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ABSTRACT:

Due to an increasing amount of aerial data there is significant demand in automatic large-scale modeling of buildings. This work
presents an image-driven method for automatic building extraction and 3D modeling from large-scale aerial imagery. We introduce a
fast unsupervised segmentation technique based on super-pixels. Considering the super-pixels as smallest units in the image space, these
regions offer important spatial support for an information fusion step and enable a generic modeling of arbitrary building footprints and
rooftop shapes. In our three-staged approach we integrate both appearance information and height data to accurately classify building
pixels and to model complex rooftops. We apply our approach to datasets, consisting many overlapping aerial images, with challenging
characteristics. The classification pipeline is evaluated on ground truth data in terms of correctly labeled pixels. We use the building
classification together with color and height for large-scale modeling of buildings.

1 INTRODUCTION

Efficient building classification and 3D modeling from aerial im-
agery have become very popular in computer vision and pho-
togrammetry due to a rapidly increasing number of applications
like urban planning, navigation support, cartography, synthetic or
realistic 3D city construction etc. In particular, Internet driven
initiatives such as Google Maps and Bing Maps push the de-
velopment of efficient, accurate and automatic methods. With
the success of the aerial imaging technology, high resolution im-
ages can be obtained cost-efficiently. Multiple types of source
data such as color or infrared images become available. For in-
stance, the Microsoft Ultracam takes multi-spectral images in
overlapping strips, providing high redundancy, which adheres ev-
ery visible spot of urban environments from many different cam-
era viewpoints. The high redundancy within the collected data
enables image-based methods for automatic height field genera-
tion (Klaus et al., 2006), which offers important support for land-
use classification (Zebedin et al., 2006, Kluckner et al., 2009) and
3D modeling of urban environments (Parish and Müller, 2001,
Zebedin et al., 2008, Lafarge et al., 2010). Nevertheless, the enor-
mous amount of data, including e.g. color and height informa-
tion, requires fast methods and sophisticated processing pipelines
getting by with a minimum of human interaction.

Considering large scale computation the problem of building ex-
traction in urban environments becomes very difficult for many
reasons. Buildings are complex objects with many architectural
details, shape variations and a large diversity of appearance. In
addition, buildings are located in urban scenes that contain var-
ious objects from man-made to natural ones. Therefore, recent
approaches heavily differ in the use of data sources, extracted fea-
ture types and the applied models. A couple of recently proposed
methods exploit 3D information provided by LIDAR data (Matei
et al., 2008, Poullis and You, 2009), but already early approaches
(Bignone et al., 1996, Cord et al., 1999) used a combination of
2D and 3D information for building extraction and modeling.

An increasing number of methods are based on digital surface
models (DSM), directly generated from redundant images. La-

farge et al. (Lafarge et al., 2008) detected rectangular building
footprints in DSMs and used symmetry criteria to roughly esti-
mate the geometry of rooftops. In (Lafarge et al., 2010) the au-
thors extended this approach with a library of 3D blocks for im-
proved building generalization from single DSMs. These blocks
can be seen as pieces sticked together for building construction
and have to be given in advance. In contrast to exploiting a given
number of designed models, we consider individual image re-
gions, provided by super-pixel segmentation, as the smallest units
representing building parts. While Taillandier (Taillandier, 2005)
exploited cadastral maps, aerial images and a DSM, Vosselman
and Dijkman (Vosselman and Dijkman, 2001) reconstructed rect-
angular shaped buildings from points clouds and given ground
plans by detecting line intersections and discontinuities between
planar faces. More generally, Zebedin et al. (Zebedin et al., 2008)
proposed a concept based on fusion of feature and area informa-
tion for building modeling. The method relies on directly extract-
ing geometric prototypes such as planes and surfaces of revolu-
tion, taking into account height data, 3D lines and an individual
building mask. A graph cut based optimization procedure refines
the final result to form piecewise planar rooftop reconstructions.
Other methods additionally involve classification techniques to
automatically distinguish between mapped objects. Matikainen
et al. (Matikainen et al., 2007) employed a DSM segmentation
and a color-driven classification to discriminate buildings from
trees. In (Zebedin et al., 2006) the authors fused information from
redundant multi-spectral aerial images to generate orthographic
images for color, height and land-use classification. Related, in
our previous work (Kluckner et al., 2009) we proposed a rapid
per-image semantic classification based on statistical description
of appearance cues and 3D elevation measurements.

In this work, we focus on efficient, fully image-driven building
classification and synthetic 3D modeling in large-scale aerial im-
agery by using both color and height information as input sources.
The main contributions of our work are: We introduce an unsu-
pervised segmentation technique based on super-pixels for generic
rooftop construction. Super-pixels are images regions, describing
the smallest unit in the image space and are not limited to prede-
fined sizes or shapes. Therefore, a set of super-pixels enables
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Figure 1: Overview of our classification and modeling approach:
We use overlapping color images and height information to detect
and construct 3D building models.

a composition of any building footprint. Together with an esti-
mated plane (we exploit the height information), each super-pixel
is used to form a part of a rooftop. A final refinement step yields
a piece-wise planar approximation taking into account adjacent
super-pixels. Our approach exceedingly exploits the redundancy
in the data in order to remove outliers in the height data or to im-
prove classification accuracy by image fusion. Apart from some
human interaction to label training maps for learning the classi-
fier, the proposed method runs fully automatic with a low number
of parameters to adjust.

2 OVERVIEW

Our modeling pipeline is summarized in Figure 1. We consider
highly overlapping color aerial images and two types of derived
height fields as input sources: A dense matching approach (Klaus
et al., 2006) provides corresponding depth information, defining
a DSM in a 3D coordinate system, for each pixel in the input
images. A digital terrain model (DTM), representing the bald
earth, is computed in advance from the DSM by using a similar
approach as described in (Champion and Boldo, 2006).

First, we perform building classification in order to obtain an ini-
tial interpretation at the pixel level for each image in the dataset
(Sec. 3). Due to the high overlap in the aerial imagery, each point
on the ground has several (up to ten) class probabilities. Similar
as proposed in (Kluckner et al., 2009) we exploit statistical fea-
tures in combination with random forests (RF) (Breiman, 2001)
as classifiers to compactly describe and classify appearance and
elevation measurements within local image regions. This clas-
sification technique involves a supervised training of the RF in
advance using some labeled training maps. Learning a classifier,
which discriminates building structures from the background, keeps
the approach general and does not require a specific parameter
tuning.

Second, a pixel-wise fusion step of multiple views into a com-
mon 3D coordinate system generates redundant image tiles for
various source modalities like building classification, color and
height information (Sec. 4). Following recent trends of integrat-
ing unsupervised image segmentation techniques for recognition
tasks (Malisiewicz and Efros, 2007, Pantofaru et al., 2008, Fulk-
erson et al., 2009) we exploit super-pixels (Vedaldi and Soatto,
2008) to improve the fusion of different input sources and to re-
duce computational complexity for subsequent processing steps.

The third step of our approach involves the generic rooftop con-
struction taking into account the super-pixels, which can be seen

as footprint for parts of a building, and fused classification results
(Sec. 5). For each building super-pixel, corresponding height data
is used to extrude the individual footprints for geometric primitive
generation. A spectral clustering step (Frey and Dueck, 2007) de-
tects representative geometric prototypes, which are then used in
a refinement step to form spatially consistent piecewise planar
rooftops. To show the performance we apply our approach to two
different datasets with challenging characteristics (Sec. 6).

3 BUILDING CLASSIFICATION

The first processing step of our approach involves a building clas-
sification on each image in the aerial dataset. Due to independent
processing of each image this step can be done in a highly paral-
lelized manner. The classification procedure yields class prob-
abilities for each pixel in the processed images by computing
statistics over low-level feature cues within small spatial neigh-
borhoods. Due to efficiency we apply RF classifiers (Breiman,
2001) to compute initial building likelihoods at the pixel level.

Random forests are a powerful yet simple method to classify fea-
ture vectors by using simple attribute comparisons. In addition,
RFs can handle label noise and errors in labeled training data. A
forest can be seen as a collection of many random decision trees.
The decision nodes of each tree include fast binary splits that
give the direction of branching left and right down the tree until
a leaf node is reached. By using a greedy optimization strategy
the split criteria are learned from a subset of provided input data
(which speeds up the training process). After tree construction
using the subset of training samples, each tree is refined with the
complete set of feature instances in order to generate the final leaf
node’s class distributions. This technique enables a sophisticated
handling of large amount of data and further improves the gen-
eralization capability. At runtime, the classifier is evaluated by
parsing down a test feature vector in each tree in the forest and
accumulating the class likelihoods in the reached leaf nodes.

Each feature instance (Pi, ci) consists of a computed region de-
scriptor Pi and a target label ci ∈ {building, non-building} di-
rectly extracted from training maps. Tuzel et al. (Tuzel et al.,
2006) presented a compact descriptor based on local statistics for
rapid object detection by exploiting integral structures. A covari-
ance matrix provides a low-dimensional and simple integration
of d low-level feature cues. For instance, using a combination
of color and height data separates the street regions from gray-
valued rooftops or distinguishes between green areas and trees.
The diagonal elements of the covariance matrix are the variances
of the feature attributes in one channel, whereas the off diago-
nal elements capture the correlation values between the involved
modalities. Thus the statistics up to second order of collected fea-
ture vectors can be represented by a mean vector µ ∈ Rd and a
covariance matrix Σ ∈ Rd×d. The space of covariance matri-
ces is not a vector space, therefore, simple arithmetic differences
between the elements do not measure the real distance between
two matrices. Thus covariance descriptors cannot be directly ap-
plied to an RF, where simple attribute comparisons are used to
construct the classifier. Instead of exploiting manifolds (Tuzel et
al., 2006) to obtain a valid covariance similarity measurement,
we use Sigma Points (Kluckner et al., 2009), which represent in-
dividual covariance matrices directly on Euclidean vector space.
The idea relies on extracting specific samples of a given distribu-
tion, characterized by µ and Σ, and offers a simple concept for
combining first and second order statistics, since the mean vector
describes an offset in the Euclidean vector space. We construct
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Figure 2: Fusion result: The first row shows six redundant ortho-
graphic views of a scene taken from Graz. Fused image results
are given in the second row for color, height and building classi-
fication. Undefined areas are considerably compensated by using
the high redundancy.

the set of Sigma Points1 as follows:

p0 = µ pi = µ+ α(
√

Σ)i pi+d = µ− α(
√

Σ)i, (1)

where i = 1 . . . d and (
√

Σ)i defines the i-th column of the re-
quired matrix square root. Due to symmetry of the covariance
matrix, we apply the Cholesky factorization to efficiently com-
pute the matrix square root of Σ. The term α defines a weighting
for the elements in the covariance matrix and is set to α =

√
2d

as suggested in (Kluckner et al., 2009). Then, a resulting region
descriptor P = {p0, . . . ,p2d} consists of 2d + 1 concatenated
Sigma Points pi ∈ Rd and has a dimension of P ∈ Rd(2d+1).
For details we refer to (Kluckner et al., 2009). The next section
describes the fusion of redundant information into a common 3D
coordinate system.

4 FUSION OF MULTIPLE IMAGES

Because of the high overlap in the aerial imagery, each point
on ground is mapped multiple times from different viewpoints.
Since we are interested in large-scale modeling, we generate an
orthographic image from many overlapping perspective images
by a pixel-wise transformation into a common 3D coordinate sys-
tem. Taking into account camera data and depth information, pro-
vided by a dense matching procedure, corresponding pixels in the
perspective images yield multiple observations for color, height
and building classification in the orthographic view. Several rec-
tified observations of a scene taken from the imagery Graz are
shown in Figure 2.

The fusion of redundant information into a common view has the
benefit that e.g. reconstruction errors caused by non-stationary
objects like moving cars can be compensated. In addition, a pro-
jection of many different views produces an orthographic image
without undefined image regions caused by perspective occlu-
sions. First, color and height information are fused by computing
median values for each pixel from multiple observations. In case
of robustly fusing color information per pixel, we use random
projections of the color vector onto 1D lines to detect the me-
dian of vector-valued data (Tukey, 1974). Though simple mean
computation has lower computational complexity, a median will
not introduce new colors values as possibly introduced by aver-
aging. In addition, an accurate fused color image is essential for
super-pixel segmentation performed at the next step. In order to
estimate a final building likelihood for each pixel in the ortho-
graphic view, confidences from different views are accumulated

1Code available at http://www.icg.tugraz.at/Members/kluckner

and normalized. Figure 2 depicts the final pixel-wise fusion result
for color, height and building classification. In the next step we
briefly discuss super-pixels and introduce an optimization stage
to refine the classification and the prototype labeling on a super-
pixel neighborhood.

4.1 Super-Pixel Segmentation

A variety of recently proposed methods obtaining state-of-the-art
performance on benchmark datasets integrate unsupervised im-
age segmentation methods into classification or object detection.
Several approaches utilize multiple segmentations (Malisiewicz
and Efros, 2007, Pantofaru et al., 2008) however the generation
of many partitions induces enormous computational complexity
and is impractical for aerial image segmentation. Recently, Fulk-
erson et al. (Fulkerson et al., 2009) proposed to use super-pixels,
rapidly generated by Quickshift (Vedaldi and Soatto, 2008). These
super-pixels accurately preserve object boundaries of natural and
man-made objects. Applying Quickshift super-pixel segmenta-
tion to our approach offers several benefits: First, computed super-
pixels can be seen as the smallest units in the image space. All
subsequent processing steps can be performed on a reduced ad-
jacency graph instead of incorporating the full pixel image grid.
Furthermore, we consider super-pixels like homogeneous regions
providing important spatial support: Due to edge preserving ca-
pability, each super-pixel describes a part of only one class, namely
building or non-building. Aggregating data, such as classifica-
tion and height information, over the pixels defining a super-pixel
compensates for outliers and erroneous pixels. For instance, an
accumulation of building likelihoods results an improved build-
ing classification for each segment. A color averaging within
small regions synthesizes the final modeling results and signif-
icantly reduces the amount of data. More importantly, we ex-
ploit super-pixels, which define parts of the building footprints,
for the 3D modeling procedure. Taking into account a derived
polygon approximating of the boundary pixels and corresponding
height information, classified building footprints can be extruded
to form any type of geometric 3D primitives. Therefore, intro-
ducing super-pixels for footprint description allows to model any
kind of ground plan and in the following the rooftop.

4.2 Refined Labeling using Super-Pixels

Although aggregating the fused building classification or extract-
ing geometric prototypes using super-pixels capture some local
information, the regions in the image space are handled inde-
pendently. In order to incorporate spatial dependencies between
nodes defined on the image grid, e.g. Markov random field for-
mulations (Boykov et al., 2001) are widely used to enforce an
evident final class labeling. In contrast to minimizing the energy
on a full image grid (Pantofaru et al., 2008, Kluckner et al., 2009)
we apply a conditional Markov random field (CRF) stage defined
on the super-pixel neighborhoods similar as proposed in (Fulk-
erson et al., 2009). In our approach we apply the refinement on
super-pixels twice: First, we apply the CRF to provide a smooth
labeling of the building class taking into account the spatial de-
pendency on an adjacency graph. Second, in a separate process-
ing step the CRF is used for consistent labeling of the geometric
prototypes to enforce a piecewise planar rooftop.

Let G(S,E) be an adjacency graph with a super-pixel node si ∈
S and a pair (si, sj) ∈ E be an edge between the segments si and
sj , then an energy can be defined with respect to the class labels
c. In this work a label can be a building/non-building class or a
possible assignment to a specific geometric primitive. Generally,
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the energy can be defined as

E(c|G) =
∑
si∈S

D(si|ci) + ω
∑

(si,sj)∈E

V (si, sj |ci, cj), (2)

where D(si|ci) expresses the unary potential of a super-pixel
node. In case of the classification refinement, c represents a bi-
nary labeling of the adjacency graph that assigns each graph node
si a label ci ∈ {building, non-building}. The unary potential
D(si|ci) = − log(H(si)) denotes the class likelihoodsH(si) of
a super-pixel si obtained by aggregating pixel-wise confidences.
The costs for geometric primitive refinement are described in the
next section. The factor ω controls the influence of the regulariza-
tion and is estimated by using cross validation. In order to con-
sider the region sizes in the minimization process, we compute
the pairwise edge term V (si, sj |ci, cj) between the super-pixels
si and sj with

V (si, sj |ci, cj) =
b(si, sj)

1 + g(si, sj)
δ(ci 6= cj). (3)

The function b (si, sj) computes the number of common bound-
ary pixels of two given segments, g(si, sj) is the L2 norm of the
mean color distance vector and δ(·) is a simple zero-one indi-
cator function. In this work we minimize the energy defined in
Equation 2 by using α-expansion moves (Boykov et al., 2001).

5 BUILDING MODELING

A generation of super-pixels provides footprints for any object in
an observed color image. Taking into account the refined build-
ing classification and additional height information, 3D geomet-
ric primitives describing the smallest unit of a building rooftop
can be extracted as the next step. Estimated rooftop hypotheses
for each super-pixel in a building (we simply extract connected
components on the adjacency graph) are collected and clustered
in order to find representative rooftop prototypes. Finally, a CRF
optimization assigns consistently the prototypes to each super-
pixel in a building considering resulting reconstruction error and
neighborhood segments.

5.1 Prototype Extraction

Assuming a set of super-pixels (a super-pixel can be seen as a list
of coordinates), classified as parts of an individual building, we
initially fit planes to the available corresponding point clouds pro-
vided by the fused DSM. In this work we use planes as geometric
primitives however the prototype extraction can be extended to
any kind of primitives. We apply RANSAC over a fixed number
of iterations to find those plane, minimizing the distance to the
point cloud, for each building super-pixel. This procedure yields
a rooftop hypothesis for each super-pixel defined by a normal
vector and single point on the estimated plane (see second row of
Figure 3).

5.2 Prototype Clustering and Refinement

As a next step, we introduce a clustering of hypotheses for two
reasons: Since the subsequent optimization step can be seen as
a prototype labeling problem, similar 3D primitives should pro-
vide same labels in order to result a smooth reconstruction of
a rooftop. Second, clustering significantly reduces the number
of probable labels which benefits the efficiency of the optimiza-
tion procedure. We apply affinity propagation (Frey and Dueck,
2007) to find representative exemplars of 3D primitives. Affin-
ity propagation takes as input a distance matrix of pairwise sim-
ilarity measurements and efficiently identify a set of exemplars.

Please note that the number of exemplars has not to be given in
advance and the similarity matrix can be computed sparsely. We
therefore construct the similarity matrix as follows: For each 3D
primitive which consists of plane and a 3D point in space, we
estimate the reconstruction error for adjacent super-pixels tak-
ing into account the current prototype hypothesis and the set of
neighboring height data points. Considering only adjacent image
regions additionally reduces computational costs for construct-
ing the similarity matrix. The clustering procedure yields a set
of representative primitive prototypes which are used to approx-
imate a rooftop shape with respect to the available height infor-
mation. Next, we reuse the formulation of the energy defined in
Eq. 2 to obtain a consistent prototype labeling for building re-
gions. In case of geometric primitive refinement, c represents
a labeling of the adjacency graph that assigns each super-pixel
si a label ci ∈ T , where T is the set of geometric prototypes
obtained by clustering. Similar as proposed in (Zebedin et al.,
2008), the unary potential D(si|ci) denotes the costs, in terms of
summed point-to-plane distance measurements, of si being as-
signed the label ci or prototype, respectively. We compute the
pairwise edge term considering appearance and super-pixel sizes
in order to obtain a smooth geometric prototype labeling within
homogeneous building areas. A refined labeling of prototypes is
shown in Figure 3.

5.3 Rooftop Modeling

So far the footprint of each building consists of a set of super-
pixels in the image space. In order to obtain a geometric foot-
print modeling of each super-pixel, we first identify common
boundary pixels between adjacent building super-pixels. For each
super-pixel, this procedure results a specific set of boundary frag-
ments, which can be individually approximated by straight line
segments. A pairwise matching of collected line segments yields
a closed yet simplified 2D polygon. Taking account of DTM and
the refined geometric primitive assignment, the footprint poly-
gons defined by a number of vertexes are extruded to form small
units of a rooftop: distinctive 3D rooftop points are determined
by intersecting the plane (given by the geometric primitive) with
a line, directed to (0, 0, 1)T , going through the corresponding
vertex on ground. For the purpose of visualization, we use a 2D
Delaunay triangulation technique to generate the models of the
buildings. An individual 3D building model of our approach can
be seen as a collection of composed building super-pixels hav-
ing identical building and rooftop prototype indexes, respectively.
A hierarchical grouping of super-pixels could be used to further
simplify the resulting building model.

6 EXPERIMENTS

This section evaluates our proposed framework on a large amount
of real world data. We first describe the aerial imagery, then the
building classification is evaluated on hand-labeled ground truth
data. Moreover, we present results of our building generalization
and perform quantitative and visual inspection of the constructed
models.

Data. We present results for two aerial imageries showing dif-
ferent characteristics. The dataset Graz (155 images) shows a
colorful appearance with challenging buildings and San Fran-
cisco (77 images) has suburban occurrence in a hilly terrain. The
imageries are taken with the Microsoft Ultracam in overlapping
strips (80% along-track overlap and 60% across-track overlap),
where each image has a resolution of 11500 × 7500 pixels with
a ground sampling distance of approximately 10 cm. We use the
color images, the height data computed by dense matching (Klaus
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overall building non-buil.
Graz, pixel level 88.5 90.5 87.3

Graz, with super-pixel 90.6 92.1 90.0
Graz, with CRF 93.7 92.1 93.4

San Fran., pixel level 85.7 86.3 85.3
San Fran., with super-pixel 89.2 89.0 91.8

San Fran., with CRF 92.1 91.8 93.4

Table 1: Building classification accuracy in terms of correctly
classified pixels on hand-labeled orthographic test data. It can be
clearly seen that use of super-pixels as spatial support improves
accuracy. The CRF stage further improves the classification rates
using a consistent final labeling of the super-pixels.

et al., 2006) and the derived DTM (Champion and Boldo, 2006).
A combination of DTM and DSM yields absolute elevation mea-
surements per pixel from ground which are applied for the build-
ing classification and modeling.

Building Classification. For all datasets, we train individual
RF classifiers with 8 trees and a maximum depth of 14. The
Sigma Points feature vectors are collected within small image
patches (11× 11 pixels). In this work the Sigma Points describe
the statistics of feature cues like color, texture and elevation mea-
surements within small image patches. Texture information is
directly obtained by computing first order derivatives on the L
channel of CIELab color images. A combination of the color
channels, two gradients and the elevation measurements yields a
feature vector with 78 attributes, which can be directly trained
and evaluated using the RF classifiers.

In our approach we exploit hand-labeled ground truth maps for
training of the classifiers. Please note that the labeling of train-
ing data involves some human interaction, but since our approach
works at the pixel level there is no need to accurately label com-
plete building areas. Hence the labeling of the training data is
straightforward and can be efficiently done by applying brush
strokes representing either building or non-building class. For
evaluation we additionally label randomly selected orthographic
images (we use 9 tiles per dataset). Obtained classification rates
are summarized in Table 1. We report both the overall per-pixel
classification rate (i.e. the accuracy of all pixels correctly clas-
sified) and the average of class specific per-pixel percentages,
which gives a more significant measurement due to varying quan-
tity of labeled pixels for each class. On both datasets we obtain
overall classification rates of more than 90%. A classification
of a single aerial image at full resolution takes approximately 3
minutes on a dual core machine.

The fusion step for color, height and classification, also including
the super-pixel generation, of 6 different viewpoints covering an
area of 150× 150 meters lasts less than 5 minutes. Quickshift is
applied to a vector consisting of pixel location and CIELab color.
The parameters for Quickshift are set to σ = 2 and τ = 8. It
turned out that these parameters capture nearly all object bound-
aries in some observed test images. In addition, the parameters
generates sufficiently small regions in order to preserve curved
boundary shapes. The overall results, adding a CRF stage for
classification refinement are given for ω = 3.0.

Figure 3 shows a result for a fused image tile of Graz. While
the raw pixel-wise fusion of the class probabilities shows higher
granularity and blurred object boundaries due to inaccurate 3D
information (compare to Figure 2), an integration of super-pixels
and CRF improves the final building classification significantly.

Building Modeling. We use the proposed method to model com-
plex rooftops of buildings in 3D. Figure 3 shows a modeling re-
sult for a part of Graz. In order to obtain a quantitative evaluation

Figure 3: Results for a small part of Graz. The first row depicts
the input sources like color, elevation measurements and refined
classification, aggregated within super-pixels. The second row
shows computed super-pixels overlaid with the building mask and
the result of the refinement step which groups super-pixels by
taking into account the geometric primitives. In the bottom the
corresponding constructed 3D building model is given.

the root mean squared error (RMSE) over all building pixel is
computed between fused DSM values and the heights obtained
by 3D modeling. For Graz we obtain an RMSE of 1.9 meters
taking into account all 170.0e6 building pixels. For San Fran-
cisco the RMSE is 1.7 meters evaluated on 210.0e6 pixels. In
case of prototype refinement the parameter ω controls the fidelity
between the degree of details and geometric simplification. For
both datasets the smoothing factor with ω = 5.0 has given reli-
able results.

In Figure 4 computed 3D models are shown for San Francisco
and Graz. For efficiency and large-scale capability we compute
such models in tiles of 1600×1600 pixels. Given the fused color
including super-pixel segmentation, height and classification im-
ages, the 3D model of Graz can be computed within an hour using
a subsequent processing.

7 CONCLUSION

We have proposed an efficient, purely image-driven approach for
constructing synthetic 3D models of buildings by exploiting re-
dundant color and height information. First, an efficient classifi-
cation at the pixel level has been introduced to separate buildings
from the background. A pixel-wise fusion step integrates differ-
ent modalities from multiple viewpoints into a common ortho-
graphic view. In particular, involving a super-pixel segmentation
enables a generic modeling of any building rooftop shape and re-
duces the problem of outliers and computational complexity. We
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(a) 3D Model of Graz

(b) A detail of Graz (c) 3D model of San Francisco (d) A detail of San Francisco

Figure 4: 3D building models of Graz and San Francisco. The model of Graz covers an area of about 4 sqkm, while San Francisco has
a dimension of 2500× 2500 meters. Such models can be constructed within a couple of hours on a standard PC. For San Francisco we
overlaid the 3D visualization with a triangulated DTM.

applied our approach to two different imageries and demonstrated
large-scale capability with low time consumption. Future work
will concentrate on handling levels of details and a visualization
with e.g. procedural modeling engines like CityEngine (Parish
and Müller, 2001). In addition, we will extend our modeling
pipeline to other object classes like trees. A direct comparison
to GIS data will give an improved indication of accuracy.
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