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ABSTRACT:

The  exploitation  of linear  features  in  aerial  and  satellite  image  orientation  analysis  has  attracted  much  interest,  due  to  the 
advantages of linear  features,  as opposed to salient  points  which are traditionally used in photogrammetric procedures.  Linear 
features carry geometric information of higher quality, they can be extracted and matched more reliably, and they tend to be more 
stable during time. During the last decade, the Iterative Closest Point (ICP) algorithm has been introduced into various research 
projects, and, until recently, linear features were treated either as parametric curves, or as free-form/natural curves represented by 
cubic splines. Recent advances in the field show that ICP can handle linear features with an arbitrary mathematical representation, 
both  for  rigid  and  non-rigid  transformations  and  for  optical  and  SAR  geometry.  This  paper  presents  an  enhanced,  more 
sophisticated single stage method for the computation of the first approximation which is one of the ICP requirements. The method 
is intended for ICP-based matching for the georeferencing of SAR images, using 3D linear features. The method uses the first order 
polynomial  transformation,  as  an  approximation  to  the  arbitrary projection used  in  the  SAR images.  It  exploits  characteristic 
statistical properties of the curves in order to compute the polynomial coefficients. Various tests performed with the  Single look 
Slant range Complex image (SSC) captured by TerraSAR-X in High Resolution SpotLight mode (HS), show the superiority of the 
proposed method as opposed to the two-stage similarity first approximation used in the past.

1.INTRODUCTION

The Iterative Closest Point (ICP) algorithm (Besl and McKay, 
1992; Zhang, 1994), is a well-known and efficient tool for 3D 
point cloud registration. The ICP algorithm has also been used 
to  coarsely align  features  between  heterogeneous  geospatial 
data (Butenuth et al., 2007), to recover the exterior orientation 
of aerial  images using parametric curves (Zalmanson,  2000), 
and,  recently,  to  accomplish  the  bundle  block  adjustment 
problem  using  3D  natural  cubic  splines  as  Ground  Control 
Features  (GCFs)  (Lee,  2008).  Lee concluded  that  the  use  of 
linear  features  with  an  arbitrary mathematical  representation 
should  be investigated  in  future.  During the  same period  an 
ICP-based method was introduced for the accurate  2D global 
matching  of  free-form  linear  features,  using  rigid 
transformation  (Vassilaki  et al., 2008a).  Linear features  were 
treated as free-form curves of arbitrary geometry, which were 
represented  as  independent  collections  of consecutive  nodes, 
joined  with  straight  line  segments,  or  with  some  other 
interpolation function.

Based  on  this  method,  Vassilaki  et  al.,  (2009)  performed 
accurate  global  matching in  the  case  of projective  geometry. 
3D free-form linear features of the object space were matched 
with their  2D projection on optical and SAR images. Various 
projective  transformations  were  used,  such  as  polynomials, 
Direct  Linear  Transform  (DLT)  and  Rational  Polynomial 
Functions  (RPFs).  However,  the  method  has  inherited  ICP's 
requirement  for a good first  approximation.  The curves to be 
matched must be close enough to achieve convergence.

In (Vassilaki  et al., 2009) an automated pre-alignment (coarse 
registration) of the curves was performed, using the similarity 

transformation  to  bring  the  curves  close  to  each  other.  The 
similarity transformation parameters were computed exploiting 
physical  properties  of  the  curves,  in  combination  with 
exhaustive  search  techniques.  The  similarity  transformation 
works well in the case of space-borne optical and SAR sensors, 
because the orbits' elevations are high enough and the image 
deformations due to terrain (and  the distortions due to sensor 
for optical  images) are comparatively small.  Thus,  the planar 
coordinates  of  a  3D  feature  can  be  considered  as  a  good 
approximation  of  the  2D  projected  coordinates,  after  being 
scaled, translated and rotated appropriately. 

In the case of unprocessed SAR images this in not always the 
result,  since the geometric distortions due to the side-looking 
geometry and the nature  of the SAR sensor are more severe.  
The similarity-based first approximation is sufficient when the 
projective  transformation  is  the  first  order  polynomial.  For 
higher  order  projective  transformations  (DLT,  RPFs),  which 
are  closer to the true geometry and the  physical  model of a 
SAR sensor, a better first  approximation is needed.  Vassilaki 
et  al. (2009)  used  a  two  stage  solution.  Obviously  a better 
approximation which leads  to faster  convergence without  the 
need of two stage approximation is advantageous.

This  paper  presents  an  enhanced,  more  sophisticated  single 
stage method for the  computation of the  first  approximation. 
The  method  is  intended  for  ICP-based  matching  for  the 
georeferencing of SAR images,  using 3D linear  features.  The 
method uses the first order polynomial transformation, to bring 
the curves to be matched, close enough for the ICP to converge. 
The  coefficients  of  the  polynomial  transformation  are 
computed exploiting  characteristic statistical properties of the 
curves. 

In: Paparoditis N., Pierrot-Deseilligny M., Mallet C., Tournaire O. (Eds), IAPRS, Vol. XXXVIII, Part 3A – Saint-Mandé, France, September 1-3, 2010

85



2.PROPOSED METHODOLOGY

In this  paper,  the proposed polynomial transformation for the 
automated pre-alignment  of free-form curves is essentially an 
affine  transformation  (Equation  1).  It  is  computed  before 
performing accurate ICP-based matching, and it is better than 
the  similarity transformation,  as  it  can account  for non-rigid 
distortions:

x=aXbYc
y=dXeYf

 (1)

where x , y are  the  2D  coordinates  of  the  SAR  image  and 
X , Y  are the horizontal object coordinates. If more than three 

homologous  points  were  known,  then  it  would  be 
straightforward to compute the coefficients  of the polynomial 
transformation  using  the  Least  Square  Method  (LSM). 
However, in the case of automated free-form curves matching, 
there is no prior knowledge of the correspondences of points. 
Instead,  some  characteristic  properties  which  depend  on the 
curve as a whole must be used. If the two curves represent the 
same physical feature (for example a road centerline),  then a 
characteristic property of the SAR curve must be equal to the 
same characteristic property of the object curve:

P x1, y1,... , xn , yn=P (aX 1bY 1c , dX 1eY 1 f , ... ,
aX mbY mc , dXmeY m f )

 (2)

The  number  of  nodes n of  the  SAR  curve  is,  in  general, 
different from the number of nodes m of the object curve. In 
general,  node x i , y i does  not  correspond  to  any of the  nodes
X j ,Y j (and certainly i≠ j ). At least six or more characteristic 

properties  are  needed  to  compute  the  6  coefficients
a ,b ,c ,d , e, f of  the  polynomial  transformation,  in  order  to 

achieve robust results.

The  statistical  moments  can  be  used  as  such  characteristic 
properties of the curves. They have been used in many pattern 
recognition  problems,  since  they  transform  the  complicated 
geometry of an  object  to  practically distinct  numbers.  Some 
moments  are  insensitive  to  scale  and  rotation  (moment 
invariants  with  respect  to  projective  transformation).  In  the 
present  method  these  moments  are  not  used,  since  the 
objective is to use the moments to compute the coefficients of 
the transformation, and not to eliminate it. Moment invariants 
could  be  used  to  identify  features'  correspondence  between 
networks of free-form curves.

The physical interpretation of the moments used in this paper, 
is the average and standard deviation for the first  and second 
moment, while the third and the fourth moments indicate the 
skewness  and  the  kurtosis  of  the  variable  respectively 
(Abramowitz and Stegun, 1972; Press et al., 1992).

In  theory,  the  moments  could  be  used  to  compute  the 
parameters of any kind of transformation, such as the DLT or 
even  the  physical  model  of  the  SAR  sensor.  In  practice, 
however, this is not possible because the equations of moments 
lead  to non-linear  LSM,  which requires  initial  values  of the 
parameters. Unfortunately, no such initial values are available 
for  transformations  other  than  the  similarity,  or  the  one 
proposed in this paper.

2.1Moment Equations

The kth moment of a continuous random variable about a value 
c is defined as:

k=∫−∞

∞

x−c k f x dx (3)

where f x is  the  probability  density  function.  The  kth 
moment of a discrete random variable f j is given in Equation 
(4):

μk=
1
m
∑
j=1

m

 f j−c
k (4)

In this  paper  the  first  moments  of x and y coordinates  about 
zero are used,  which coincide with the centroid of the curve. 
The moments of the curve on the SAR image are given:

μ x1=
1
n
∑
i=1

n

x i , μ y1=
1
n
∑
i=1

n

y i
(5)

These  moments  should  be  equal  to  the  moments  of  the 
transformed coordinates of the object curve:

μ X1=
1
m
∑
j=1

m

a X jb Y jc 

μ Y1=
1
m∑j=1

m

d X jeY j f 

(6)

In  order  to  avoid  huge  numbers  which  will  degrade  the 
numerical  computations,  the  normalized  central  moments  are 
used for the higher moments:

μ xk=
k 1n∑i=1

n

x i−μ x1
k , μ yk=

k 1n∑i=1
n

 y i−μ y1
k (7)

These  moments  should  also  be  equal  to  the  corresponding 
moments of the object curve:

μXk=
k 1m∑j=1

m

a X jb Y jc−μ X1
k ,

μYk=
k 1m∑j=1

m

d X jeY j f −μ Y1 
k

(8)

Another  reason  for  the  normalization  of  the  higher  order 
moments is to express the moments in the same units (length 
units or meters).  Thus, all the equations of moments have the 
same (implicit)  weight  when  the  LSM is  applied;  numerical 
experiments  with  no,  or  other,  normalizations  led  to  poor 
results.

2.2Length Equation

Each  moment  applied  to x and y coordinates  provides  2 
equations.  Thus,  the  first  3  moment  (k=1,2,3)  provide  6 
equations  which  should  be  sufficient  to  estimate  the  6 
unknown  coefficients  of  the  polynomial  transformation,  but 
they give poor results in some cases. Taking 4 moments, or 8 
equations,  and  applying  the  LSM  leads  to  somewhat  better 
results,  but it  still  lacks an acceptable  quality.  This could be 
explained  by the fact that  the polynomial  transformation and 
the equation of moments for the x coordinates, are completely 
independent  of  the  y  coordinates.  However,  the x and y  
coordinates  are coupled as they together  define a (free form) 
curve. This coupling should be reflected to the equations. One 
way to achieve this is to exploit the fact that the correspondent 
curves have the same length (global matching):
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L x1 , y1 , ... , xn , yn=L (aX 1bY 1c , dX 1eY 1 f , ... ,
aXmbY mc ,dX meY m f )

(9)

Equation (9) can be written as:

∑
i=2

n

[x i−x i−1
2
 y i−y i−1

2
]
1/2
=

∑
j=2

m

{ [a X jb Y jc−a X j−1b Y j−1c ]
2


[d X jeY jf −d X j−1eY j−1f ]
2}1/2=

=∑
j=2

m

{[aX j−X j−1bY j−Y j−1 ]
2


[d X j−X j−1eY j−Y j−1]
2}1/2 = ∑

j=2

m

L j

(10)

Results  derived  from  various  tests  made  for  this  research, 
proved  that  the  equations  of 3  moments  combined  with  the 
equation  of  the  lengths  greatly  enhance  the  results.  If  4 
moments are used the results are slightly better, but 5 or more 
moments give no noticeable improvements.

3.LEAST SQUARES ADJUSTMENT

As there  are  at  least  7 non-linear  equations for 6 unknowns, 
the  system of equations must  be solved using the non-linear 
LSM. This implies  that  the equations must be linearized and 
initial  values for the unknown coefficients must be computed. 
The  partial  derivatives  of  Equations  (6),  (8)  and  (10) with 
respect to the unknown parameters are shown in the Appendix.

The  matrix  equation  of  the  iterative  non-linear  LSM  is
[A ][dx ]=[B] , where [A] is the design matrix which contains 

the  partial  derivatives  of each equation with  respect  to each 
unknown  parameter. [dx ] is  the  vector  of  the  adjustment 
values  of the  unknown parameters.  The  vector [dx ] which is 
computed by the first  iteration of LSM, is used to update the 
initial  values  of  the  unknown  parameters [ Xo ] :
[X1 ]=[X o][dx] .  The  procedure  is  repeated  until  conver-

gence [dx ]≈0 .

The  initial  values [X o] of  the  unknown  parameters  can  be 
found indirectly using the similarity transformation:

x=X0X cosY sin=cosΧ sinYX0  (11)

y=Y 0−X sinY cos=− sinΧ cosYY 0

where X ,0 Y 0 is  the  translation, μ is  the  scale  and φ is  the 
rotation angle. It must be noted that in this case the similarity 
transformation is not used as a first approximation to the ICP 
algorithm,  but  only  to  compute  the  initial  values  for  the 
application  of the  non-linear  LSM.  Comparing the  similarity 
and the polynomial  transformations (Equations (1) and (11)), 
the following initial values can be found:

a=cos , b= sin , c=X 0
d=− sin , e= cos , f=Y 0

(12) 

The  parameters X0, Y 0 ,, of  the  similarity  transformation 
can  be  determined  as  described  in  Vassilaki  et  al.  (2008c). 
Specifically, the translation X0, Y 0 is computed as the distance 
of the centroids of SAR curve (B) and the object curve (A):

X0=xB−x A , Y 0= yB−y A (13)

 where xA=
∫S A x s ds

∫
SA
ds

, y A=
∫S A y s ds

∫
SA
ds

  

          xB=
∫SB

x s ds

∫
SB
ds

, y B=
∫SB

y sds

∫
SB
ds

The scale μ is  computed as the ratio of the length of the two 
curves:

=
SB
SA

,   where SA=∫S A ds , SB=∫SB ds (14)

The rotation φ between the two curves is computed by trying 
all  the possible  rotation angles between 0g and 400g in  small 
steps  (for  example  3g).  For  each  angle  step  the  error  is 
computed employing the ICP algorithm (as described later) to 
find homologous points. The rotation angle with the least error 
is chosen.

4.ICP BASED MATCHING FOR FREE-FORM CURVES

The method used in this paper matches free-form curves using 
the ICP algorithm as summarized below:

1.Compute the polynomial first approximation using moments
and length equations.

2.Using  the  polynomial  first  approximation,  project  the  3D
nodes of the  object  curve,  remembering which  3D node is
projected  to  each  of  the  2D  nodes.  The  projection  is
sufficiently near to the SAR curve.

3.For  each  2D  node  of  the  projected  object  curve,  find  its
closest  point in the SAR curve, thus producing homologous
3D object curve nodes and (2D) SAR curve points.

4.Using the homologous pairs  compute the parameters  of the
arbitrary  projection  selected  (DLT,  rational  function,  etc),
using the LSM.

5.Compute the error of the projection.
6.Using the computed parameters of the transformation make a

new projection of the project curve,  remembering which 3D
nodes is projected to each of the 2D nodes.

7.Steps 3 to 6 are repeated until the error stabilizes.

From the above mentioned steps, the operation of step 3 needs 
further explanation. If the SAR curve were a straight line,  its 
closest  point  to  a  node  could  be  found  analytically,  by 
minimizing the function which gives the distance between the 
node and a point on the line. In reality though, the SAR curve 
is a free-form curve which is described by nodes linked with 
straight  line  segments,  in the simplest  case.  This  means that 
the analytical minimum may correspond to a point outside the 
line segment, and this may be true for all line segments. This 
leads  to complexity and computational  cost.  If the  nodes are 
linked with higher order curves (for example cubic splines) the 
analytical computation of the minimum will be iterative, which 
leads  to  more  complexity,  more  computational  cost  and  the 
need to ensure convergence.

To overcome the  problems,  it  is  proposed  by the  authors  to 
split  the  SAR  curve  to  a  large  number  of  consecutive 
interpolated points using the arbitrary type of curve that links 
the nodes (linear,  cubic splines, etc). The closest point of the 
SAR curve to a node is found by computing the distance of all  
the  points  to  the  node,  and  choosing the  one with  the  least 
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distance. Although this is computationally intensive, a closest 
point is sure to be found.

For this brute-force method to work the interpolation distance 
must  be  small,  which  leads  to  large  computing  power 
requirements. However these requirements are certainly within 
the capabilities of modern computers. It is also relatively easy 
to  reduce  the  requirements  using  a  divide  and  conquer 
technique described in  (Vassilaki  et al., 2008b). Furthermore, 
the  computational  burden  may  be  split  to  multiple  cores, 
multiple processors, or even multiple computers in a standard 
LAN, using state  of the  art  parallel  techniques  (e.g.  Fortran 
2008), as the computation of the closest point of each node is 
almost independent of one another ([Stamos et al., 2009]).

5.APPLICATIONS

Two  real  world  examples  were  used  in  order  to  test  the 
proposed  method.  A  high  resolution  TerraSAR-X  image, 
captured in February 2009, was used. The 3D object space data 
were  derived  from  an  old  medium  scale  topographic  map 
(1:5000),  which  was  compiled  in  the  1970s  with 
photogrammetric stereo-restitution. The TerraSAR-X image is 
a  High  Resolution  SpotLight  (HS)  image  with  single 
polarization  (HH);  it  is  a  Single  look Slant  range  Complex 
image (SSC).

Figure 1. Example 2: Map road centerline (in cyan).

Figure 2. Example 2: SAR road centerline (in orange).

For each of the two examples,  a free-form curve (common to 
the 2 data sets) was selected as a 3D linear feature. The curves 
of both examples represent road centerlines (Figures 1 and 2). 
The area of the examples is on the north east side of Athens. It 
is  mountainous,  contains  some  rural  regions  (villages  and 
small  towns)  and  is  generally  covered  by sparse  vegetation. 
During  the  recent  forty  years  it  has  been  subject  to 
considerable  development;  new  roads,  buildings,  and 
infrastructure in general.  The terrain of the area is steep and 
the average slope is about 50%. 

The  3D  object  coordinates  refer  to  the  Hellenic  Geodetic 
Reference  System  87  (HGRS87).  The  2D  SAR  image 
coordinates refer to pixels. Thus, they are completely different 
and  they  do  not  fit  on  the  same  figure.  For  illustration 
purposes,  a  thumbnail  of the  3D centerline  is  shown in  the 
same figure with its 2D projections.

The  DLT projection  transformation  was  used  to  project  the 
object coordinates to the SAR image. DLT is a first order RPF 
with common denominators for x and y. It has 11 independent 
coefficients which were computed using the road centerlines:

x =
a1 X  a2Y  a3Z  a4

c1X  c2Y  c3 Z  1

y =
b1 X  b2Y  b3 Z  b4

c1X  c2Y  c3 Z  1

(15)

Figure 3. Example 1: Polynomial first approximation (blue 
dashed) using 4 moments.

Figure 4. Example 1: Polynomial first approximation (blue 
dashed) using 4 moments and length equation.

The first approximation of the projections was computed using 
3-8 moment equations, with or without the length equation. A 
total  of 12 cases were computed.  The RMS error of the first 
approximation was computed by performing a single ICP step 
between  the  first  approximation  and  the  curve  on  the  SAR 
image.  Specifically,  the  4  moment  equations  gave  less  error 
than the 3 moment equations,  but the difference of the errors 
was  small  and  could  not  be  identified  in  the  scale  of  the 
figures.  The  5  (or  more)  moment  equations,  gave  almost 
identical RMS errors. For instance, in the first example:
• the  3  moments  and  the  length  equations  gave  RMS=44 

pixels
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• the  4  moments  and  the  length  equations  gave  RMS=36 
pixels

• the  5-8  moments  and  the  length  equations  gave  RMS  no 
better than 33 pixels.

Thus, in the following figures the results of only two cases are 
shown;  4  moment  equations,  with,  and  without,  the  length 
equation.

Figures  3-6 show the 2D SAR image coordinates.  The flight 
(azimuth) direction is the y-axis on the figures, while the range 
direction is the x-axis. The distortion due to the SAR sensor of 
the  road centerline  is  evident,  if the SAR centerline  (red)  is 
compared to the object coordinates in the thumbnail (cyan).

In the first example (Figures 3 and 4), it is clear that the rigid 
nature of the similarity transformation (green-dashed) prevents 
it from modeling the SAR geometry as well as the polynomial 
transformation (blue-dashed). This is more evident in Figure 4, 
where  the  length  equation  pushes  the  polynomial  first 
approximation (blue-dashed) very close to the SAR centerline 
(red).  In Figure 3,  the  4 moment  equations have brought the 
polynomial first approximation (blue-dashed) near to the SAR 
centerline  (red),  but  they have altered  its  length.  Thus,  it  is 
impossible for the first approximation to be close to the SAR 
centerline  all  over  its  whole  length.  The  length  equation 
remedies  this  side  effect  and  brings  the  first  approximation 
(blue-dashed)  very close to the SAR centerline  (red),  as it  is 
shown in Figure 4. For illustration purposes the convergence of 
the  ICP-based matching with  the  present  method,  versus  the 
two stage method (Vassilaki  et al., 2009), is shown in Figure 
7. The convergence with the present method appears with blue 
color. The converge with  the two stage method appears  with 
red (1st stage) and green (2nd stage) color.

Figure 5. Example 2: Polynomial first approximation (blue 
dashed) using 4 moments.

Figure 6. Example 2: Polynomial first approximation (blue 
dashed) using 4 moments and length equation.

In the second example (Figures 5 and 6), the polynomial first 
approximation (blue-dashed) is better  than the similarity first 
approximation  (green-dashed).  This  is  also confirmed by the 
fact that ICP converges with the former but not with the latter 
approximation.  In  Figure  5,  the  4  moment  equations  have 
brought the polynomial first approximation (blue-dashed) near 
to the SAR centerline (red), but they have not altered its length 
as in the first example. Consequently, as it is shown in Figure 
6,  the  length  equation  has  little  effect  in  this  example. 
Nevertheless,  it  is  needed  in  some  cases,  and  its  small 
computational cost justifies its use in all cases.

Using  the  first  approximation  computed  by 4  moments  and 
length equations, the curves on the object space and the SAR 
image  were  matched.  In  Figures  8  and  9,  the  curve  in  the 
object space is cyan, the curve in the SAR image is red,  the 
first approximation is blue-dashed, and the object space curve 
projected to the SAR image (matched curve) is black-dashed. 
The  RMS  error  of the  matched  curves  is  3.7m  in  the  first 
example (Figure 8), and 1.4 m in the second example (Figure 
9).

Figure 7. Convergence of the ICP-based matching with present 
method and the two stage method.

Figure 8. Example 1: Matched curves

Figure 9. Example 2: Matched curves

6.CONSLUSIONS

A new method for obtaining the first  approximation for ICP-
based  global  matching  of  free-form  curves  in  side-looking 
radar geometry was presented. The method uses the statistical 
moments and the length of the curves as characteristic proper-
ties. The characteristic properties depend on the whole of the 
curve  and  not  on  individual  nodes.  They  can  be  used,  as 
homologous entities, to compute the coefficients of the 1st order 
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polynomial transformation between the curves. The polynomial 
transformation brings  the  curves  close  enough,  to trigger  the 
convergence of the ICP algorithm in one stage. The method has 
been  tested  with  real  world  examples  and  shows  excellent 
results.  For  future  research,  the  2nd order  polynomial 
transformation could be used as a first approximation.
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APPENDIX A. PARTIAL DERIVATIVES
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