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ABSTRACT: 
 
Our previous paper reported an experiment conducted in order to evaluate measurement methods of the center location of a circle by 
using simulated images of various sizes of circles.  The variances of the measurement errors of the centroid methods in the 
experiment appeared to oscillate on a one-pixel cycle in diameter.  This paper reports an analysis of the dependence of the 
measurement accuracy of the center location of a circle by the centroid methods on its diameter.  Two centroid methods: intensity-
weighted centroid method (WCM) and unweighted centroid method using a binary image created by thresholding (BCM) are 
investigated.  Since general expressions representing the measurement accuracy by both WCM and BCM are unable to be obtained 
analytically, the variances of the measurement errors by both methods are obtained by numerical integration.  From the results by 
the numerical integration, we conclude that sampling in digitization would cause the measurement accuracy of the center location of 
a circle by both WCM and BCM to oscillate on a one-pixel cycle in diameter.  The results show that the variance of measurement 
errors by WCM can be expressed by the combination of the inverse proportion to the cube of the diameter and the oscillation on a 
one-pixel cycle in diameter.  On the other hand, the variance of the measurement errors by BCM should approximate to the 
combination of the inverse proportion to the diameter and the oscillation on a one-pixel cycle in diameter. 
 
 

1. INTRODUCTION 

Circular targets are often utilized in photogrammetry, 
particularly in close range photogrammetry.  Since a circle is 
radially symmetrical, circular targets are well suited for 
photogrammetric use such as camera calibration and 3D 
measurement.  It is said that determination of the center of a 
circular target by digital image processing techniques is 
rotation-invariant and scale-invariant over a wide range of 
image resolutions.  The center of a circular target can be 
estimated by centroid methods, by matching with a reference 
pattern, or by analytical determination of the circle center 
(Luhmann et al., 2006). 
 
Our previous paper (Matsuoka et al., 2009) reported an 
experiment conducted in order to evaluate measurement 
methods of the center location of a circle by using simulated 
images of various sizes of circles.  We investigated two centroid 
methods: intensity-weighted centroid method and unweighted 
centroid method using a binary image created by thresholding, 
and least squares matching in the experiment.  We made the 
experiment by the Monte Carlo simulation using 1024 
simulated images of which the centers were randomly 
distributed in one pixel for each circle.  The radius of a circle 
was examined at 0.1 pixel intervals from 2 to 40 pixels.  The 
variances of measurement errors by both centroid methods in 
the experiment appeared to oscillate on a 0.5 pixel cycle in 
radius, even though the formula to estimate the center of a 
circle by each centroid method does not seem to produce such 
cyclic measurement errors.  We wondered whether the 
oscillation of the measurement accuracy by the centroid 

methods might be caused by sampling in creating a digital 
image. 
 
Bose and Amir (1990) reported the investigation of the effect of 
the shape and size of a square, a diamond, and a circle on the 
measurement accuracy of its center location by the unweighted 
centroid method using a binarized image.  They conducted the 
analysis of the measurement accuracy of the center location of a 
square and showed the standard deviations of the measurement 
errors of the center location of a square derived from the 
variances of the measurement errors of the center location of a 
line segment.  However, we confirmed that their study would be 
incomplete and the measurement accuracy of the center location 
of a square from 2 to 22 pixels in side shown in their paper is 
that when the side of a square is infinite.  Moreover, they 
executed the simulation on the measurement accuracy of the 
center location of a circle.  In their simulation, 400 binarized 
circles were placed at 0.05 pixel intervals covering a range of 
one pixel in x and y direction, and the radius of a circle was 
examined at merely 0.25 pixel intervals.  Consequently, there 
was no mention finding cyclic measurement errors of the center 
location of a circle in their paper. 
 
This paper reports an analysis of the dependence of the 
measurement accuracy of the center location of a circle by 
centroid methods on its diameter.  Two centroid methods: 
intensity-weighted centroid method and unweighted centroid 
method using a binary image created by thresholding were 
investigated. 
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2. OUTLINE OF ANALYSIS 

2.1 Process of Analysis 

Since general expressions representing the measurement 
accuracy of the center location of a circle by the investigated 
centroid methods are unable to be obtained analytically, the 
variances of the measurement errors were obtained by 
numerical integration.  We guessed that it was difficult to 
understand the characteristics of the measurement accuracy of 
the center location of a circle only by the results obtained by the 
numerical integration.  Accordingly, we conducted the analyses 
of the measurement accuracy of the center location of a line 
segment and a square as well.  We show the results of these 
analyses in advance. 
 
2.2 Assumed Digital Image 

In order to investigate the effects of sampling on the 
measurement accuracy of the center location of a figure, we 
assumed that images were sampled but not quantized in 
digitization.  The gray value gij of the pixel (i, j) of an assumed 
digital image was the area of part of a figure inside the region 
{(x, y) | i  x  (i + 1), j  y  (j + 1)}.  Therefore, 0  gij  1.  
The image was assumed free of noise. 
 
2.3 Measurement Methods 

Centroid methods are relatively simple and theoretically 
independent of the image resolution.  Furthermore, centroid 
methods do not require a template dependent on the image 
resolution.  Accordingly, centroid methods are often utilized in 
measurement of the target location in photogrammetry. 
 
We investigated two popular centroid methods.  One was the 
intensity-weighted centroid method and is called WCM for 
short from now on.  The other was the unweighted centroid 
method using a binary image created by thresholding and is 
called BCM for short from now on.  While Hattori et al. (1999) 
adopted WCM in camera calibration, Chikatsu and Anai (2001) 
adopted BCM in camera calibration. 
 
Although the standard deviation of the measurement errors by 
WCM would be theoretically proportional to the magnitude of 
image noises (Maas et al., 1993), WCM would be expected to 
achieve the more accurate measurement for ordinary images.  
On the contrary, although BCM is robust against image noises, 
BCM would be unable to produce more accurate measurement 
results for ordinary images. 
 
Both WCM and BCM estimate the center (xC, yC) of a figure by 
using the following equation (1): 
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where, wij is the weight of the pixel (i, j). 
 

The difference between WCM and BCM is the difference of wij.  
While wij = gij in WCM, wij = 1 if gij  gT and wij = 0 if gij < gT 
in BCM using the threshold gT.  We set gT at the most ordinary 
value 1/2 in the analysis. 
 
2.4 Numerical Integration 

The variances of the measurement errors of the center location 
of a circle by both WCM and BCM and a square by BCM, 
which are unable to be obtained analytically, were obtained by 
numerical integration.  Since the measurement errors of the 
center location of a circle by WCM are continuous versus the 
location of a figure, the variances of the measurement errors by 
WCM were obtained by the Simpson’s rule.  On the contrary, 
since measurement errors by BCM are not continuous versus 
the location of a figure, we obtained those variances by the 
midpoint rule.  The size of a figure (the side of a square, the 
diameter of a circle) was examined at 1/128 pixel intervals from 
2 to 20 pixels in the numerical integration. 
 
2.5 Evaluation of Measurement Accuracy 

All the averages of errors (x, y) in estimation of the center 
location of a line segment, a square, and a circle by WCM and 
BCM, which were obtained analytically or numerically, proved 
to be zero.  The fact demonstrated that both WCM and BCM 
can estimate the center location of the figure without bias. 
 
The measurement accuracy of the center location of a figure 
was measured by the variances (Vx, Vy) and V (= Vx + Vy) of (x, 
y).  Vx = Vy, V = 2Vx, because both a square and a circle are 
point symmetry.  We show a root mean squares of errors 
(RMSE) 

xV  of the center location of a line segment and V  

of the center location of a square and a circle in the figures as 
well. 
 
 

3. RESULTS AND DISCUSSION 

3.1 Line Segment 

It was assumed that a line segment with the length d was placed 
on the x-axis with its center on (s + d/2, 0) (0  s < 1). 
 
The gray value gi of the line segment is shown in Table 1.  Here 
int(x) and fra(x) are the functions to return the integer and 
fractional parts of the value x respectively. 
 

i gi 
0 (1  s) 

1  i  int(s + d)  1 1 
int(s + d) fra(s + d) 

Table 1.  Grey value gi of line segment 
 
3.1.1 WCM:  Equation (2) expresses the measurement error 
x of the center location of the line segment by WCM derived 
from gi shown in Table 1. 
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The variance Vx of x can be obtained analytically and be 
expressed by Equation (3). 
 

  22

2

11
12xV

d
 

       (3) 

 
where  is the fractional part of d, that is to say,  = fra(d). 
 
Equation (3) indicates that Vx oscillates on a one-pixel cycle in 
length and the local maxima of Vx in the one-pixel cycle are 
inversely proportional to the square of d.  Moreover it shows 
that Vx has the local minima 0 in the one-pixel cycle when  = 0.  
Figure 1 shows the RMSE 

xV  from d = 2 to d = 20. 

 

 
Figure 1.  RMSE 

xV  of line segment by WCM 

 
The result of the analysis demonstrates that sampling in 
digitization causes the measurement accuracy by WCM to 
oscillate on a one-pixel cycle in length. 
 
3.1.2 BCM:  Table 2 shows the measurement error x of the 
center location of the line segment by BCM using the threshold 
gT = 1/2 derived from gi shown in Table 1.  Here  is the 
fractional part of d. 
 

x 
10
2

   1 1
2

   

10
2

s     
 

 
2

s    
 

 

1 1
2 2

s    
 

 1
2 2

s    
 

 

1
2 2

s    
 

 

1 3
2 2

s     
 

 1
2

s    
 

 

3 1
2

s    
 

 
1

2
s    
 

 
3
2 2

s    
 

 

 = fra(d) 

Table 2.  Measurement error x of line segment by WCM 
 
The variance Vx of x can be obtained analytically and be 
expressed by Equation (4). 
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   (4) 

 
Equation (4) indicates that Vx oscillates on a one-pixel cycle in 
length and is independent of the integer part of d.  Figure 2 
shows the RMSE 

xV  from d = 2 to d = 5. 

 

 
Figure 2.  RMSE 

xV  of line segment by BCM 

 
The result of the analysis demonstrates that sampling in 
digitization causes the measurement accuracy by BCM to 
oscillate on a one-pixel cycle in length as well as by WCM. 
 
3.2 Square 

It was assumed that a square with the side d was placed as each 
side was parallel to the x-axis or y-axis with its center on (s + 
d/2, t + d/2) (0  s < 1, 0  t < 1). 
 
The gray value gij of the square is shown in Table 3.  Here 
int(x) and fra(x) are the functions to return the integer and 
fractional parts of the value x respectively. 
 

gij i = 0 1  i  (S  1) i = S 
j = 0 (1  s) (1  t) (1  t) s′ (1  t) 

1  j  (T  1) (1  s) 1 s′ 
j = T (1  s) t′ t′ s′ t′ 
S = int(s + d), T = int(t + d), s′ = fra(s + d), t′ = fra(t + d) 

Table 3.  Grey value gij of square 
 
3.2.1 WCM:  Equation (5) expresses the measurement error 
(x, y) of the center location of the square by WCM derived 
from gij shown in Table 3. 
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The variances (Vx, Vy) and V of (x, y) can be obtained 
analytically and be expressed by Equation (6). 
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where  is the fractional part of d. 
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Equation (6) indicates that V oscillates on a one-pixel cycle in 
side similarly to Vx of the line segment with the length d and the 
local maxima of V in the one-pixel cycle are inversely 
proportional to the square of d.  Moreover, it shows that V has 
the local minima 0 when  = 0 in the one-pixel cycle in the 
same way as Vx of the line segment.  Figure 3 shows the RMSE 

V  from d = 2 to d = 20. 
 

 

Figure 3.  RMSE V  of square by WCM 
 
The result of the analysis demonstrates that sampling in 
digitization causes the measurement accuracy by WCM to 
oscillate on a one-pixel cycle in side. 
 
3.2.2 BCM:  The region division of (s, t) according to the 
thresholding result of the pixel containing each vertex of the 
square is much complicated and it takes a large space to show 
the formulae of the measurement error (x, y) of the center 
location of the square by BCM using the threshold gT = 1/2.  
Furthermore, the variances (Vx, Vy) and V of (x, y) are unable 
to be obtained analytically.  Therefore, we decided to omit 
showing the formulae of (x, y) in this paper. 
 
V were obtained by numerical integration and Figure 3 shows 
the RMSE V  from d = 2 to d = 20. 
 

 

Figure 4.  RMSE V  of square by BCM 
 
The results by the numerical integration show that V oscillates 
on a one-pixel cycle in side similarly to Vx of the line segment.  
However, those show that the local maxima and local minima 
of V in the one-pixel cycle increase as d increases in contrast to 
the fact that Vx of the line segment is independent of the integer 
part of the length d.  The increases of the local maxima and 
local minima of V with an increase in d could be explained in 
terms that the thresholding result of the pixel containing each 
vertex of the square would make the measurement accuracy 
higher and the influence of these four vertex pixels would 
decrease as d increases. 
 

If  = 0, that is to say, d is an integer, V can be obtained 
analytically and be expressed by Equation (7)  The red broken 
line in Figure 4 shows V  calculated by using Equation (7). 
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When d  1, V becomes nearly independent of the integer part 
of d similarly to Vx of the line segment with the length d and 
could be approximated to Equation (8). 
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The results by the numerical integration show that sampling in 
digitization would cause the measurement accuracy by BCM to 
oscillate on a one-pixel cycle in side as well as by WCM. 
 
3.3 Circle 

It was assumed that a circle with the diameter d was placed as 
its center was located on (s + d/2, t + d/2) (0  s < 1, 0  t < 1). 
 
Table 4 shows the gray value gij of the circle when d = 2 and t = 
0.  The general expression of gij is complicated with sine and 
inverse sine functions in the same way as Table 4 shows.  
Consequently, the measurement error (x, y) by either WCM or 
BCM is expressed by the combination of sine and inverse sine 
functions, and the variances (Vx, Vy) and V of (x, y) are unable 
to be obtained analytically. 
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1 = sin1(s), 2 = sin1(1  s) 

Table 4.  Grey value gij of circle when d = 2 and t = 0 
 
3.3.1 WCM:  The variances (Vx, Vy) and V of the 
measurement errors (x, y) of the center location of the circle 
by WCM were obtained by numerical integration.  Figure 5 
shows the RMSE V  from d = 2 to d = 20. 
 

 

Figure 5.  RMSE V  of circle by WCM 
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The results by the numerical integration show that V would 
oscillate on a one-pixel cycle in diameter similarly to V of the 
square with the side d.  Those also show that V has the local 
maxima and local minima at   3/4 and 1/4 in the one-pixel 
cycle respectively.  Furthermore, those demonstrate that both 
the local maxima and local minima of V in the one-pixel cycle 
would be inversely proportional to the cube of d in contrast to 
the fact that the local maxima of V of the square with the side d 
are inversely proportional to the square of d.  On the other hand, 
those indicate that V has the nonzero local minima in the one-
pixel cycle contrary to V of the square with the side d. 
 
Here x when d = 2 and t = 0 can be obtained analytically and 
be expressed by Equation (9). 
 
  1 2 1 2

1 1 sin 2 sin 2
2 2x s    


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  

  (9) 

 
where 1 = sin1(s) and 2 = sin1(1  s).  The fact that x  0 
when s  0 and s  1/2 in Equation (9) suggests that V has the 
nonzero local minima in the one-pixel cycle. 
 
It is assumed that V can be expressed in the similar formula to 
Equations (3) and (6) with the denominator of the cube of d.  
The approximation formula obtained by the least squares 
method using 2305 sets of (d, V) at 1/128 pixel intervals from 2 
to 20 pixels in d is as follows: 
 

  22
1 4 1 4

App. 3

0.008898 0.1388 1
V

d
  

   (10) 

 
where 1/4 is the fractional part of ( + 1/4), that is to say, 1/4 = 
fra( + 1/4). 
 
The blue, red, and green lines in Figure 5 show V  by the 
numerical integration, 

App.V by the approximation, and the 

approximation errors  App.V V  respectively.  We studied 

the validity of the approximation formula (10) at 1/128 pixel 
intervals from 2 to 100 pixels in d.  The maximum absolute 
approximation error was 0.00203 pixel ( V  = 0.00536, 

App.V .= 0.00739) at d = 2 + 23/128.  An absolute 

approximation error by Equation (10) is less than 0.0004 pixel 
when d  5.  Therefore, it can be concluded that the 
approximation formula (10) would be extremely effective. 
 
The results by the numerical integration show that sampling in 
digitization would cause the measurement accuracy by WCM to 
oscillate on a one-pixel cycle in diameter. 
 
3.3.2 BCM:  The variances (Vx, Vy) and V of the 
measurement errors (x, y) of the center location of the circle 
by BCM using the threshold gT = 1/2 were obtained by 
numerical integration.  Figure 6 shows the RMSE V  from d = 
2 to d = 20. 
 

 

Figure 6.  RMSE V  of circle by BCM 
 
The results by the numerical integration show that V would 
oscillate on a one-pixel cycle in diameter similarly to V of the 
square with the side d.  Those also show that V has the local 
maxima and local minima at   1/4 and 3/4 in the one-pixel 
cycle respectively.  Additionally those demonstrate that both 
the local maxima and local minima of V in the one-pixel cycle 
might be inversely proportional to d differently from V of the 
square with the side d. 
 
While V of the square with the side d by BCM and V of the 
circle with the diameter d by WCM are smooth in the one-pixel 
cycle of d, V of the circle with the diameter d by BCM has 
small irregularities in the one-pixel cycle of d.  As we guessed 
that the irregularities would be caused by the discontinuity of 
(x, y), we studied distributions of (x, y) at several values of d.  
Figure 7 shows the distributions of 2 2

x y     at d = 3 + 

75/128 and d = 3 + 88/128 where V has large irregularities in 
the one-pixel cycle of 3  d  4.  In order to compare with the 
distributions of  of the circle show in Figure 7, Figure 8 shows 
the distributions of  of the square with the side d at the same 
values of d as Figure 7.  The larger (i, j) is, the brighter (i, j) is 
in Figures 7 and 8. 
 

(a) d = 3 + 75/128 pixels (b) d = 3 + 88/128 pixels 

Figure 7.  Measurement errors  of circle by BCM 
 

(a) d = 3 + 75/128 pixels (b) d = 3 + 88/128 pixels 

Figure 8.  Measurement errors  of square by BCM 
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The distributions of  of the circle shown in Figure 7 are more 
complicated than those of  of the square shown in Figure 8.  
Furthermore, although the difference of d between two 
distributions of  of the circle shown in Figure 7 (a) and (b) is 
merely 13/128 pixel, two distributions would have a great 
difference in contrast to two distributions of  of the square 
shown in Figure 8 (a) and (b).  We concluded that the wide 
variation of the distribution of (x, y) according to d would 
bring V having small irregularities of in the one-pixel cycle of d. 
 
It is assumed that V can be expressed in the similar formula to 
Equation (4) with the denominator of d.  The approximation 
formula obtained by the least squares method using 2305 sets of 
(d, V) at 1/128 pixel intervals from 2 to 20 pixels in d is as 
follows: 
 

  3 4 3 4
App.

0.15697 0 3706 1.
V

d
 

   (11) 

 
where 3/4 is the fractional part of ( + 3/4), that is to say, 3/4 = 
fra( + 3/4). 
 
The blue, red, and green lines in Figure 6 show V  by the 
numerical integration, 

App.V  by the approximation, and the 

approximation errors  App.V V  respectively.  We studied 

the validity of the approximation formula (11) at 1/128 pixel 
intervals from 2 to 100 pixels in d.  The maximum absolute 
approximation error was 0.03312 pixel ( V  = 0.24281, 

App.V .= 0.20969) at d = 2 + 53/128.  An absolute 

approximation error by Equation (11) is less than 0.025 pixel 
when d  5 and less than 0.018 pixel when d  10.  The 
accuracy of the approximation (11) of V by BCM is obviously 
lower than that of the approximation (10) of V by WCM.  The 
low accuracy of the approximation (11) would be caused by the 
wide variation of the distribution of (x, y) according to d as 
mentioned previously.  Nevertheless, we recognized that the 
approximation formula (11) is effective for ordinary use. 
 
The results by the numerical integration show that sampling in 
digitization should cause the measurement accuracy by BCM to 
oscillate on a one-pixel cycle in diameter as well as by WCM. 
 
 

4. CONCLUSIONS 

Although general expressions representing the measurement 
accuracy of the center location of a circle by the two centroid 
methods WCM and BCM are unable to be obtained analytically, 
we succeeded in obtaining the variances of measurement errors 
by numerical integration and the effective approximation 
formulae of those.  Additionally we conducted the analyses on 
the measurement accuracy of the center location of a line 
segment and a square by WCM and BCM. 
 
From the results of these analyses, we concluded that sampling 
in creating a digital image would cause the measurement 
accuracy of the center location of a circle by both WCM and 
BCM to oscillate on a one-pixel cycle in diameter. 
 

Moreover, we suggested that the variance of measurement 
errors by WCM is expressed by the combination of the inverse 
proportion to the cube of the diameter and the oscillation on a 
one-pixel cycle in diameter.  On the other hand, the variance of 
measurement errors by BCM should approximate to the 
combination of the inverse proportion to the diameter and the 
oscillation on a one-pixel cycle in diameter. 
 
We are planning to investigate the effect of quantization in 
creating a digital image on the measurement accuracy of the 
center location of a circle by both WCM and BCM.  
Furthermore, the influence of image noises on the measurement 
accuracy will be studied. 
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