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ABSTRACT:

We introduce an unsupervised segmentation method to build a hierarchical representation of a building facade from a single calibrated
street level image. The process recursively splits horizontally or vertically the rectified image along dominant alignments until the
radiometric content of the region hypothesis corresponds to a given model. This paper propose two main novelties: first we describe
an advanced split energy formulation to separate dominant alignments breaks. Then we introduce a model that express periodicity in
facade texture. This segmentation could be an interesting tool for facade modeling and is in particular well suited for facade texture

compression.
1 INTRODUCTION
1.1 Context

Facade analysis (detection, understanding and field of reconstruc-
tion) from street level imagery is currently a very active field of
research in photogrammetric computer vision due to its many ap-
plications. Facade models can for instance be used to increase
the level of details of 3D city models generated from aerial or
satellite imagery. They also are useful for a compact coding of
facade image textures for streaming or for an embedded system.
The characterization of stable regions in facades is also necessary
for robust indexation and image retrieval.

We work exclusively on a single calibrated street-level image. We
voluntarily did not introduce additional information such as 3D
imagery (point clouds, etc.) because for some applications such
as indexation, image retrieval and localization, we could just have
a single photo acquired by a mobile phone.

1.2 Previous work

Existing facade extraction frameworks are frequently specialized
for a certain type of architectural style or a given texture appear-
ance. In a procedural way, operators often step in a pre-process
to split correctly the image into suitable regions. Studied images
indeed are assumed to be framed in such a way that they exactly
contain relevant information data such as windows on a clean wall
background.

Most building facade analysis techniques try to extract specific
shapes/objects from the facade: windows frame, etc. Most of
them are data driven (Ali et al., 2007, Lee and Nevatia, 2004,
Haugeard et al., 2009), i.e. image features are first extracted and
then some models are matched by them to build object hypothe-
ses. Some other model-driven techniques such as (Korah and
Rasmussen, 2007), (Reznik and Mayer, 2007) or (Han and Zhu,
2005) try to find more complex objects which are patterns or lay-
outs of simple objects (e.g. alignments in 1D or in 2D). Higher
level techniques such as (Alegre and Dellaert, 2004), (Miiller et
al., 2007) and (Ripperda, 2008) try to generate directly a hierar-
chy of complex objects composed of patterns of simple objects
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usually with grammar-based approaches. Those methods gener-
ally devote their strategy to a special architectural style.

Finally, (Burochin et al., 2009) propose a facade segmentation
independent of its architectural style. This framework first sepa-
rates a facade from its background and neighboring facades, and
then identifies intra-facade regions of specific elementary texture
models that all facades have in common. A recursive segmenta-
tion is applied only directed by dominant alignments. Neighbor-
ing facades and main intern shapes are correctly separated with-
out any semantic a priori. But detected models do not concerns
repeated structures, that are tipical properties of man-made ob-
jects, such as described in (Wenzel et al., 2008).

1.3 Contribution

Most of the aforementioned approaches are specialized in a par-
ticular kind of architecture. Few of them have addressed very
complex facade networks such as the ones encountered in Eu-
ropean cities where the architectural diversity and complexity is
large (Hausmannian buildings for instance or other complex ar-
chitectures with balconies or decoration elements). Our work is
upstream from most of these approaches and improves on the re-
cent framework proposed by (Burochin et al., 2009) (our contri-
bution is mentioned in red on figure 1). We summarize this pre-
vious approach in section 2. Section 3 explains our new split en-
ergy formulation that better separates dominant alignment breaks.
Then section 4 introduces a third model: the periodic one. We
eventually present some results in section 5 and we discuss them.

2 GENERAL STRATEGY

In this section we describe the general strategy of (Burochin et al.,
2009). This strategy requires horizontal and vertical image con-
tour alignments. Thus images first are rectified in the facade plane
using two vanishing points extracted as described in (Kalantari et
al., 2008). The segmentation relies on a recursive split process
and on a model based analysis of each subdivided regions. If the
considered region does not match any of the proposed models, it
is split into two sub-regions which are later analyzed as illustrated
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by the decision tree on figure 1. Models are based on radiomet-
ric criteria: planes and generalized cylinders. Such objects are
representative of frequent facade elements like repetitive window
panes, wall background or cornices. The process is explained in
follows.

INPUT PROCESS OUTPUT
T } Vanishing points }
nput image ﬁ; . !
P & Extraction ;
Rectification 1
Rectification 2 7| .
. Planar Rectifications | |
Rpcfification n | |
— i |
Model matching ?
Planar model ? Yes Planar
| 1 model
Cylindric model ? Yes| i, Cylindric
| 1 model
f Periodic model 7 Yes| i, Periodic
| 1 model
No
Sub-image 1 Split image ? 3
. QJ& No Unknown
Sub-image A new split energy formulatior ﬂ model

Figure 1: Hierarchical unsupervised segmentation: algorithm re-
cursively confronts data with models. Regions that do not match
any proposed model are split. Contribution of this article is men-
tioned in red.

2.1 Model Matching

The problem is to recognize some proposed models in the facade.
Given an image region, intensity is compared to one of these
models in increasing complexity order: the planar model, then
the generalized cylinders. The process stops when the sub-image
is considered as a good match for the model: we simply count
local radiometric differences as follows. Let [;; be the sub-image
at region Ry of a facade image I. Sub-image [}, is described by
model M when the deviation Naq(Iy) is small enough and if
this model is the simplest one. Deviation Naq(Ix) is defined by
the number of pixels whose radiometry differs too much from the
model.

The planar model assumes that the intensity of the sub-image I,
at pixel p follows an uniform radiometry: I;(p) = A + €(p) with
A being the uniform radiometry and €(p) being noise (small lo-
cal details, sparse occlusions or Gaussian noise). The generalized
cylinders are designed either in columns or in rows. The cylin-
dric model in columns for instance assumes intensities to follow
I (z,y) = M(z)+€(z, y) with A(z) being the cylinder value and
e(x, y) being noise. Figure 2 illustrates instances of such models.

2.2 Split Process

Regions that do not match any model are split horizontally or
vertically. With a technique close to (Lee and Nevatia, 2004),
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Figure 2: Instances of radiometric cylindric models: vertical
cylinders can be detected in window pane or wall railings, hor-
izontal cylinders in window shutter or wall background

horizontal and vertical dominant alignments are respectively de-
tected at maxima of vertical and horizontal profiles of gradient
accumulation, vertical profile being obtained by horizontal gradi-
ents. This enforces low but repetitive contrasts.

The split strategy relies on structures alignment break between
two facades or inside one facade. Split hypotheses are the previ-
ous detected dominant alignments. If such a vertical hypothesis
is located at x(, horizontal dominant alignments are separately
detected in the left and right regions. Two new grid patterns are
thus constituted by vertical dominant alignments and new hori-
zontal ones. An edge of such a grid pattern that covers enough
strong gradients is named regular edges. Other ones are fictive
edges: falsely detected edges. The best splitting hypothesis min-
imizes the length of fictive edges in each of the two sub-region.
Figure 3a shows such split process optimization.

3 SPLIT ENERGY ADVANCEMENT

The strength of dominant alignment usage is its independence to
local isolated structures. (Burochin et al., 2009) aims at mini-
mizing such alignments in best split selection. But alighments
of edges at two different scales are then compared. They do not
deal with the same structure types. For instance on figure 3a, the
fictive edges of the top region nearly coincide with the ones of
the whole region whereas bottom region contains long contam-
inating fictive edges generated by local high contrasts that were
insignificant in the whole region. Split energy at this hypothesis
is negative. Yet it is precisely the split location we are looking for.
In this typical case, an information about a road sign is compared
to alignment of window borders.

3.1 Optimization in Edges Space

We propose in this paper a static edges structure based split opti-
mization. We have chosen the solution to study edges distribution
only with dominant alignments grid pattern of the whole region
unlike approach of (Burochin et al., 2009). We build an edges
space based on this grid pattern. Now let us introduce the hori-
zontal edges space.

Let (z;); £[j0.n) e the vertical dominant alignment set such that
Ty — To is the region width.
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Figure 3: Alignment breaks detection. Vertical distribution pro-
file in red on left side of images is split energy intensities in
function of the split hypothesis ordinate. Positive values are in-
side considered region, negative are outside. Fictive edges in the
whole region are illustrated in yellow. a) Comparison of domi-
nant alignments in both sub-region: fictive edges of sub-regions
are illustrated in red. b) Optimization in static edges space.
Wename hi; = [(37 ") ; (47 )] the edge located along the dom-
inant alignment y; and between alignments x;_1 and ;.

Let ¢, be the 0, 1 coloring distribution of the regular edges along
horizontal edges: cp (%, j) is 1 if the edge h;,; is a regular edge
and 0 otherwise.

The vertical edges space is identically defined in the other dimen-
sion. The best split hypothesis for us is the highest split energy
one given by equation 1: the best horizontal or vertical split.

maz(Ey(c), E,(c)) (D

Split energy is described by two energy terms: the intra-region
energy (Fintrqa) and the inter-region energy (Finter). The for-
mer measures information located into both sub-regions. The
latter measures information along the dominant alignment that
separates them. Split energy is computed in the edges space.
Equation 2 defines the best vertical split hypothesis. A similar
computing is used to detect the best horizontal split hypothesis.

E;(c) = m]?x(af(Eintm(:vk, ¢))+ (1 — a)g(Einter(zk, c))
@

where functions f and g respectively define the influence of intra-
region energy and inter-region energy. The parameter o € [0; 1]
allows us to balance these two terms.

Figure 4 shows the influence of the two energies. If intra-region
energy is decreased to the advantage of inter-region energy, split
lines are mainly directed along highest gradient. Conversely, if
intra-region energy is increased, split directions tend to be more
homogeneously distributed. Indeed figure 4c displays a segmen-
tation whose main split lines extract floors, whereas split lines of
segmentation in figure 4a are less ordered.

3.2 Intra-Region Energy
We study now intra-region energy of vertical hypotheses. Hor-

izontal hypotheses energy is computed in a similar way. Intra-
region energy Einirq is based on the difference A(xzy,cp) of

229

Figure 4: Influence of the o parameter on segmentation. a) o =
20% b) a = 50% ¢) a = 80%

regular edges density between both sides of the vertical line x,
(equation 3).
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Figure 5: Intra-region energy. Yellow lines are horizontal reg-
ular edges. Bottom green profile illustrates rough Intra-region
energy intensities, red one illustrates weighted Intra-region en-
ergy intensities. Split Hypothesis 12 is tested and one horizontal
alignment (in cyan) is analyzed on the right of the image.

For instance figure 5 illustrates this computation on hypothesis
x12: one horizontal alignment is analyzed on the right of the im-
age where left density is quite greater than right density. Bot-
tom green profile displays all horizontal regular edges density
differences. This measure unfortunately becomes unstable at re-
gion border. A peak occurs on right border because of small lo-
cal regular edges on the right. We propose a compensation of
this phenomenon displayed by red profile. We subtract the mean
of density difference distribution. If all edges are supposed to
have the same length, then the mean A(xy) of hypothesis xx
is 32, p(cn)A(zk, cn). The result of this mean distribution is
given by equation 4.
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Z(wk)=p(1—p><i+ : ) 4)

Tk n— Tk

with p being the probability of regular edges occurrence.

For practical purposes we fix the probability p to %: regular edges
can appear everywhere in the region without any a priori. Fig-
ure 5 shows how this border compensation improves the process.

Figure 3b shows a vertical intra-region energy profile: the first
extreme is located between the ground-floor and the first one, sec-
ond extreme is located between the first floor and the second one.
Split choice is then determined by Inter-Region Energy.

3.3 Inter-Region Energy

The inter-region energy evaluates the regular edges length along
the split hypothesis under study. Equation 5 gives the inter-region
of a vertical hypothesis z;. Energy of horizontal hypotheses is
computed in a similar way.

Einter(xlwcv) = ch(l:])m ®

j=1

where v; ; is the length of edge v; ;.

This split energy term let process be directed by main gradient lo-
cation. When some split hypotheses have analogous intra-region
energy, inter-region energy is an accurate further selection crite-
rion. For instance on figure 3b, this information is essential.

4 PERIODIC MODEL

Dominant alignments is a geometric property in common with
most of facade architecture style. (Burochin et al., 2009) has ver-
ified that these alignments pretty rightly directs first steps of a
hierarchical segmentation. But facades contains an other very fre-
quent property that is actually missing in this previous approach:
periodicity. We will see that accurate period hypotheses can be
inferred from dominant alignments.

We introduce in this section a periodic model that is to considered
as a macro model. Indeed it lets the process operate a kind of
other models factorization. It assumes sub-image I, to be com-
posed of the periodic concatenation of a same sub-region that we
name kernel of the model. A sub-figure composed of a window
for instance could be the kernel of a model that represents a reg-
ular grid of similar windows (see figure 6).

General rules of our repetitive pattern detection resemble (Wen-
zel et al., 2008) but we do not look for any hierarchy in the peri-
ods. We only select the most frequent in horizontal and vertical
directions: this restriction is sufficient because the process is re-
cursive. We do not use the same interest points either: our points
are intersections of dominant alignments.

An important aspect of the periodic kernel concept is the fact that
this kernel is not an irreducible region as described in (Miiller
et al., 2007). This kernel is possibly composed by sub-patterns.
This case occurs by instance in figure 6: kernel is composed of
three similar windows. We first generate period hypotheses. Then
we select the best one to try to build a periodic kernel.
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Figure 6: Periodic model of a window grid pattern with perspec-
tive effects and local occlusions: Three horizontally aligned win-
dows framed in yellow constitute the kernel.

4.1 Period hypothesis Generation

Dominant alignments provide period hypotheses only with their
coordinates whose distribution is partly regulated by main repet-
itive structures. We generate separately horizontal and vertical
hypotheses. For vertical hypotheses, we accumulate all distances
between horizontal dominant alignments to build a distance his-
togram. Figure 7 shows such a vertical distance histogram of
region analyzed on figure 8. Horizontal distance histogram is
computed in the same way.

Y

Vertical distances histogram and matching proportion A for modes [A(tisa) = 13%
Altias) = 3% Albiss) = 77%

A(tn) = 21%  Altis) = 3%

Atz) =12%  Altss) = 12% | 1
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y

Figure 7: Distance histogram between horizontal dominant align-
ments of region displayed on figure 8. Each mode is related to the
size of one repetitive pattern: matches proportions are mentioned.
The best one is circled in red (floor size).

Each mode of these histograms is related to the fixed size of one
repetitive pattern. Small distances concern small patterns (such as
balconies, windows or gabs between two windows if the kernel
is a floor). We are looking for the size of macro patterns that is
the sum of those small patterns sizes. These macro-patterns are
supposed to exactly partition the considered region.

4.2 Best Period selection

We have now to select one best period hypothesis. Solution that
we have found is to correlate a significant number of key point
pairs that satisfy three conditions:

1. homogeneous distribution in the region
2. stable locations

3. accurate matching measure
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We build a set IT of key points from the intersection of dominant
alignments (figure 8) that theoretically satisfy the two first con-
ditions. Then we use Pearson correlation to match these points.
Radiometric descriptors are enough to match similar points be-
cause points lay in one same rectified image. For an hypothesis
t; (respectively ta), we compute correlations between all pairs
of points (II[4], II[§]) such that II[j] ~ II[s] + &, (respectively
II[j] ~ [ + t,). We select hypothesis ¢} (respectively ¢%)
whose matches proportion A* is the best in the region. If A* (%)
is high enough for the period t_;j or the period ¢%, then the image
I} is considered as a periodic model whose kernel dimension is
given by (||tz||, ||t5)]])- If only one periodicity dimension X or
Y is detected, then we respectively use the height or the width of
the region to build the kernel. If no good matches proportion is
detected, the region is assumed not matching any periodic model.

Figure 8 concerns a set of similar floors whose windows do not
lay regularly in the regign. Proportion A(t}) is high enough to
consider the distance ||t} || - floor height - as a period whereas
[|£%|| is too low. Then the region is assumed to match a periodic
model whose kernel is the floor.

Figure 8: Matches of period tf, =H f?oor. Dominant alignments
are drawn in green. Correlation score (I1[z]  II[j]) is illustrated
by the length of the circle around II[¢], where II[j] = II[i] +
t_*?;. A negative correlation score is illustrated as a point. Good
correlation scores (greater than 80%) are circled in yellow; bad
scores are circled in red. On 104 issues, 80 matches are correct.
Blue rectangles are special cases.

This periodic model criterion is based on the essential hypothesis
of a chaotic distribution of occlusions such as shutters, flowerpots
or reflects, on the entire region. We do not delete such occlusion
effects but we assume that proportion of hidden key points is in-
significant compared with the total number of good matches. This
restriction means that periodic model would be rejected when
variations on repetitive patterns occur in the same location (ho-
mogeneous distributions of closed and open shutters, dense veg-
etation at foreground for example). But apart from such specific
occurrences, periodicity is correctly detected. For instance in fig-
ure 8, a bad match occurs between a key point located on a closed
window and a point on an opened window. Nevertheless good
matches number is high enough to validate a periodic model.

Furthermore this correlation based criteria uses geometric and lo-
cal radiometric clues. It is sufficient. We do not compute de-
viation Ny, (I;) between image I, and a synthetic model M3
in the same way than the planar and cylindric models given that
periodic model takes into account a more global outlook of the
facade. We voluntary ignore areas between key points in order
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to prevent perspective effects and local occlusions to disturb the
matching process. Figure 6 shows a facade composed of win-
dows in regular grid. The process matches its whole region as
a periodic model despite perspective effects, strip lighting that
sometimes appear behind window glass and reflects. Influence of
these disruptions are naturally decreased by the reject of instable
alignments. An alignment A is instable for a period £ if there is
no corresponding dominant alignments A + £.

5 RESULTS AND DISCUSSION

On the same image, figure 9 shows hierarchical segmentation of
(Burochin et al., 2009) compared to the new one. The former
first separates the two facades whereas the latter separates facades
from the ground level. Both choices are relevant but we notice
that in a general way over-segmentations are prevented by the
new split energy formulation and periodic models detection.

Figure 9: a) Hierarchical segmentation with dominant alignments
detection in sub regions before split selection and without peri-
odic model detection. b) Hierarchical segmentation proposed in
this article.

This hierarchical segmentation still encounters some problems.
The main one is that split process often breaks periodicity instead
of framing it. On Figure 9b second, third and fourth floors of the
right facade are identical. They are composed of five windows.
On each floor, one single window lay on the left, three windows
are centered and one single window lay on the right. The seg-
mentation process do not frame the wall with all its content: it set
apart single windows on the right from the rest of the identical
floors. This phenomenon is due to split energy formulation that
tend to break different contour densities.

A second problem of this approach is its dependence on recti-
fying process approximations that is directly reflected in regular
edges detection and key points correlations. Objects are not ex-
actly straight aligned. Twice condition on neighborhood stability
of key point set obviously is not satisfied. For instance the two
points II[¢1] and II[é2] in blue rectangle on the right of figure 8
are not correctly matched with corresponding (T1[i1] + £;) and
(I1[i2] + t}) because of rectifying imprecision.

Besides matches of key points located on uniform radiometries
are hardly computed: blue vertical rectangle in figure 8 shows
bad correlations because of too much noise. Third condition of
key points set neither is verified. A consequence of this previ-
ous problems is that segmentation tends to separate floors before
grouping them in a periodic model. Then most of estimated pe-
riods lay in only one dimension. Figure 10 shows a facade ac-
quired from two different view points. First image is a crop of
the big image displayed on figure 11. Second one is acquired
from a closer view point such that only left part of the facade is
shown. We notice high trend to separate floors in two cases. But
floor internal segmentation hardly differs. For instance third and
fourth floor are split into small parts on image 10a whereas they
are grouped in a periodic models in image 10b. This phenomenon
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can be explained by the difference of initial segmentation situa-
tion: considered floor width in image 10b is half as big than the
one in whole image 11.

1&?’ .

Figure 10: Hierarchical segmentation of a facade acquired from
two different view points and cameras. a) Segmentation Crop of
image displayed on figure 11. b) Segmentation of the same facade
from a closer view point such that only left part is shown.

Moreover at small regions, key points number may be too small
because of a fixed neighborhood length of dominant alignments.
From all these limits we hold two main considerations. In the one
hand split process is entirely independent of periodicity informa-
tion. In the other hand periodicity estimation is based on corre-
lation scores between points whose location does not depends on
any local information.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we have presented several improvements to the un-
supervised model-based segmentation approach of (Burochin et
al., 2009) that provide interesting results. It is able to separate a
facade from its surroundings but also to organize the facade itself
in a hierarchy. Dominant alignments are very fast to compute and
provide good split hypotheses as well as good period hypotheses
and an homogeneous distribution of key points. The detection
of periodicity lets the process deal with local occlusions and per-
spective effects. Such an unsupervised segmentation will provide
relevant clues to classify the facade architectural style or to detect
objects behind or in front of it. It is also intended to give geomet-
rical information that represents relevant indexation features e.g.
windows gab lengths or floor delineation.

‘We have also introduced a model to detect periodicity that makes
the segmentation more relevant. However, we also could add
periodicity information in best split selection in order to pre-
vent the process from breaking periodic structures before fram-
ing them. Besides we could put our key points on possibly lo-
cal stable neighborhood such as corners with Harris score and
reject uniform neighborhoods. Additionally we could subdivide
the periodic kernel in irreducible regions in the same manner as
(Miiller et al., 2007). We then would detect local occlusions be-
forehand as residuals of a comparison between image information
and information of the kernel. These irreducible regions could
be matched by graph approach of (Haugeard et al., 2009) or we
could compute a 3D polygonal model when considering perspec-
tive effects.
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