
A MULTI-LEVEL SPAN ANALYSIS FOR IMPROVING 3D POWER-LINE RECONSTRUCTION PERFORMANCE 

USING AIRBORNE LASER SCANNING DATA 

 

 

  Y. Jwa and G. Sohn 

 

GeoICT Lab, Earth and Space Science and Engineering Department, York University, 4700 Keele St., Toronto, ON M3J1P3, Canada 

– (yjwa, gsohn)@yorku.ca 

 

 

Commission III, WG 2 

 

 

KEY WORDS: Automation, 3D Power-Line reconstruction, Minimum Description Length, Span analysis, Pylon reconstruction, 

Airborne Laser Scanning 

 

 

ABSTRACT: 

 

In the previous research, a new method for automatic 3D power line modeling related to rapid risk management in a power line 

corridor using airborne LIDAR data was proposed. The method of piece-wise propagation of catenary curve model provided 

robustness and reliability for 3D automatic power line reconstruction. Although the previous method demonstrated its high success 

rate of power line generation, it still produced under- and over- reconstruction errors under the circumstance of high-degree of power 

line scene complexity with irregular distribution of point clouds. This research focuses on correcting incompletely reconstructed 

power line models by applying a multi-level span analysis which utilizes the benefits of topological relations within inner-span and 

across neighbouring spans. The inner-span analysis is developed based on Minimum Description Length (MDL) theorem for 

rectifying under-reconstruction over bundled wires and over-reconstruction errors of partially detected lines. The across-span alaysis 

aims to adjust the parameters of power-line models by detecting precise location of POAs (Position Of Attachment). The POA 

detection is performed by analyzing a line-connectivity of conjugated paired lines found around a power tower. The proposed 

method also demonstrates a localization and prismatic modelling of power tower by a incremental searching of voxel space. The 

localization of power towers is used for final POA detection and adjustment of power-line parameters for completing power-line 

models. 

 

 

1. INTRODUCTION 

The North American electric power distribution network 

comprises a vast critical infrastructure of interconnected grids 

and power lines. Effective management of this system requires 

timely, accurate power line mapping and monitoring. Scene 

analysis for power-line change monitoring requires precise 

detection of all key corridor objects (i.e., power-lines, towers, 

insulators, splices, switches and other components as well as the 

terrain, buildings, trees, etc.) after the northeast blackout of 

2003, especially. Maintenance of transmission line corridors 

called the Right-of-Way (ROW) in terms of rapid risk 

management focuses on supporting immediate response for 

possible dangerous situation by delivering rapid mapping 

products such as violation reports to the utility firms, which 

include hazard trees, vegetation encroachments, physical 

transmission structure information and so forth. However, since 

utility companies normally depend on a manual process with a 

few automatic steps as a primary methodology to analyze an 

urgent situation in ROW, the workflow for maintenance would 

be costly, slow, tedious and expensive. For example, Hydro One 

in Ontario sends off ground crews to the field who inspect its 

ROW manually, rarely surveying the area aerially, while other 

utilities firms like American Electric Power or FirstEnergy in 

the U.S. use airborne surveys to inspect its ROW (Ituen et. al., 

2008). In recent years, since the state-of-the-art data acquisition 

systems, especially airborne LIDAR system integrated with 

digital cameras, are introduced for rapid mapping, utility 

companies become expecting more cost-effective automated 

approaches to extract critical and meaningful deliverables from 

the data source. They also expect the whole workflow of data 

acquisition, processing, analysis, and ROW clearance to be 

completed within 72 hours for providing rapid mapping service 

uninterrupted (Neal, 2009). The data processing step in the 

conventional maintenance procedure normally spends the most 

of the time to classify features and validate the relationship 

between power line infrastructure and other features. Thus, in 

order to meet an efficient and rapid risk analysis between 

corresponding features, main researches during the last five 

years have introduced on automatic power line scene 

classification and modeling using 3D point clouds and imagery 

data acquired from up-to-date airborne remote sensors. 

According to the primary data sources used, the proposed 

techniques can be divided into two categories: 3D point-based 

approaches (Melzer and Briese (2004), Clode and Rottensteiner 

(2005), McLaughlin (2006), Vale and Gomes-Mota (2007), Jwa 

et. al. (2009)) and 2D image-based approaches (Yan et. al. 

(2007), Li et. al. (2009)). The authors proposed a new method to 

automatically reconstruct 3D models of power-lines using 

airborne LiDAR data (Jwa et al., 2009). Although the method 

showed successful modelling achievement, there are still errors 

in power-line models produced which requires a rectification 

process to improve the algorithm’s performance. This study 

proposes a multi-level span analysis for correcting under- and 

over-reconstruction errors in power-line modelling based on the 

authors’ previous achievement. The following section 

introduces the previous study related to the model-based 3D 

power line reconstruction automatically mainly based on Jwa et 

al’s work. Next, we outline post-processing step to use 

topological relations of line connectivity within each span and 

across spans. The experimental results are presented to validate 

the performance of our algorithm. Finally, the paper finishes 

with some concluding remarks and recommendations for future 

research. 
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2. 3D POWER-LINE RECONSTRUCTION 

2.1 Method Overview 

The method of automatic 3D power line reconstruction from 

LIDAR data based on piece-wise propagation of catenary curve 

model was presented in the previous study (Jwa et. al., 2009). A 

research outcome achieved by the proposed method can be 

summarized as follows; (1) using centenary line propagation 

model might be robust to relatively high-involvement of 

vegetations and power-lines belonging to the other towers; (2) a 

priori power line scene knowledge (i.e. pylon’s position, line 

configuration subject to specific voltage and line analysis across 

spans) is not required in the process of power line 

reconstruction; (3) detection and modeling process of power 

line points are integrated in order to increase the efficiency of 

workflow without power line scene classification in advance.  

The proposed model-based approach uses different types of 

features at different levels of perceptual grouping process. At 

the first level, the method starts to detect power-line candidate 

points from unlabelled LiDAR point of clouds which are 

potentially located on wires. The detection of power-line 

candidate points are accomplished by a hybrid decision filter 

integrating properties obtained by Hough Transformation, 

Eigen-value analysis and point density ratio. The next step is to 

attribute detected candidate points with line orientation using a 

compass filter. Based on the orientation similarity, candidate 

points are grouped into a number of line primitives based on a 

statistical outlier testing. An initial estimation of the power-line 

model parameters represented with catenary curve is done by 

non-linear least-square adjustment. This initial model is 

propagated to some extent based on stochastic constrained least 

square adjustment. Rather propagating one model, a multiple 

numbers of hypothetical models are predicted, each of which 

goodness-of-fit is measure. A final prediction is determined 

with give the minimum closeness between the model and 

LiDAR observations. Thus, the parameters of the power-line 

model are updated from the initialization result. This prediction 

and update process continue till an adjustment solution is 

converged within expected modelling accuracy.  Figure 1 

illustrates a schematic diagram describing the proposed 

incremental propagation of catenary line models. More detail 

description was provided in Jwa et al’s work (2009). 
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Figure 1. Illustration of piecewise propagation of catenary 

power-line model (Jwa et al, 2009).  

 

2.2 Limitations 

Although the proposed reconstruction method demonstrated its 

success, there are still errors left to be rectified. Figure 2 shows 

main limitations of the proposed automatic approach due to 

power line scene complexity and irregularity of data distribution, 

which result in under- and over- power line reconstruction. 

Figure 2(a) shows a problematic scene where power-line is 

captured by airborne LiDAR with low point density and large 

data gap due to occlusion effect. This problem often occurs over 

low-voltage power-lines (e.g., 13Kv conductors) or where many 

power-lines with different voltages run over together causing 

heavy occlusions. Under this circumstance, the reconstruction 

suffers difficulties of under-reconstruction problem where line 

modelling is early terminated which produces wrong 

localization of line ends. On the other hand, the method causes 

over-reconstruction problems in a situation where lines are too 

closely located each other to split them with separate models. 

Figure 2(b) illustrates this type of errors which often occurs 

over the bundled wires that are physically separated within less 

than 1.5 feet. As the point clouds are also distributed with 

random errors (i.e. normally more than 0.5 feet 3D accuracy), 

the distance between lines in the bundle becomes closer than the 

gap of real lines. Over-detected power lines on the same power 

line due to irregularity of data distribution and data gap are 

illustrated in Figure 2(c). Figure 2(d) presents problematic 

situation where a power-line is completely missed during the 

reconstruction process since power-line candidate points are not 

able to be detected sufficiently for modelling purpose due to 

heavy involvement of vegetation.  
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Figure 2. Examples of under- and over-reconstruction errors of 

automatic power-line reconstruction method proposed by Jwa et 

al. (2009). 

 

In order to address these errors of the power-line reconstruction 

technique, we present herein a post-processing algorithm to 

rectify the under- and over-reconstruction errors of power-line 

models. The proposed post-processing is comprised of two main 

steps; inner- and across-span analysis. Under- and over-

reconstruction errors shown in Figure 2(b) and (c) respectively 

are corrected by splitting and merging power-line models per 

one span (“inner-span analysis). This is accomplished by 

applying well-known MDL (Minimum Description Length) 

process. In addition, partially detected line shown in Figure 2(a) 

is rectified by extracting POA (Point of Attachment) which is 

accomplished by analysing a line-connectivity of conjugate 

paired lines across two spans. Errors in Figure 2(d) might be 

hard to recover it without manual processing due to significant 

deficiency of modelling cues. A prior knowledge to support the 

presence of missing line should be provided in advance or 

obtained during the post-processing procedure.  A post-

processing for handling errors in Figure 2(d) is not discussed 

here. 
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3. POST-PROCESSING OF 3D POWER-LINE MODEL 

Post-processing with respect to power line reconstruction is 

defined as an additional step to improve robustness and 

reliability of the automation of the power-line modeling. We 

achieved a successful outcome by applying the automated 

technique of 3D power-line reconstruction discussed in Section 

2. However, the result still produced errors which cause 

incompleteness of power-line modelling which requires a post-

processing process. Figure 3 illustrates the overall workflow of 

the previously proposed power-line reconstruction method and 

currently studied post-processing technique. After extracting 3D 

power line models automatically, post-processing is applied for 

under- and over- reconstructed power line models. The 

proposed post-processing framework is comprised of main three 

steps: 1) inner-span analysis; 2) across-span analysis; 3) power 

tower modelling; 4) POA detection. The first step aims to 

rectify under-reconstruction and over-reconstruction errors by 

applying MDL (Minimum Description Length) principle to each 

power-line localized within one span. The MDL plays a role as 

an optimal scoring function to determine merging or splitting 

power-lines reconstructed in Section 2. The second step is to 

readjust power-line parameters by analyzing power-line 

connectivity between two consecutively connected spans. This 

process determines paired power-lines across a power tower and 

localizes the intersecting position of two lines, which is called 

as POA (Point of Attachment). By knowing the POA position, 

we are able to further adjust the parameters of power-lines 

which reconstruction are early terminated during the 

reconstruction process so their ends are far from the power 

tower. The last two steps aim to reconstruct the model of the 

power towers, with which further detection of POA and thus 

adjustment of the power-lines that are missed during the 

previous steps is achieved  
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Figure 3. The overall procedure of the proposed 3D power line 

reconstruction and post-processing method. 

 

3.1 Inner-span Analysis 

The proposed inner-span analysis is similar to a splitting-and-

merging algorithm. In other words, the inner-span analysis aims 

to merge over-reconstructed lines into one single power-line or 

split under-reconstructed lines into two or more numbers of 

lines. Through our extensive visual inspection over 

experimental results, the over-reconstructed errors usually occur 

where LiDAR point density and spacing are very irregular so 

that lines are usually segmented into multiple line segments. 

However, the under-reconstructed errors can be found where 

power-lines are very closely located each other (e.g., bundled 

wires) so that two lines are modelled with one line. To resolve 

this problem, we adopt the MDL theorem for testing multiple 

hypotheses of merging and splitting over power-line models 

questioned. Li (1992) presented 2D shape description approach 

including straight and curved lines based on MDL criterion 

which can drive an optimal description between a given data set 

and generated models. Based on the theory of MDL, we select 

several terms as shown in Equation 1, which is from the MDL 

equation suggested by Li, to find the optimal 3D power line 

model in alternative hypotheses derived from a given data set. 

For each hypothesis, the description length, DL, is determined 

using goodness-of-fit criteria between the hypothesized model 

and its corresponding data set. Given a power line model,  , 

and the observation, D, DL is defined as 
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Where, )|( DL is description length of data on model )( , 

)(L is description length of the parameters of model, 
gL is 

error between observation and model which is with Gaussian 

distribution, m and n is the number of parameter and 

observation,  is resolution to extract each line, R is range of 

data domain, l is length of power line. 

 

The verification of power line model based on MDL is 

performed by generating two possible hypotheses: null 

hypothesis, 
0H , and alternative hypothesis, 

aH . In the given 

data domain, 
0H indicates a current power line model and 

aH  

means power line model regenerated by merging or splitting the 

current power line models. Finally, the hypothesis with 

minimum DL is to be chosen as the best approximated power 

line model. Note that the merge and split step is terminated if 

null hypothesis is selected as the optimal model in global data 

domain as depicted in Equation 2. 

 

}min{arg* DLH   

      }{H  
(2) 

 

Figure 4 illustrates an example for determining an optimal 

power line model after generating 
aH based on the theory of 

MDL in the local data domain. Figure 4(a) and (b) illustrate an 

over-reconstruction error which is corrected by the proposed 

method. DL is measured with a null hypothesis of 
0H . After 

alternative merging hypothesis of 
aH  is produced with given 

data, alternative DL is measured and compared to the null 

hypothesis case. An optimal hypothesis is determined for 

merging over-reconstructed lines in Figure 4(b). Figure 4(c) and 

(d) show an under-reconstruction error. Similarly to the over-

reconstruction error correction, a number of alternative 

hypotheses are produced by changing the numbers of power-

lines models applied to the given datasets. DLs are computed 

per each hypothesis and an optimal one is selected which give 

the minimum DL value. Figure 4(d) shows that the MDL 

selected splitting over the datasets with two power-line models 

as an optimal decision. That is, the closeness between model 

and data lead to reduce the total DL despite increase of the 

number of model parameters for representation of power lines.
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Figure 4. Illustration of the inner-span analysis for rectifying 

under- and over-reconstruction errors. 

 

3.2 Across-span Analysis 

The across-span analysis is a procedure to rectify errors in 

power-line reconstruction caused especially when the model 

solution is early converged, called as “partial reconstruction 

errors” in current study. This error is special type of under-

reconstruction errors. Figure 5 illustrated two exemplary errors 

caused when paired line ends across spans are not linked each 

other. As a valuable by-product obtained by this process, 

precise POA (Point of Attachments) can be obtained. A POA is 

defined as a 3D point to which two consecutive power-line pairs 

is connected each other around the pylon. Conducting insulators 

are usually attached to the POA. It is critical to know precise 

POAs in the power-line network for many applications 

including derivation of current workload and simulating line-

safety. Note that this process does not aim to find POAs for 

“dead end” lines where transmission lines between two spans 

are not directly linked thorough POA, but insulating guide-lines.  

As the first step of the process, all power-lines per a span were 

virtually extended to half of line lengths from each of line 

endings. Then, a 3D line connectivity analysis is performed to 

find conjugate line pairs by investigating closeness between two 

lines. 1-to-N analysis is done for finding a possible candidate of 

conjugate line pair pairs which provides an intersecting position 

and minimum distance deviation. A final decision is made to 

accept a paired line candidate as a real intersecting line if the 

deviation is less than two times of line modelling accuracy,

M ,which is derived from M  },{ 21 Max , where 
1 and 

2  are the goodness of fit between  a line model and 

corresponding LiDAR observation used. Once all paired lines 

are obtained, the position of the POA can be calculated by 

intersecting two paired lines by minimising distance between 

two lines and considering average directions of all paired 

power-lines of the spans considered using least-square 

adjustment. After all the POAs are detected, the errors of 

partially reconstructed lines are rectified so that its length and 

position of the line end are corrected. Figure 5 illustrates the 

proposed POA detection procedure where a partially 

reconstructed lines shown in Figure 5(c) due to a large gaps of 

LiDAR point acquisition (i.e., no point acquired over 50 feet) is 

adjusted by the across-span analysis for POA detection. The 

result of POA detection is shown in Figure 5(d). 
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Figure 5. POAs detection and complete reconstruction of 

partially extracted lines based on conjugate pair lines’ analysis. 

 

3.3 Power Tower Modelling 

This process is to localize and model a power tower, often 

called as Pylon with a cubic-like prismatic model. After the 

POA detection process is finished, a small cubic searching 

space is produced from a detected POA as a seed point for 

reconstructing the model of power tower. This cubic searching 

element incrementally grows if either unlabelled point or 

another POA is found within the cubic space. This cubic 

growing process continues until no unlabelled point or POA 

cannot be found. Afterward, a final cubic model is reconstructed 

to encompass entire individual cubic elements and then final 

model parameter is adjusted to minimize its volume, but with 

maximal member points. Figure 6(b) depicts the example of 

tower model extracted as prismatic model based on the method 

of incremental cubic extension from a real data set. Point clouds 

which are unclassified and located within the tower model will 

be classified as the tower class. Note that this tower detection is 

developed based on the assumption that POAs are usually 

located around at the power tower.  

 

 

Cubic

Extension

Seed Position

Prismatic 

Tower Model

(POA)

 

Tower 

Model

POAs

 
(a) (b) 

 

Figure 6. Tower detection based on the method of incremental 

cubic extension. 

 

3.4 POA Detection Using Power Tower Model 

Although the most of POAs are detected by the across-span 

analysis, there are still some erroneous lines left as being 

partially reconstructed so that two consecutive lines are not 

intersected at a specific position. This error occurs to the cases 

where: 1) in reality there is no paired line so the across-span 

analysis fails to find conjugate pairs; 2) pre-defined threshold 

for the across-span analysis is not valid to some power-line 

scenes. For resolving the aforementioned problems, the 

reconstructed tower model is used for finding POAs which 

leads to the adjustment of the power-line parameters. We first 

estimate parameters of rotation matrix to adjust a tower model 

to the dominant direction of power-lines belonging to the model. 

An averaged direction of the member power-lines is calculated 

for the rotation parameter adjustment. The tower model is now 

rotated by achieving a maximal orthogonality to the member 

power-lines. The next step is to produce a 2D plane passing 

through the centre of the tower model which normal direction is 

parallel to the averaged power-line direction. The positions of 
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POAs that are missed in the previous steps are then computed 

by intersecting power-lines with no POA with the 2D centre 

plane of the tower model. Figure 7(a) and (b) illustrate POA 

detection procedure using a power tower model. 

Figure 7(c) and (d) show the result of updating power-line 

parameters of an over-extended line model by the proposed 

POA detection method.  
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Figure 7. A schematic diagram to describe the proposed POA 

detection method using the tower model: before applying POA 

detection (a) and (c); after applying POA detection (b) and (d).  

 

 

4. EXPERIMENTAL RESULT 

We demonstrate the performance of proposed post-processing 

approach over the urban data set which was used in the previous 

study (Jwa et. al., 2009). The test data set obtained from Riegl 

Q560 covers an area of about 2094(length) × 385(width) ft2.  

The average point density and average point distance on power 

lines are 5 (points/ft2) and 1.03 feet respectively. Figure 8 and 

Table 1 illustrate the results of 3D power line reconstruction 

before and after the proposed post-processing method including 

POA detection and tower extraction. The experiment results 

indicate that 148 power-lines out of total 157 lines in 9 spans 

were successfully reconstructed which corresponds to 94.3% 

success rate. A final reconstruction result obtained without the 

post-processing is shown with black-coloured lines in Figure 

8(c). We observed that there is one partially detected line model 

and 8 under-reconstructed power-line models in the low voltage 

power-lines which have high average point distance (i.e. > three 

times compared to the total average point distance). In the result, 

there are a number of bundled power-lines which are closely 

located to each other, less than 1.3 ft as shown in Figure 2 (a) 

and (b). This result was obtained by applying our previous line 

modeling method to the datasets.  

The proposed post-processing algorithm was applied to the 

results of Figure 8(c). A final result after the post-processing is 

applied can be shown with red-coloured lines in Figure 8(d) and 

Figure 8(e). These two figures present post-processing results 

for two different power-line networks. As shown in Table 1, 

after performing post-processing, partial and under-

reconstructed power line models are compensated successively. 

All the modelling errors were eliminated by the proposed post-

processing method. In addition, we manually counted 125 

POAs and 21 towers located toward main direction in the data 

set. The proposed methods for POA detection and tower 

extraction achieved high success rate of 99.2% and 85.7% 

respectively. Under- and over-detection of POA and tower 

mainly occur over the low-voltage power-lines which are 

usually captured by airborne LiDAR with low point density and 

many lines without having their conjugate pairs. A line with no 

its conjugate line pair leads to under-detection errors to find 

POA and tower. This is happened because the presence of POA 

is critical to extract towers and thus adjustment of POA position. 

We also found that the proposed post-processing still has a 

problem to over-detect towers, particularly over the low-voltage 

lines. In general, it is hard to localize the tower region well 

enough if sufficient amount of LiDAR points are not hit on the 

towers which leads to multiple-segmentation of one towers by 

the proposed method. This is the case for the low-voltage region.  
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Figure 8. Raw LiDAR data set in (a) 3D and (b) 2D; 3D power-

line modelling result in (c); post-processing results in (d) and (e). 

 

Table 1. Experimental results of 3D power-line reconstruction; 

(a) before post-processing; (b) after post-processing; (c) first 

POA detection, (d) tower extraction, and (e) second POA 

detection 

 

(a) Before post-processing 

 Complete 

Detection 

Partial 

Detection 

Under 

Detection 

Number 148 1 8 

Rate (%) 94.3 0.6 5.1 

(b) After post-processing 

Number 157 0 0 

Rate (%) 100 0 0 

(c) First POA detection 

 Complete 

Detection 

Under-

detected 

Over-

detected 

Number 117 8 0 

Rate (%) 93.6 6.4 0.0 

(d) Tower extraction 

Number 18 1 2 

Rate (%) 85.7 4.7 9.6 

(e) Second POA detection 

Number 124 1 0 

Rate (%) 99.2 0.8 0.0 
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5. CONCLUSIONS 

This paper proposed a post-processing method to automatically 

rectify under- and over-reconstruction errors in 3D power-line 

modeling. The proposed approach started with power line 

models reconstructed by automatic approach using catenary 

curve equation. Then, an inner-span line analysis was performed 

based on the MDL framework which rectifies under- and over-

reconstructed power-line models by achieving an optimal 

balance between hypothesized model complexity and goodness 

of fit of the models hypothesized to observations. We also 

proposed the across-span analysis for re-adjusting power-line 

model parameters by detecting POAs and towers. Final results 

obtained by the proposed post-processing method showed that:  

(a) Under- and over-reconstructed power line models including 

partially detected lines could be corrected completely, 100% 

success rate in the test area. (b) The parameters of power line 

models are able to be updated so that more accurate information 

of line length and the positions of POA and sag point can be 

achieved. (c) Tower points can be classified by localizing tower 

with the prismatic models. It is critical to know precise 

measurement of power-line structure (length, numbers of 

power-lines, gaps between lines, sag position, POA and so forth) 

in order to keep up high-quality maintenance of power-line 

safety to unforeseen risk factors. The researches discussed here 

is that an automation of 3D power-line reconstruction can be 

achievable using high-density LiDAR data. However, in order 

to apply the proposed algorithm for practical operations, more 

extensive throughput test to evaluate the efficiency (cost-

saving), reliability (accuracy compared to the ground truth) and 

robustness (testing over more diversified voltage types and 

structures) should be required as our future research direction.  
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