliability are applied first. Thanks dg and relia-

For all4, the method in Section 2.5 provides a 3D model centeredility angle o, we estimate radius; and centerb; of a ball
atimagei using images\V'(i). Now, several filters are applied on which encloses the selected part of iHeview-centered model:

the resulting list of triangles to remove the most inacceiand
unexpected triangles.

b; = %(Ci71 +Ci+1) andtan(ao/2) = ||Ci+1 *Ci71||/(21”¢) if
N(i) = {i—1,4,i+1}. LetN(i) = {j, |[bi — bj|| < ri+7;}
be the list of view-centered modejswhich may have intersec-

Notations We need additional notations in this Section. Heretion with the ith view-centered model. Then the uncertainty_

t is a 3D (nhot 2D) triangle of the'" view-centered model. The
angle between two vectorsandv is angldu, v) € [0, 7]. Let
d;, c; be the camera symmetry direction and center atstfie
pose in world coordinatesi{ points toward the sky). L&V;(v)
be the length of major axis of covariance mattix of v € R?
as if v is reconstructed by ray intersection fromprojections in
imagesN (j) using Levenberg-Marquardt.

based filter is accelerated thanksXt(z): trianglet is rejected
if Us(v)/minjen) Uj(v) > uo for all verticesv of ¢. Last,
the redundancy-based filter is applied. Its complexity auert-
certainty sort i9D(plog(p)), wherep is the number of triangles.
Its complexity due to redundancy triangle test®ig?), but this
is accelerated using test eliminations and hierarchicahtimg
boxes.

Uncertainty Parts of the scene are reconstructed in several view-

centered models with different accuracies. This is esfigtiae

3 EXPERIMENTS

in our wide view field context where a large part of the scene is
visible in a single image. Thus, the final 3D model can not be deThe image sequence is taken in the university campus on au-

fined by a simple union of the triangle lists of all view-ceet
models. A selection on the triangles should be done.

We rejectt if the i*" model does not provide one of the best avail-

able uncertainties from all models: if all verticef ¢ have ratio
Ui(v)/ min; Uj;(v) greater than thresholdy.

gust 15-16th afternoons without people. There are sevaal t
jectory loops, variable ground surface (road, foot pathmawn
grass), buildings, corridor and vegetation (bushes, Yre@sis
scene accumulates several difficulties: not 100% rigidesc¢dne
to breath of wind), illuminations changes between day 142 su
sequences (Fig 2), low-textured areas, camera gain chénges

Prior Knowledge Here we assume that the catadioptric cam-corrected), aperture problem and non-uniform sky at bogeiky
era is hand-held by a pedestrian walking on the ground suath th edges. The sequence has 23864 x 2448 JPEG images, which

(1) the camera symmetry axis is (roughly) vertical (2) theugd

slope is moderated (3) the step length between consecutive i

are reduced by 2 in both dimensions to accelerate all cdlon&a

ages and the height between ground and camera center do nb€ perspective camera points toward the sky, it is hand ¢ued
change too much. This knowledge is used to reject unexpectegiounted on a monopod. The mirror (Www-E860.com, 2010)

triangles which are not in a “neighborhood of the ground”.

A step length estimate is = median||c; — c;+1]|. We choose
anglesay, ap betweend,; and observation rays such that<
ar < 5 < ap < . Trianglet is rejected if it is below the
ground: if it has vertex such that anglel;, v — ¢;) > o and

provides large view field: 360 degrees in the horizontal @lan

about 52 degrees above and 62 degrees below. The view field is

projected between concentric circles of radii 572 and 16@lpi
We use a core 2 duo 2.5Ghz laptop with 4Go 667MHz DDR2.

First, the geometry is estimated thanks to the methods in Sec

height%df(v — ¢;) is less than a threshold. The sky rejection tions 2.1, 2.2 and 2.3. The user provides the list of imagespai

does not depend on scale We robustly estimate the mean
and standard deviatiom of heightd? (v — c;) for all vertexv
of thei™™ model such that angld;, v — ¢;) < . Trianglet is
rejected if it has vertex such that anglel;, v — ¢;) < a¢ and
L(d] (v — ¢i) — m) is greater than a threshold.

{4, j} such that drift betweehand; should be removed (drift de-
tection method is not integrated in the current version efdys-

tem). Once the geometry of days 1 and 2 sub-sequences are es-

timated using the initial calibration, points are matchetineen
images: andj using correlation (Fig. 2) and CBA is applied to
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Figure 2: From top to bottom: 722 and 535 matched of used
to remove drift in cases (d) and (e) of Fig. 1. Images of days 1
and 2 are on the left and right, respectively.

Last, the methods in Section 2.6 are applied to filter theNd9.6
triangles stored in hard disk. A first filtering is done usiegja-
bility (ao = 5 degrees), prior knowledge and uncertainty filters
(uo = 1.1): we obtain 6.5M triangles in 40 min and store them in
RAM. Redundancy removal is the last filtering and select®4.5
triangles in 44 min. Texture packing and VRML file saving take
9 min. Fig. 4 shows views of the final model. We note that the
scene is curved as if it lie on a sphere surface whose diamaser
several kilometers: a vertical component of drift is left.

(9)

Figure 1: Geometry estimation steps: (a) day 1 sequenceg{b)

move drift, (¢) merge day 1-2 sequences, (d_'f) remove dliip curacy (discrepancy between scene reconstruction anchdrou
use all features.. All results are reglstered in rectarjglé] x truth) for a view-centered model using = 1. A represen-
[0,0.8] by enforcing constant coordinates on the two poses SUfgative range of baselines is obtained with the followinguo
rounded by gray disks in (a). Gray disks in (b,d,e,f) showesos tryth: the [0, 5 cube and camera locations defined dy =
where drift is corrected. Day 1-2 sequences are merged on gra(1 14i/5 1)T i € {0,1,2} (numbers in meters). First

diskin (c). synthetic images are generated using ray-tracing and tbelkn
edge of mirror/perspective camera/textured cube. Seaquopth-
ods in Sections 2.1, 2.2, 2.4 and 2.5 are applied. Third, @&cam
based registration is applied to put the scene estimatidhen
coordinate frame of ground truth. Last, the scene accusiaey
is estimated using the distanedetween vertexr of the model

An other experiment is the quantitative evaluation of scace

remove drifts usinge = 1. Cases (b,d,e,f) of Fig. 1 are trajec-
tory loops with (424,451,1434,216) images and are obtabyed
(16,62,39,9) CBA iterations in (190,2400,1460,370) selsone-
spectively. We think that a large part of the drift in case i)
due to the single view point approximation, which is inaetar  and the ground truth surface: inequaljgfv)| < ao.o||v — c1]|
in the outdoor corridor (top right corner of Fig. 4) with sal s trye for 90% of vertices. We obtain, o = 0.015.
scene depth. A last BA is applied to refine the geometry (3D
and intrinsic parameters) and to increase the list of recocied
points. The final geometry (Fig. 1.g) has 699410 points recon
structed from 3.9M Harris features; the means of track lesgt
and 3D points visible in one view are 5.5 and 1721, respdgtive \ve present an environment reconstruction system from image
acquired by a $1000 camera. Several items are describe@raam
Then, 2256 view-centered models are reconstructed thartket model, structure-from-motion, drift removal, view fieldnspling
methods in Section 2.4 and 2.5 usiag= 1. This is the mosttime by super-pixels, view-centered model and triangle filtgritun-
consuming part of the method since one view-centered meadel ilike previous work, image meshes define both super-pixes-(c
computed in about 3 min 30s. The first step of view-centeredsex polygons) and triangles of 3D models. The current system
model computation is the over-segmentation mesh in the-refeis fully automatic up to the loop detection step (that prasgio
ence image. It samples the view field such that the supetsgake  methods could solve). Last it is experimented on a chaltengi

4 CONCLUSION

the neighborhood of horizontal plane projection are ifited by

sequence.

squares of siz8 x 8 pixels in the images. The mean of number

of 3D triangles is 17547. Fig. 3 shows super-pixels of a exfee
image and the resulting view-centered model.

Future work includes loop detection integration, bettee o
visibility and prior knowledge for scene reconstructioainjng
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Figure 4: Top view (top left), local views (top right) and @hle view (bottom) of the final 3D model of the campus. The tggwcan
be matched with Fig. 1.g. The transformation between topadatique views is a rotation around horizontal axis.

meshes of view-centered models to form a continuous syrface huillier, M., 2008a. Automatic scene structure and canmoa

and accelerations using GPU.
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APPENDIX A: POINT AND PLANE THRESHOLDING

Let p be a 3D point. The covariance matrdg of p is pro-
vided by ray intersection fronp projections in imagegV'(i) =

{t = k---i---i + k} using Levenberg-Marquardt. In this pa-
per, ray intersection and covariancg result from the angle er-
ror in (Lhuillier, 2008b). The Mahalanobis distantg, between

pointsp andp’ is Dp(p') = /(b — )7y (b — P').

We define pointg = c; + zu andp’ = c; + z’u using camera
locationc;, ray directionu and depthg, 2. If z is large enough,

u is a good approximation of the main axis@yf: we haveC, ~
ozuu” andu”cy'u ~ 052 whereo? is the largest singular

p !
~ =2l

value ofCp. In this context, we obtai®, (p’) o

~
~

If x has the Gaussian distribution with meprand covariance
Cp, D3 (x) has theX? distribution with 3 d.o.f. We decide that
pointsp andp’ are the same (up to error) if both3 (p’) and
D2, (p) are less than the 90% quantile of this distribution: we
decide thap andp’ are the same point iD(p, p’) < 2.5 where

D(p,p’) = max{Dp(p’), Dy (p)} =~ |z—2'|

min{op,o,/}"

Let 7 be the planm” x+d = 0. The point-to-plane Mahalanobis
T

distance isD3 () = minxe D3(x) = &2 (Schindler

and Bischof, 2003). Thus,

oguu” andp’ € 7 imply
2T o +denT (b—p’))2 e 2)2
Dlz)(ﬂ-) ~ e tzz’zrnTu()pz S 512)) ~ Dg(pl)-

~
~

Last, we obtain the point-to-plane thresholding and distarsed
in Section 2.5. We decide that is in planer if D(p,p’) <
2.5 wherep’ € w. The robust distance betwegnand = is

min{D(p,p’), 2.5} ~ min{ 25}, 2 = —nogtd

nTu

lz—='|
min{op,o/}’

APPENDIX B: CONSTRAINED BUNDLE ADJUSTMENT

In Section 2.3, we would like to apply CBA (constrained bun-
dle adjustment) summarized in (Triggs et al., 2000) to reznov
the drift. This method minimizes the re-projection errondu
tion x — f(x) subject to the drift removal constraiatx) = 0,
wherex concatenates poses and 3D points. Here we h@e=

x1 — x§ wherex; andx{ concatenate 3D locations of images
N (i) and their duplicates of imagés (n + k), respectively. All
3D parameters of sequen{e- - - n+ 2k} are inx except the 3D
locations of\/(j) and N (n + k). During CBA, x{ is fixed and
x1 evolves towardy.

However, there is a difficulty with this scheme. CBA iteratio
(Triggs et al., 2000) improves by adding stepA which mini-
mizes quadratic Taylor expansion ffsubject to0 ~ c¢(x + A)
and linear Taylor expansiaf(x + A) ~ ¢(x)+CA. We use no-
tationsx” = (x{ xI), AT = (AT AI),c=(ct C2)
and obtainC; = I,C2 = 0. Thus, we haveA; = —c¢(x) at the
first CBA iteration. On the one hand\; = —c(x) is the drift
and may be very large. On the other haa¥,should be small
enough for quadratic Taylor approximation ff

The “reduced problem” in (Triggs et al., 2000) is used: BAate
tion minimizes the quadratic Taylor expansion&f — g(As)
whereg(Az) = f(A(A2)) andA(Az)" = (—c(x)T  A7).
Step Az meetsHz(A)A» —g2, Where (A, g2, H2()\)) are
damping parameter, gradient and damped hessian ¢fpdate
x «— x + A(A2) holds if g(A2) < min{1.1fo, g(0)}, where
fo is the value off(x) before CBA. It can be shown that this
inequality is true ife(x) is small enough and is large enough.

Here we reset by ¢, at then!” iteration of CBA to have a small
enoughc(x). Let x be the value ofk; before CBA. We use
cn(x) = x1 — (1 — v0)x? + vnx?), wherery, increases pro-
gressively fronD (no constraint at CBA start) to (full constraint
at CBA end). One CBA iteration is summarized as follows. tirs
estimateA. (v, ) for the current value of\, x) (a single linear
systemH>(\)X = Y is solved for ally, € [0,1]). Second, try
to increasey, such thaly(Az(v»)) < min{1.1fo, g(0)}. If the
iteration succeeds, appl/ — x + A(A»). Furthermore, apply
X — A/10if 45 = yn—1. If the iteration fails, apply\ <« 100A.
If 4 > Yn—1 OF 9 = 1, choOS€y,+1 = 7, at the(n + 1)**
iteration to obtainA(A.)" = (0" A7) and to decreasg¢ as
soon (or much) as possible.

24



