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ABSTRACT:  
 
In this work, we focus on the mainly detection of buildings and their roofs’ outlines and also trees. As input data, we use LIDAR 
data and multispectral aerial images of two different test sites. One is from Zurich airport and the other one is from Vaihingen region 
close to Stuttgart. Quality assessment has been performed by comparing our results with existing reference data which are generated 
using commercial photogrammetric software and manual stereo measurement. 
 

1. INTRODUCTION 

In this work, we focus on the extraction of man-made 
structures, especially buildings and secondly trees by 
combining information from aerial images and Lidar data. We 
applied four different methods on two different datasets located 
at first Zurich Airport, Switzerland and secondly Vaihingen 
region close to Stuttgart. The first method is based on 
DSM/DTM comparison in combination with NDVI analysis; in 
case of lacking DTM, a slope based morphological filter has 
been used to detect all the off-terrain objects which include 
buildings, trees and other objects. The second one is a 
supervised multispectral classification refined with height 
information from Lidar data. The third approach uses voids in 
Lidar DTM and NDVI classification, while the last method is 
based on the analysis of the density of the raw Lidar DSM data. 
The accuracy of the building extraction process was evaluated 
by comparing the results with reference data and computing the 
percentage of data correctly extracted and the percentage of 
missing reference data. The improvement of the result has been 
performed by taking into account the advantages and 
disadvantages of each method. For extraction of 3D surfaces, a 
RANSAC method has been applied to find all planar surfaces 
which belong to the roof surfaces. Quality assessment has been 
performed by comparing our results with existing vector 
reference data. 
 

2. PREVIOUS WORK  

Aerial images and Lidar data are common sources for object 
extraction. In digital photogrammetry, features of objects are 
extracted using 3D information from image matching or 
DSM/DTM data, spectral, textural and other information 
sources. Pixel-based classification methods, either supervised or 
unsupervised, are mostly used for land-cover and man-made 
structure detections. For the classical methods e.g. minimum-
distance, parallelepiped and maximum likelihood, detailed 
information can be found in (Lillesand and Kiefer, 1994). 
 
In general, the major difficulty in using aerial images is the 
complexity and variability of objects and their form, especially 
in suburban and densely populated urban regions (Weidner and 
Foerstner, 1995). 
Regarding object extraction from LIDAR data, it has been 
defined as a filtering problem of the DSM (raw or interpolated) 

data by several researches. Some algorithms use raw data (Sohn 
and Dowman, 2002; Roggero, 2001; Axelsson, 2001; 
Vosselman and Maas, 2001; Sithole, 2001; Pfeifer et al., 1998), 
while others use interpolated data (Elmqvist et al., 2001; 
Brovelli et al., 2002; Wack and Wimmer, 2002).  
 
To detect roof structures, surface segmentation techniques are 
needed. The mostly used methods are based on region growing 
(Rabbani et al., 2006; Tovari , 2006; Gorte 2002), model fitting 
such as Hough Transform (Maas and Vosselman, 1999; 
Vosselman, 2004),  RANSAC method (Schnabel et.al, 2007a; 
Schnabel et al., 2007 b; Bretar and Roux, 2005; Tarsha Kurdi 
2007). On the other hand, Sapkota (2008) segments the colored 
point cloud data which have color information using Hough 
transform.  
 
In general, in order to overcome the limitations of image-based 
and Lidar-based techniques, it is of advantage to use a 
combination of these techniques. Sohn and Dowman (2007) 
used IKONOS images to find building regions before extracting 
them from Lidar data. Straub (2004) combines information 
from infrared imagery and Lidar data to extract trees. 
Rottensteiner et al. (2005) evaluate a method for building 
detection by the Dempster-Shafer fusion of Lidar data and 
multispectral images. They improved the overall correctness of 
the results by fusing Lidar data with multispectral images.  
 
Few commercial software packages allow automatic terrain, 
tree and building extraction from Lidar data. In TerraSCAN, a 
TIN is generated and progressively densified, the extraction of 
off-terrain points is performed using the angles between points 
to make the TIN facets and the other parameter is the distance 
to nearby facet nodes (Axelsson, 2001). In SCOP++, robust 
methods operate on the original data points and allow the 
simultaneous elimination of off-terrain points and terrain 
surface modelling (Kraus and Pfeifer, 1998).  
 
In summary, most approaches try to find objects using single 
methods. In our strategy, we use different methods using all 
available data with focus on improving the results of one 
method by exploiting the results from the remaining ones.  
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3. INPUT DATA AND PREPROCESSING 

We have two different datasets. One is from Zurich Airport 
area, the other one is from Vaihingen region close to Stuttgart. 
 
3.1 Zurich Airport 

For the Zurich Airport area, RGB and CIR images, LIDAR raw 
and interpolated DSM and DTM data, and 3D vector data are 
available. Vector data has only been used for quality assessment 
purposes. The 3D vector data describe buildings (including 
airport parking buildings and airport trestlework structures) 
with 20 cm vertical accuracy. It has been produced semi-
automatically from stereo aerial images using the commercial 
software CC-Modeler (Gruen and Wang, 1998). 
 
Analogue RGB and CIR images were acquired with the 
characteristics given in Table 1. 
 

Image Data  RGB  CIR  
Acquisition 
Date  

July 2002  July 2002  

Ground 
Sampling 
Distance 
(GSD) (cm)  

14.5 cm  8.7 cm  

Lidar Data  DSM  DTM  
Provider  Swisstopo  Swisstopo  
Type  Raw & grid  Raw & grid  
Raw point 
density & 
Grid Spacing  

1 pt / 2 sqm & 
2m  

1 pt / 2 sqm & 2m  

Acquisition 
Date  

Feb. 2002  Feb. 2002  

Vector data  Only for validation purposes  
Provider  Unique Co.  
Horizontal / Vertical 
Accuracy (2 sigma)  

20 / 25 cm  

Table 1. Input data characteristics (Zurich Airport). 
 
The images have been first radiometrically preprocessed (noise 
reduction and contrast enhancement), then the DSM was 
generated with the software package SAT-PP, developed at the 
Institute of Geodesy and Photogrammetry, ETH Zurich (Zhang, 
2005).The NIR band was selected for DSM generation. The 
final DSM was generated with 50cm grid spacing. Using this 
DSM, CIR orthoimages were produced with 12.5cm ground 
sampling distance.  
 
Lidar raw data (DTM-AV and DSM-AV) have been acquired 
with “leaves off” in February 2002 by Swisstopo. The DSM-
AV point cloud includes all Lidar points (including points on 
terrain, tree branches etc.) and has an average point density of 1 
point per 2 m2. The DTM-AV data includes only points on the 
ground, so it has holes at building positions and less density at 
tree positions. The height accuracy (one standard deviation) is 
0.5 m generally, and 1.5 m at trees and buildings. The 2m 
spacing grid DSM and DTM were generated by Swisstopo with 
the Terrascan commercial software from the original raw data. 
 
3.2 Vaihingen Region  

For the Vaihingen area, the dataset have been provided from 
DGPF camera evaluation project. We have used ADS-40 digital 
images, LIDAR raw DSM data and an image based DSM 
(Wolff, 2009) which has been generated using DMC images 
with SAT-PP and a grid spacing is 20 cm. In this dataset, a 

DTM data is not available and the reference vector data has 
been generated with 2D manual measurement using 
orthophoto..  Input data characteristics can be seen in Table 2. 
. 

Data GSD Acquisition Date 

DMC  8 cm. 24.07.2008  

ADS-40 8cm. 06.08.2008 

LIDAR 5 pts / m2 21.08.2008 
Table 2. Input data characteristics (Vaihingen region). 
 

4. BUILDING DETECTION 

Four different approaches have been applied to exploit the 
information contained in the image and Lidar data, extract 
different objects and finally buildings. The first method is based 
on DSM/DTM comparison in combination with NDVI 
(Normalised Difference Vegetation Index) analysis for building 
detection. For Vaihingen area, while there is no available DTM 
data, a morphological filtering approach (Zhang, et.al. 2003) 
has been applied to detect off-terrain objects. The second 
approach is a supervised multispectral classification refined 
with height information from Lidar data and image-based DSM. 
The third method uses voids in Lidar DTM and NDVI 
classification. The last method is based on the analysis of the 
density of the raw DSM Lidar data. The accuracy of the 
building detection process was evaluated by comparing the 
results with the reference data and computing the percentage of 
data correctly extracted and the percentage of reference data not 
extracted.  
 
4.1 DSM/DTM and NDVI (Method 1) 

The above-ground objects have been detected by subtracting the 
DTM from the DSM, the blobs include mainly buildings and 
trees. As DSM, the surface model generated by SAT-PP and as 
DTM the Lidar DTM grid were used. A standard unsupervised 
(ISODATA) classification of the CIR orthoimage was used to 
compute an NDVI image, containing vegetation (mainly trees 
and grass). The intersection of the nDSM with NDVI 
corresponds to trees. By subtracting the resulting trees from the 
blobs, the buildings are obtained. 83% of building class pixels 
were correctly classified, while 7% of the reference data were 
not detected. In the final result, some non-building objects are 
remaining such as aircrafts and vehicles. The extracted 
buildings are shown in Figure 1. 

    
Figure 1. Building detection result from method 1. (Left: airport 
buildings, Right: residential area). 
 
4.1.1 Case of Lacking input DTM 
In our second dataset, there is no input DTM available, and so a 
filtering approach has been needed for the DSM. A progressive 
morphological filtering method has been used for blob 
detection. For the filtering approach, an input interpolated 
image based DSM data has been used. Then a morphological 
filter has been used to detect the off-terrain objects (Fig. 2) 
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which include buildings, trees and other objects. We perform an 
opening (erosion + dilation) operation on the interpolated 
surface to derive a secondary surface. The elevation difference 
of a grid between the previous and current surface is compared 
to a threshold to determine if the grid is a non-ground 
measurement. The height difference threshold (dh) has been 
computed using the predefined maximum terrain slope(s). The 
size of filtering windows (w) has been increased and the 
derived surface has been used as an input for the next operation 
(Zhang  et al., 2003).  
.  
 
 
dh is the height difference threshold 
dh0 is the initial elevation difference threshold which 
approximates the error of DSM measurements (0.2-0.3 m), 
dhmax is the maximum elevation difference threshold (m) 
c is the grid size (m) 
s is the predefined maximum terrain slope (percent slope) 
wi is the filtering window size (in number of cells) at ith 
iteration.  

 
Figure 2.The detected off-terrain objects (mainly buildings and trees 
after filtering 
 
After detection of the blobs for Vaihingen dataset, vegetated 
regions have been detected by unsupervised classification of 
NDVI image. After removal of tree regions from the blobs, the 
buildings have been detected (Fig. 3). After the quality analysis 
with the reference data, the correctness has been calculated as 
82% and the ommision error is 13%. The errors occur mainly 
by the shadow regions on vegetated areas, and on the other the 
reference data may contain errors since it has been generated 
using ortoimage by manual measurements. 

 
Figure 3. The detected buildings (purple) after elimination of the trees 
 
4.2 Supervised classification and use of the blobs (Method 
2) 

The basic idea of this method is to combine the results from a 
supervised classification with the height information contained 
in the blobs. Supervised classification methods are preferable to 
unsupervised ones, because the target of the project is to detect 

well-defined standard target classes (airport buildings, bare 
ground, grass, trees, roads, residential houses, shadows etc.), 
present at airport sites. The training areas were selected 
manually using AOI (Area of Interest) tools within the ERDAS 
Imagine commercial software (Kloer, 1994). Among the 
available image bands for classification (R, G and B from 
colour images and NIR, R and G bands from CIR images), only 
the bands from CIR images were used due to their better 
resolution and the presence of NIR channel (indispensable for 
vegetation detection). In addition, new synthetic bands were 
generated from the selected channels: a) 3 images from 
principal component analysis (PC1, PC2, PC3); b) one image 
from NDVI computation using the NIR-R channels and c) one 
saturation image (S) obtained by converting the NIR-R-G 
channels in the IHS (Intensity, Hue, Saturation) colour space.  
The combination NIR-R-PC1-NDVI -S was selected for 
classification using separability analysis. The maximum 
likelihood classification method was used. As expected from 
their low values in the divergence matrix, grass and trees, 
airport buildings and residential houses, airport corridors and 
bare ground, airport buildings and bare ground could not be 
separated. Using the height information from the blobs, airport 
ground and bare ground and roads were fused into “ground” and 
airport buildings with residential houses into “buildings”, while 
trees and grass, as well as buildings and ground could be 
separated. The final classification is shown in Figure 2. 84% of 
the building class is correctly classified, while all of 109 
buildings have been detected but not fully, the omission error is  
9% . Aircrafts and vehicles are again mixed with buildings (Fig. 
4).  

dh=s(wi-wi-1)c+dh0  
If dh>dhmax   dh=dhmax 

   
Figure 4. Building detection result from method 2. (Left: airport 
buildings, Right: residential area). 
For Vaihingen region (Fig. 5), ADS-40 images have been used 
and an orthophoto has been generated using existing Lidar 
DSM, the same channels have been selected as at the Zurich 
airport region. After the quality analysis with the reference data, 
the correctness has been calculated as 86% and the ommision 
error is 15%. 

 
Figure 5. Building detection result (yellow) from method 2 overlaid on 
CIR ortophoto (Vaihingen). 
 
4.3 Building detection using density of raw Lidar DTM and 
NDVI (Method 3) 

Buildings and other objects, like high or dense trees, vehicles, 
aircrafts, etc. are characterized by null or very low density in 
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the DTM point cloud. Using the vegetation class from NDVI 
channel as a mask, the areas covered by trees are eliminated, 
while small objects (aircrafts, vehicles) are eliminated by 
deleting them, if their area is smaller than 25m2. Thus, only 
buildings remain (Figure 6). 85% of building class pixels are 
correctly classified, while 108 of 109 buildings have been 
detected but not fully extracted, the omission error is 8% . 
 

    
Figure 6. Building detection result from method 3. (Left: airport 
buildings, Right: residential area). 
Since have DTM raw point cloud is not available for Vaihingen 
region, this method could not be applied and analyzed.  
 
4.4 Building and tree detection from Lidar data (Method 4) 

As mentioned above, in the raw DSM data the point density is 
generally much higher at trees than at open terrain or buildings. 
On the other hand, tree areas have low horizontal point density 
in the raw DTM data. We start from regions that are voids or 
have low density in the raw DTM (see Method 3), for the 
second dataset, we have used Lidar points which are in the 
blobs from the filtering process, and in the next step, we used a 
search window over the raw Lidar DSM data with a size of 5 m 
x 5 m. Neighboring windows have an overlap of 50%. The 
window size has a relation with the number of points in the 
window and the number of the points in the search window 
affects the quality of the detection result. The method uses all 
points in the window and labels them as tree if all parameters 
below have been met. The size of 25m2 has been agreed to be 
enough to extract one single tree. A bigger size may result in 
wrong detection especially in areas where the buildings are 
neighboring with single trees.  
The points in each search window are projected onto the xz and 
yz planes and divided for each projection in eight equal sub-
regions using xmin, xmid, xmax, zmin zmid1 zmid2 zmid3 zmax as 
boundary  values of sub-regions, with xmid = xmin + 2.5m , xmax 
= xmid + 2.5m, zmid1=zmin+(zmax-zmin)/4, zmid2 =zmin+2*(zmax-
zmin)/4, zmid3=zmin+3*(zmax-zmin)/4 and similarly for the yz 
projection. The density in the eight sub-regions is computed. 
The first step is the detection of trees and the second the 
subtraction of tree points from all off-terrain points. The 
parameters have been calculated using tree-masked areas of the 
raw Lidar DSM data. The tree mask has been generated by 
Method 2.  
The trees have been extracted by four different parameters. The 
first parameter (s) is similarity of surface normal vectors. We 
assume that the tree points would not fit to a plane. With 
selection of three random points in the search window, the 
surface normal vectors have been calculated n (number of 
points in search window) times. Then, all calculated vectors 
have been compared among each other. In case of similar value 
of compared vectors, the similarity value was increased by 
adding 1. In the tree masked points, the parameter (s) has been 
calculated as smaller than 2. The second parameter (vd) is the 
number of the eight sub-regions which contain at least one 
point. The trees have high Lidar point density vertically. Thus, 
at trees more sub-regions contain Lidar points. Using the tree 

mask, we have observed that at least 5 out of the 8 sub-regions 
contain points. Thus, the parameter (vd) has been selected as 
vd>4. The third parameter (z) is the tree height. Using the tree 
mask from multispectral classification, we calculated the 
minimum tree height as 3m. The fourth parameter (d) is the 
point density. The minimum point density has been calculated 
for the tree masked areas as 20points/ 25m2. By applying these 
four parameters to the raw DSM Lidar data, the tree points have 
been extracted and eliminated from all off-terrain points to 
extract the buildings. The workflow can be seen in Figure 4. 

 
Figure 4. Workflow of detection of buildings in method 4 (Zurich 
Airport) 
The density of point cloud directly affects the quality of the 
result. In addition, some tree areas could not be extracted 
because of the low point density of the Lidar data. The accuracy 
analysis shows that 84% of buildings area are correctly 
extracted, while 100 of 109 buildings have been detected but 
not fully extracted, the omission error is 17% .(Figure 8). 

   
Figure 8. Building detection result from method 4. (Left: airport 
buildings, Right: residential area). 
 
For the Vaihingen region, similar approach has been applied, 
except the result from morphological filtering has been used as 
an input. 

 
Figure 10. Building detection result (red) from method 4 (Vaihingen). 

Tree + building points 

DTM 
Raw 

Horizontal density analysis 
on DTM Raw

•Similarity of surface 
normal vectors (s<2) 
•Vertical density vd>4 
•Point density d≥20 
•Minimum height z ≥3 

Building 
points Tree points

DSM 
Raw  
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After the quality analysis with the reference data, the 
correctness has been calculated as 80% and the ommision error 
is 20%. The result has been efected by the errors of 
morphological filtering approach, and the walls which have 
been detected as trees affect the completeness.  

5. ANALYSIS OF THE RESULTS 

Each method shows similar performance with differences in 
completeness. The improvement of the results is performed by 
taking into account the advantages and disadvantages of the 
methods. For Zurich dataset, regarding completeness, the 
reference data has been generated using aerial images, and 
some buildings are in construction process. In the construction 
areas, these buildings were measured as fully completed, 
although they were only partly constructed in reality. On the 
other hand, due to the temporal difference between the 
reference vector and Lidar data, the completeness of Lidar-
based methods (methods 3 and 4) has also been negatively 
affected. ((1∩2) ∩4) U 3 combination eliminates the errors 
resulted by the shadow on vegetation, the airplane objects, 
shadow regions. After the quality analysis with the reference 
data, the correctness has been calculated as 91% and the 
omission error is 7%. More details can be found in Demir et al. 
(2009).Shadow related errors have also been seen in the results 
of Vaihingen dataset. While the result from method 3 is not 
available, only ((1∩2) ∩4) combination has been done. The 
result of this combination contains the regions which are in the 
results of the all methods, so the result is expected to be more 
accurate but less complete. After the quality analysis with the 
reference data, the correctness has been calculated as 92% and 
the omission error is 28%. The later approach which is 
detection of roof surfaces will eliminate the non-building 
objects.  
6. ROOF SURFACE DETECTION AND GENERATION 

OF FINAL BUILDING POLYGONS 

Detection of roof surfaces has been followed after detection of 
the building polygons. We have aimed to extract roof surfaces 
and improved the quality of detection result with elimination of 
points which don’t belong to roof surfaces. First, raw LIDAR 
data have been overlaid on the detection result and later roof 
surface extraction process have been applied. Before that,  2 m. 
dilation has been applied to take more Lidar points as much as 
possible which belong to the roof surfaces. Schnabel (2007a) 
and Schnabel et al., (2007b)’s RANSAC method has been used 
for fitting of the roof surfaces into geometrical models mainly 
planes. RANSAC generates a large amount of hypothesis of 
primitive shapes by randomly selecting minimum subset of 
sample points that each uniquely determines the parameter of a 
primitive. The scoring mechanism is employed to detect the 
best primitive. The process starts with calculating the surface 
normal vectors of each point with selection of neighboring 
points. The localized sampling strategy has been used by octree 
data structure for the random selection of minimal subset of 
points in this method.  The score of the candidate shape is 
evaluated by using the parameters which are the tolerance 
distance of shape, minimum deviation of surface normal and 
connectivity of points. After detection of the points which 
belong to roof surfaces, all other points, which don’t belong to 
any geometrical shape, have been removed, and new building 
polygons have been generated to improve the detection 
accuracy.  

 

 
Figure 11.Some examples from extracted roof segments (Zurich airport) 

 
Figure 12.Some examples from extracted roof segments (Vaihingen) 
 
After detection of the points which belong to roof surfaces 
(Fig,11-12)  all other points have been removed, and new 
building polygons (Fig. 13-14) have been generated to improve 
the detection accuracy. The correctness of detection has been 
improved to 94% with remaining 7% omission error for Zurich 
Airport area and 90% with remaining 17% omission error for 
Vaihingen dataset. 

 
Figure 13. Final building polygons overlapped with orthophoto (Zurich 
airport) 

 
Figure 14. Final building polygons overlapped with orthophoto 
(Vaihingen)  
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7. CONCLUSIONS AND FUTURE WORK 

In this paper, different methods for object detection (mainly 
buildings) in Lidar data and aerial images have been presented. 
In each method, the basic idea was to get first preliminary 
results and improve them later using the results of the other 
methods. The methods have been tested on two dataset located 
at Zurich Airport, Switzerland, and Vaihingen region, 
Germany.. The results from each method have been combined 
according to their error characteristics. Roof surfaces have been 
extracted and finally, the correctness of detection has been 
improved to 94% with remaining 7% omission error for Zurich 
airport, and 90% with remaining 17% omission error for the 
Vaihingen dataset. Further processes will be applied for the 
quality assessment of the detected roof planes and then direct 
3D edge matching will be done and detection of 3D inner and 
outlines using aerial images will be generated. First 2D line 
segments will be extracted using Harris corner and canny edge 
detectors with splitting edges in Harris corner points. Then 2D 
line matching will be performed to reconstruct 3D lines. After 
extraction of 3D lines, reconstruction of roofs will be completed 
by combination of 3D roof surfaces and 3D lines of the roofs. 
This combination will be done with grouping of 3D lines 
according to their 3D surfaces.  
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