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ABSTRACT: 
 

In this paper a road network extraction algorithm for suburban areas is presented. The algorithm uses colour infrared (CIR) images 

and digital surface models (DSM). The CIR data allow a good separation between vegetation and roads. The image is first segmented 

in two steps: an initial segmentation using the normalized cuts algorithm and a subsequent grouping of the segments. Road parts are 

extracted from the segments and then first connected locally to form subgraphs, because roads are often not extracted as a whole due 

to disturbances in their appearance. Subgraphs can contain several branches, which are resolved by a subsequent optimisation. The 

optimisation uses criteria describing the relations between the road parts as well as context objects such as trees, vehicles and 

buildings. The resulting road strings, represented by their centre lines, are then connected to a road network by searching for 

junctions at the ends of the roads. Small isolated roads are eliminated because they are likely to be false extractions. Results are 

presented for three image subsets coming from two different data sets, and a quantitative analysis of the completeness and 

correctness is shown from nine image subsets from the two data sets. The results show that the approach is suitable for the extraction 

of roads in suburban areas from aerial images. 
 

 

1. INTRODUCTION 

As roads are an essential part of the infrastructure, accurate and 

up-to-date road databases are essential for many applications. 

Aerial and satellite images are often used to verify and update 

road databases manually, but it is desired to automate this 

process as far as possible in order to save time and costs. For 

open landscapes, there exist algorithms that work well enough 

for the practical application of database verification, e.g. Zhang 

(2004), Gerke & Heipke (2008), or update, e.g. Mena & 

Malpica (2005). In urban areas, the task is considerably more 

difficult because of the complex scene content. 
 

Most automatic road extraction algorithms can be coarsely 

grouped into line-based approaches and region-based 

approaches. Line-based approaches are often used for road 

extraction in open landscapes, using images of relatively low 

resolution. An example for a line-based approach is presented 

by Baumgartner et al. (1999): lines are extracted in low 

resolution images. They are combined with edges extracted in 

high resolution images, and road segments are extracted where a 

line is bordered by two edges. The road segments are grouped 

iteratively into a road network. Similar approaches are also used 

in Wiedemann & Ebner (2000) and in Gerke & Heipke (2008). 

In urban areas, the usefulness of line-based extraction methods 

is limited because of the scene complexity. The scene contains 

many other objects with linear features. Line-based approaches 

for urban areas typically use some form of additional prior 

knowledge, constraints, or data sources. Frequently the road 

network in urban areas is assumed to be a fairly regular grid of 

straight roads. Long straight lines with little grey value variation 

(Shackelford & Davis, 2003) or with few crossing lines (Youn 

& Bethel, 2004) are searched for. Hu et al. (2004) use a digital 

surface model (DSM) from LIDAR as an additional data source 

to restrict the search space for the straight lines. These 

approaches usually cannot handle curved roads well. 
 

In region-based approaches roads are modelled as elongated 

regions. Many approaches use multispectral classification as a 

first step to extract road areas or regions of interest for roads. 

For example, Zhang (2004) finds regions of interest for roads 

by a multispectral classification and by excluding high regions 

via a DSM; then parallel edges are extracted in the regions of 

interest. Roads are only extracted in the regions around database 

roads. Doucette et al. (2001) use hyperspectral data (210 

channels) to extract road regions. Afterwards road pixels are 

grouped into a network with a k-median classification. Mena 

and Malpica (2005) use three different classification methods 

for colour and texture and combine them; the extracted regions 

are then vectorised. All these methods are developed for rural or 

at most semi-urban areas. There are only few region-based 

approaches for urban areas. Hinz and Baumgartner (2003), who 

work in dense urban areas, extract edges and ribbons that are 

assembled to road lane segments within regions of interest 

determined from a DSM. The lane segments are grouped into 

road segments and finally into a road network. Zhang and 

Couloigner (2006) first perform a multispectral classification 

and then filter the regions of the road class according to shape 

criteria. Poullis and You (2010) use pixel curve information 

together with the pixel colour for a classification into road and 

non-road pixels with the graph cut algorithm. Another 

interesting region-based approach is Hu et al. (2007): footprints 

are extracted based on their shape and then tracked. Junction 

footprints are distinguished from ordinary road footprints; in 

this way, a whole network can be extracted. Post-processing is 

necessary to remove false extractions. 
 

Road extraction is often difficult if other objects such as 

buildings or trees (context objects) are close to the road, 

disrupting the appearance of the road or occluding it. Some 

approaches explicitly model context objects and include them in 

their extraction strategy. In rural areas, context objects are 

considered by Gerke and Heipke (2008), who use rows of trees 

as additional hints for roads, and by Baumgartner et al. (1999), 
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who model occlusions, shadows and disruptions of roadsides by 

driveways. There are only few examples for the explicit use of 

context objects in urban areas. Approaches incorporating height 

data use high regions implicitly as context objects to exclude 

them from the search space, e.g. Hu et al. (2004). Hinz and 

Baumgartner (2003) explicitly model cars and buildings and 

their relations to roads in order to assist the road extraction. 
 

In this paper, we present a new approach for road network 

extraction in suburban areas. In this context ‘suburban’ means 

areas with relatively low buildings and not as densely built-up 

as inner city centres. We use high resolution colour infrared 

(CIR) images and a DSM, but no prior information from road 

databases in order to be able to deal with regions where this 

information is not available. Unlike other authors we do not rely 

on specific road patterns, straight roads or the existence of road 

markings because of the variations in these respects that occur 

especially in newly built-up areas. Our approach is region-

based, but we start with a segmentation of the image, not with a 

multispectral classification. In this way, the method can be more 

easily transferred to different regions and sensors. Knowledge 

about the appearance of roads in aerial images is used already in 

the segmentation, which is based on normalized cuts (Shi & 

Malik, 2000). Context objects such as buildings, vegetation and 

vehicles are used in the road extraction process, because they 

can cause disturbances in the appearance of roads, for example 

by occlusions. The network is created by linking the extracted 

roads via junction connections; isolated short roads are 

eliminated in this process. In section 2 the road extraction 

method is described. In section 3 results are presented as well as 

an analysis of their completeness and correctness. Section 4 

gives some conclusions and suggestions for further work. 
 

 

2. METHODS 

The goal of our approach is the extraction of a road network in 

suburban areas. We follow a region-based strategy on high 

resolution aerial images and use road-specific knowledge from 

the segmentation through the whole process to the network 

linking. A DSM is used as additional information. Road 

extraction starts with an initial segmentation of the image. 

Afterwards, the segments are grouped, and road parts are 

extracted. The road parts are connected locally, and ambiguous 

connections (links from one end of a road part to more than one 

other road part) are resolved through optimisation. Afterwards, 

the locally connected road parts (road strings) are linked to a 

network by setting up junction connections. 
 

2.1 Image segmentation, grouping and road part extraction 

2.1.1 Initial segmentation: For the initial segmentation the 

normalized cuts algorithm is used (Shi & Malik, 2000), in 

which an image is represented as a graph and segmented 

considering similarities between pairs of pixels. The segment 

borders are optimised globally such that the similarity of pixels 

between segments is minimal while the similarity of pixels 

inside the same segment is maximal. A weight matrix is set up; 

the weights represent the similarities between the pixel pairs. 

The Laplacian matrix is calculated from the weight matrix, and 

eigenvectors are calculated from the Laplacian. After a 

discretisation the eigenvectors define the segmentation of the 

image: each eigenvector represents a segment. As the dimension 

of both the weight matrix and the Laplacian is (number of 

pixels)2, computing the eigenvectors is only computationally 

tractable if the weight matrix is sparse. Thus, non-zero weights 

are only assigned to pixel pairs in a local neighbourhood. It is 

an advantage of the normalised cuts method that model 

knowledge can be integrated into the segmentation via the 

definition of the weight matrix. In our application, the weights 

are based on several similarity criteria specifically designed to 

separate road areas from non-road areas. One criterion is the 

colour similarity; another is the existence and strength of edges 

between the pixels. The similarity values are combined to one 

weight wij
0 for each pixel pair i and j. More details on the 

definition of these weights can be found in Grote et al. (2007). 

More recently we have integrated a new criterion based on the 

normalised difference vegetation index (NDVI) in order to 

distinguish between pixels with vegetation and pixels without 

vegetation. A threshold is applied to the NDVI and a new 

similarity weight wij 
= wNDVI · wij

0 is determined for pixel pairs 

not belonging to the same NDVI region, with 0 < wNDVI << 1, 

so that their weights will be lowered considerably. Using the 

NDVI improves the separation between roads and vegetation 

significantly. 
 

2.1.2 Grouping: The result of the normalized cuts algorithm 

is over-segmented, which is necessary to ensure that most road 

borders in the image will be segment borders. But for road 

extraction, the segments first have to be grouped to larger 

segments. Two segments can be merged if they fulfil certain 

criteria, based on the appearance of roads. As the road surface is 

usually homogeneous at least in sections, the difference of the 

colour histograms and the edge strength along the shared border 

are used as a grouping criterion. Other criteria are the convexity 

of the merged regions, the shared border length (absolute and 

relative to the segment border lengths), and the mean height 

difference (from the DSM). The grouping is done iteratively. In 

each iteration cycle all segment pairs are evaluated according to 

the grouping criteria. In order to decide if two segments are 

candidates for merging, the values for the criteria are combined 

using fuzzy sets and a set of rules, ensuring that segments can 

be merged not only if all criteria are fulfilled but also if one or 

two are poor. For example, if at least two of the edge, colour 

and convexity criteria are very good and the third is still good, 

the criterion for the relative border length can be disregarded. 

All segment pairs that are candidates for merging are sorted by 

the sum of the normalised values for the criteria. In each 

iteration cycle, the best 10 % of segment pairs are merged. 
 

2.1.3 Road part extraction: Road parts are extracted from 

the grouped segments according to geometric and radiometric 

criteria. Geometrically, road parts are elongated and in most 

cases convex regions with a limited range of widths, so the 

elongation (ratio of squared perimeter to area), the convexity 

(ratio of segment area to area of convex hull) and the width 

constancy (ratio of mean width to standard deviation of width) 

should be high and the average width should lie within the 

range of typical road widths. The centre line for each road part 

is determined by a distance transform. The average width is 

twice the average distance between the centre line and the 

segment borders. Additionally, the road parts should have a 

minimum length, and they should lie in low regions in the 

normalised DSM. As radiometric criteria a low NDVI and a low 

standard deviation of the intensity are required, and the 

intensity should neither be very low nor very high. All criteria 

must meet certain thresholds for the region to be extracted as a 

road part, but some criteria are balanced against each other: to 

allow the extraction of curved road parts, the convexity can be 

lower than the threshold if the elongation is high. After the 

extraction, adjacent road parts are merged if they have similar 

directions and if the merged region also fulfils the criteria for 

road parts. A quality measure is calculated for each road part 
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from the elongation, width, width constancy, length and NDVI. 

More details can be found in Grote and Heipke (2008). 
 

2.2 Road subgraph generation and evaluation 

2.2.1 Road subgraph generation: Roads can rarely be 

extracted completely as one single road part because of 

disturbances in the appearance of the roads in the images, e.g. 

occlusions. Therefore, road parts (represented by the extracted 

regions and their centre lines) are linked locally into subgraphs 

before the network generation starts. A subgraph corresponds to 

a set of connected road segments and may contain competing 

hypotheses. Two road parts can be connected if they fulfil 

certain criteria regarding distance, direction difference and 

continuation smoothness. The distance, in absolute terms as 

well as relative to the lengths of both road parts, should be 

small; the direction difference (difference of main directions of 

the road parts) should also be small. The continuation 

smoothness should be high, which means that the lateral offset 

between the ends of two linked road parts should be low. 

Starting with the road part with the best quality measure from 

the previous step, the road parts are linked iteratively according 

to the criteria described above. Connections from one end of a 

road part to more than one other road part are permitted in this 

stage to preserve all possible linking hypotheses, so that several 

branches in the subgraphs can occur. If no more road parts can 

be added to the subgraph according to the criteria, the 

procedure restarts with the remaining road parts, again 

beginning with the road part that has the best quality measure. 
 

2.2.2 Road subgraph evaluation: If a subgraph has more 

than one branch, these branches are considered to be competing 

road hypotheses, all except one caused by falsely extracted road 

parts. Thus, it is necessary to determine the best connection 

hypotheses which result in a road string without branches. This 

is done in a separate step after the subgraph linking because it is 

not always possible to decide locally which one of several 

connections is the best: further connections of the involved road 

parts to other road parts should be taken into account. 
 

The optimisation of the subgraphs is performed by formulating 

the task as a linear programming problem and solving it. In 

linear programming a linear function whose variables are 

subject to linear constraints is maximised or minimised 

(Dantzig, 1963). The linear function to be optimised for the 

road subgraph evaluation is 
 

  max11 →++ nnxwxw K  (1) 
 

where n is the number of connection hypotheses in the 

subgraph. Each of the weights wi describes the quality of the 

connection hypothesis i, and each of the unknown binary 

variables xi describes whether the connection hypothesis i 

should be kept (xi = 1) or discarded (xi = 0). For each end of 

each road part, one constraint is formulated. The constraints are 

defined by the condition that an end of a road part may only be 

connected to one other road part: the sum of all xi for 

connections to one end of a road part must not be higher than 1. 

The weight wi for a connection is composed of two parts: the 

relation weight, which is determined by the geometric and 

radiometric relations between the two connected road parts, and 

the context weight, which is determined by context objects that 

can be found in the gap between the road parts. The relation 

weight is calculated as the product of weights wR(fj) determined 

from six features fj, thus j  ∈ {1...6}. Three features are already 

used in the subgraph generation: continuation smoothness, 

distance and direction difference. The other features are the 

qualities of the connected road parts, the colour difference and 

the width difference. The weight functions wR(fj) linearly map 

the feature values into the interval [0, 1] such that a high value 

indicates a good connection with respect to that feature. All 

individual weights are multiplied to obtain the total relation 

weight. 
 

The context weight wC is determined using the context objects 

vehicle, tree, vegetated area, building, shadow and asphalt 

region. They are extracted automatically, using relatively simple 

algorithms since they are only used to aid the road extraction 

(Grote et al., 2009). For the determination of the context 

weight, the connection hypothesis is transformed into a road 

part hypothesis in the gap with the average width of the 

connected road parts. The context weight is composed of the 

context relation weight wCR and the context occlusion weight 

wCO. The context relation weight wCR indicates whether context 

objects support or contradict a road part hypothesis. 14 relation 

categories and their corresponding relation values vk are defined 

based on the type of context object, the position and the 

orientation relative to the road part hypothesis. The values vk 

depend on the relevance of the relation for support or 

contradiction of a road part hypothesis. They lie in the interval 

[-0.5, 0.5], except for relations strongly contradicting the road 

part hypothesis, for which vk is set to -10. The large negative 

number indicates that the road part hypothesis is highly 

improbable, despite any supporting context objects. For 

example, the relation category building on road strongly 

contradicts a road part hypothesis, and thus is assigned the 

relation value -10. The context relation weight is calculated 

from all appearances of relation categories in a gap:  
  

   ∑∑
= =

=

r

k

a

m

kCR mvw

1 1

/    (2) 

 

where r is the number of the relation categories found in the 

gap, and a is the number of appearances for relation category k. 

The context occlusion weight wCO indicates whether the context 

objects occlude the road, causing the extraction to fail. It is 

measured by the percentage of the area of the road part 

hypothesis that is covered by the context objects vehicle, tree 

and shadow. The context weight wC is the sum of the context 

relation weight wCR and the context occlusion weight wCO. 
 

A combination of the context weight and the relation weight 

yields the total weight wi for each connection. If the context 

weight is negative (indicating a strongly contradicting relation 

such as a building on the road hypothesis) the total weight is set 

to 0 regardless of the interrelation weight. If the interrelation 

weight is 0, the connection is only kept if the context weight is 

very good. The context weight is disregarded for small gaps 

because it is not reliable for short connection hypotheses. 

Otherwise, the context weight and the interrelation weight are 

combined by calculating the mean. After calculating the 

weights, the connections to be kept are determined by solving 

Eq. 1 for the xi. Only the connections where xi = 1 are kept. The 

evaluation reduces the subgraphs to road strings without 

branches. Each road string receives a quality measure that is 

determined as the mean of the quality measures of the 

individual road parts. For more details on the definition of the 

weights refer to Grote et al. (2009). 
 

2.3 Network generation 

The last stage of the road network extraction is the connection 

of the road strings to a road network. For this purpose, the road 

strings are first converted such that they are represented by their 
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centre lines and average widths. The centre line of a road string 

is composed from the centre lines of the individual road parts 

and the connecting lines between them, and then approximated 

by a polygon approximation. The polygon approximation starts 

with a straight line between the end points of the centre line and 

iteratively adds vertices if the distance of the approximation to 

the original is too high. The average width is calculated from 

the average widths of the individual road parts. A road region is 

calculated from the centre line and the average width. The new 

centre lines are used for the connection of the road network. 
 

In the first step of the network generation, pairs of parallel roads 

that lie close together are searched for. From such a parallel 

pair, only the road that has the better quality measure is kept. 

Additionally, roads that are overlapped by other roads for a 

substantial part of their road region (defined by their centre 

lines and average widths as described above) are also deleted. In 

this way, some false extractions can be eliminated before the 

actual network linking. After that, junction connections are 

searched for among the remaining roads. At the end of each 

road a search region is defined as a semicircle whose centre is 

the end point of the road centre line and which points in the 

direction of an extension of the road. The radius of the search 

circle depends on the quality measure of the road: a road with a 

good quality measure has a large search radius. If another road 

is found inside the search region, a junction connection is 

created. Depending on whether both roads are collinear or not, 

the junction connection is created in different ways. If the roads 

are collinear, i.e. have a small direction difference, they are 

connected if the end point of the second road lies inside the 

search region of the first, and the junction connection is the 

connection of the two end points. If the roads are not collinear, 

the junction connection is constructed from the extension of the 

first road, and, if necessary, from the extension of the second 

road, i.e. the junction connection is either the connection 

between one road and the intersection point on the other road or 

it is the short polygon connecting the two end points via the 

intersection point. Additionally, intersections between two 

roads are searched for. Junction connections are verified before 

they are accepted: if several competing junction connections 

(e.g. two parallel but not collinear roads) exist at the end of a 

road, only one is kept. The junction connections are evaluated 

according to their length: shorter junction connections are 

considered more reliable. 
 

After the creation and verification of junction connections, the 

road network consists of one or more connected components. A 

connected component consists of at least one road and possibly 

junction connections. Connected components are checked for 

significance: the total length of all roads must be more than the 

total length of all junction connections, and the total length of 

the connected component (roads and junction hypotheses) must 

exceed a minimum. An exception for the last condition is made 

if at least two open ends of the connected component lie near 

the image border; then it is possible that the connected 

component belongs to a road network beyond the image border.  
 

 

3. EXPERIMENTS 

The approach was tested on two different data sets. The first 

data set consists of an orthophoto generated from a scanned CIR 

aerial image of a suburban area in Grangemouth (Scotland) with 

a resolution of 10 cm, and a DSM obtained from image 

matching with manual post processing. The second data set 

consists of orthophotos generated from digital CIR aerial 

images with a resolution of 8 cm and a DSM from LIDAR data 

from the DGPF (German Association for Photogrammetry and 

Remote Sensing) test site at Vaihingen (Germany) (Cramer and 

Haala, 2009). In our tests, we used six image subsets from the 

Grangemouth scene and three subsets from the Vaihingen 

scenes, each of them depicting suburban scenes. The roads 

extracted by our method were compared to a reference to assess 

the completeness and the correctness of the extraction results. 
 

3.1 Results 

Figures 1, 2 and 3 display the results from the subgraph 

generation for three of the subsets used for evaluation. Figures 1 

and 2 show subsets from Grangemouth, whereas Figure 3 is 

taken from the Vaihingen data set. The subgraphs consist of the 

extracted road parts and the connecting lines found during the 

subgraph generation and evaluation. The results show the 

subgraphs after the evaluation, which means the road subgraphs 

consist of only one road string each. The subgraphs are depicted 

in different colours; roads that belong to the same subgraph 

have the same colour. 
 

 
Figure 1. Accepted road subgraphs, subset 1 (Grangemouth). 

 

 
Figure 2. Accepted road subgraphs, subset 2 (Grangemouth). 

 

Large parts of the road network could be extracted as road parts. 

Areas where the extraction fails typically lie at the image border 

(most notably in subset 2), at sharp turns or where the 

appearance of the roads is disturbed by trees and shadows. False 

extractions are rare, thanks to the DSM; most of them are 

driveways or parking lots. After the subgraph generation, most 

road parts that lie on the same road are connected. In subset 2, 

two road parts were first connected across two buildings, but 

the connection was eliminated after the context object 

evaluation (white dashed line in Figure 2). One connection in 

subset 2 was missed (white dotted line in Figure 2). 
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Figures 4, 5 and 6 show the road centre lines for the three 

subsets presented in Figures 1-3 after the network generation. 

The network of subset 1 is complete; the networks of subsets 2 

and 3 show some gaps where junction connections were not 

constructed because the distance between the end points was 

too large. Subset 1 and 2 preserve an isolated false extraction 

each, because these lie close to the image border. These were 

labelled as less reliable and could as well be eliminated. The 

geometric accuracy of the road centre lines often decreases 

towards the ends of road parts. This is caused by irregularities 

in the shapes of the originally extracted road parts, which 

cannot always be overcome by the polygon approximation of 

the road strings. Junctions which were constructed by two 

extensions of road parts also often show geometric inaccuracies. 
 

 
Figure 3. Accepted road subgraphs, subset 3 (Vaihingen). 

 

 
Figure 4. Road network, subset 1 (Grangemouth). 

 

3.2 Analysis of completeness and correctness 

For a quantitative analysis of the completeness and correctness 

of the road network, the extracted road centre lines were 

compared to manually extracted centre lines. The completeness 

and correctness values are calculated as described in 

Wiedemann et al. (1998). Centre lines are compared in buffers 

of approximate road width, such that an extracted centre line 

that lies close to the roadside but inside the road is labelled as 

correct. Completeness and correctness values refer to the 

lengths of centre lines: only those parts that lie inside the 

buffers contribute to the correctness and completeness. Table 1 

contains the completeness and correctness values of the three 

subsets shown in Figures 1-6. The most complete network is 

attained in subset 1, which on the other hand has the lowest 

correctness. This lack in correctness is for the most part due to 

the extraction of driveways which are not contained in the 

reference. Another source for extractions labelled as incorrect is 

the lacking geometric accuracy; real false extractions are rare. 
 

 Completeness Correctness Quality 

subset 1 96% 88% 85% 

subset 2 79% 91% 73% 

subset 3 84% 95% 80% 

Table 1. Completeness and correctness for displayed subsets. 
 

 
Figure 5. Road network, subset 2 (Grangemouth). 

 

 
Figure 6. Road network, subset 3 (Vaihingen). 

 

Table 2 shows a summary of the quantitative analysis for all 

nine examined image subsets. The correctness is quite good. It 

is better than 90% in most of the subsets. The lowest 

correctness was 85% in a subset from the Grangemouth data set, 

where some parking areas were extracted as roads. The highest 

correctness achieved was 98%, also in a Grangemouth subset. 

The completeness is typically somewhat lower. The lower 

completeness from the Vaihingen data set is mainly caused by 

the fact that some roads were occluded by trees or at least 

affected by the shadows caused by the trees to an extent that no 

road parts could be extracted there. Whereas fragmented road 

parts can be connected via context objects by our method, the 

analysis of context objects (cf. Section 2.2.2) cannot detect new 

road parts. Therefore, the lowest completeness was 51%, in a 

subset from the Vaihingen data set. The highest completeness 

achieved was 97%, in a subset from the Grangemouth data set. 
 

 Completeness Correctness Quality 

Grangemouth 83% 92% 77% 

Vaihingen 63% 94% 61% 

Total 73% 93% 69% 

Table 2. Completeness and correctness for all subsets. 
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4. CONCLUSIONS AND OUTLOOK 

In this paper, an approach for the extraction of a road network 

in suburban areas was presented. CIR images and a DSM were 

used to first segment an image, then extract road parts and 

connect them to finally form a road network. The results 

presented in this paper show that the approach is suitable for the 

extraction of a road network in a suburban scene. From all 

examined subsets, three quarters of the road network could be 

extracted, and more than 90% of the extracted roads were 

correct. The approach was tested on two different data sets 

(Grangemouth and Vaihingen). Despite the fact that the two 

data sets had quite different sensor characteristics, we used 

identical parameters for our road extraction algorithm, with the 

exception of the NDVI threshold that had to be adapted 

manually. This suggests that the parameter set is quite robust; 

however, a further sensitivity analysis would be desirable. 

Whereas the total completeness was lower in the Vaihingen data 

set (mainly because the examined subsets there contained more 

roads covered by trees), the correctness was consistently good, 

which shows that the approach can be used for images from 

different sensors and different suburban areas. An important 

aspect to be improved is the geometric accuracy. This concerns 

several parts of the algorithm. The extraction of the centre lines 

from the irregularly shaped road parts could be improved by a 

previous orientation-dependent smoothing of the road parts. 

The junctions could be more explicitly modelled and their 

verification could be enhanced by using context objects in a 

similar way to that used for the subgraphs. When the network is 

extracted, the geometric positions of the roads could be 

improved using a snake-based algorithm. The completeness of 

the network could be improved by a search for gaps in the 

network and an evaluation of these gaps, e.g. by examining 

valleys in the DSM starting from road ends. 
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