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ABSTRACT: 

 

LIght Detection And Ranging (LIDAR) data has been recognized as a valuable data source for mapping and 3D modelling of the 

Earth surface. Classification of LIDAR data for the purpose of extracting ground, vegetation, and buildings is a preliminary step to 

build 3D models. This paper presents a classification approach of single return LIDAR data that uses area growing technique to 

extract patches based on neighbourhood height similarity. The extracted patches are classified according to its area into buildings, 

vegetation, and ground. The classification technique exhibits fast results as it avoids the iterations needed by many classification 

techniques while maintaining high accuracy level. The presented technique enables simple tuning of parameters because it is directly 

related to the data specifications. The boundaries of the extracted buildings are then traversed to detect the significant points that 

help to build the 3D model. The heights of the significant points are computed using the neighbour ground points. Detailed results 

are presented to show the effectiveness of the proposed approach. 

 

 

1. INTRODUCTION 

The last decade witnessed an explosive demand for accurate 

Digital Terrain Models (DTMs) due to its important role in 

different applications such as urban planning, civil engineering 

projects, and environment protection. Despite the sophisticated 

approaches of signal processing and feature extraction and 

matching, automatic DTM generation using optical images 

exhibits problems such as occlusions, shadows, and steep 

slopes; these problems can be obviously reduced using LIDAR 

technology that offers reliable height data regardless of objects 

textures and illumination conditions. The effectiveness of 

LIDAR is very noticeable due to its level of accuracy and its 

highly automated data acquisition workflow. The classification 

of LIDAR data into terrain/non-terrain points is a primary step 

to generate the DTM; additional classification can be performed 

to classify the non-terrain points into different classes such as 

buildings and vegetation. The automation of this task is highly 

needed as the manual processing is costly and time consuming. 

Depending on the targeted application, these classes can be 

needed to aid in various purposes such as visualization, 

mapping, and building 3D models. Different approaches have 

been proposed for this classification task using single/multiple 

return LIDAR data. Many iterative schemes have been 

introduced to filter the non-terrain points out using different 

approaches such as fitting an interpolating surface using 

iterative least squares (Kraus et al., 1998), using interpolating 

method iteratively on the levels of a data pyramid (Rottensteiner 

et al., 2002), iterative densification of a triangular irregular 

network (TIN) (Axelsson, 2000), successive spline interpolation 

using gradient and surface orientation analysis (Brovelli et al., 

2002). Several clustering strategies have been proposed to 

cluster the LIDAR points using different clustering algorithms 

such as k-means (Miliaresis et al.,2007; Chehata et al., 2008), 

and fuzzy c-means (Zulong et al., 2009). Geometric descriptors 

such as curvature, static moments, and data anisotropy have 

been used by (Roggero, 2002) for clustering LIDAR data. Filin, 

2002, used connectivity and principal component analysis to 

cluster LIDAR data in surface categories.  Parrish, 2008, and 

Wang et al., 2006, have utilized wavelet analysis to detect 

vertical objects and classify buildings from LIDAR data points. 

Song et al., 2002, assessed the possibility of using LIDAR 

intensity data for land-cover classification. 

   The proposed approach, presented in this paper, uses a single 

return LIDAR data to classify LIDAR data into ground, 

buildings, and vegetation, and to build a simple 3D model for 

the extracted buildings. First, the raw LIDAR data is gridded to 

facilitate the further processing, and then a patch extraction 

algorithm is conducted over the entire data set based on the 

neighbourhood similarity along with efficient labelling 

mechanism to minimize the computation cost. The same 

traverse of data during patch extraction is exploited to calculate 

the area of each patch to be used in the classification step. 

Based on neighbourhood similarity used in extraction of 

patches, the points of each extracted patch tend to belong to the 

same object. A minimum area threshold is used to classify 

vegetation patches; the rest of patches are classified as buildings 

except for large patch which is classified as ground. For 

building a simple 3D model of the extracted buildings, the 

corners of the buildings with the height at each corner is 

required. The first step for the proposed corner detection is to 

encode the boundaries of the patches. As the patches are already 

extracted, edges can be traced along the boundaries of the 

patches classified as buildings. An edge encoding is conducted 

on the boundaries of each patch to form the boundary point’s 

sequence. Then this sequence of points is traversed to detect the 

significant curvatures as corners. The absolute height provided 

by LIDAR raw data at the detected corners is compared to the 

nearest ground point to find the building height at this corner. 

The corners detected and their heights are used to build a simple 

3D model of the buildings without texture or roof modelling. 

Unlike the heuristic clustering algorithms, the proposed 

approach has the potential of controlled tuning of parameters to 

suit the data set specifications. The proposed approach avoids 
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the computational cost introduced by the transformation based 

methods and the iterative methods that needs many traversals of 

the LIDAR data. Through all the steps of the presented 

approach, only simple mathematical/logical operations are 

performed and the number of computations is at most in the 

same order of the data itself.  

   The following section illustrates the steps of the proposed 

approach. Then, experimental results for LIDAR raw data are 

presented. Finally, the conclusions are provided. 

 

2. METHODOLOGY 

2.1 Patches Extraction 

The preliminary step of the proposed approach is to divide the 

LIDAR data into patches depending on the height similarity. 

LIDAR data has to be gridded first by interpolating the 

randomly distributed points into matrix form. The matrix is then 

scanned using 2x2 window to check the height similarity 

between each pixel and its top and left neighbours. If the height 

difference is within a specified threshold the checked pixel is 

given the same label given to the similar height pixel, otherwise 

a new label is given to this pixel. If the two neighbours found to 

be similar but have different labels, both of them are given the 

smaller label. And this substitution is considered afterwards. A 

second scan is performed to ensure proper substitution of the 

labels and also for counting each patch pixels to serve as an area 

measure. The height difference threshold is estimated based on 

the data specifications. Figure 1 depicts the patch extraction 

process. Figure 2 presents the extracted patches with random 

color given for each label. This extraction step needs only two 

visits for each data pixel. 

 

 

 
 

Figure 1. Patch extraction process. 

 

 

2.2 Classification 

Three different categories of patches can be easily observed in 

Figure 2. The first category is the group of tiny patches. The 

second one is the largest patch. The remaining patches form the 

third category. LIDAR data that corresponds to vegetation 

exhibits a high variation, and therefore the corresponding 

patches are very small as it fails to satisfy the height similarity 

condition across large areas, while the ground tends to have a 

large corresponding patch because it exhibits the most gradual 

height difference across the entire data set. These observations 

are used to build a straightforward classification approach that 

avoids any iterative processing required by many clustering 

algorithms. The classification is performed based on the area of 

the patches. The patches under a specified area threshold are 

classified as vegetation, the largest patch is classified as ground, 

and the remaining patches are classified as buildings. The area 

threshold is estimated based on the data set specifications. 

Figure 3 depicts the classification result for the same area 

presented in Figure 2 where red color patches indicates building 

class, green color patches indicates vegetation class, and white 

color patches indicates the ground class.  

 

 

 
 

Figure 2. Extracted patches with  

random color given for each label. 

 

 
 

Figure 3. Classification results of the area in Figure 2. 

 buildings (red), vegetation (green), ground (white). 

 

2.3 3D Modelling 

For a fast visualization of the extracted buildings, the extracted 

buildings are processed to get a suitable form for 3D rendering. 

The boundary of each building patch is extracted using chain 

coding. These boundaries have to be reduced to a set of lines to 

be suitable for rendering. Each boundary is approximated as a 

set of lines connecting the significant points of boundary. To 

detect these significant points, the percentage of the neighbour 

points belonging to the patch is used as a measure of boundary 

curvature at this point. The points that exceed a specified 

threshold are chosen to be significant points. Figure 4 shows the 

significant point extraction process. The neighbourhood of each 
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significant point is searched for the nearest ground point to help 

compute the building height at this significant point.  

Each building patch is represented as a polygon associated with 

height information at each polygon vertex. This representation 

is then rendered as triangle surfaces using COLLADA 

modelling language for visualization. 

 

 
 

Figure 4. Significant point extraction process. 

 

3. RESULTS 

The proposed approach has been evaluated using a LIDAR data 

set for an area in Calgary city (only one return signal). The 

dimensions of the bounding rectangle of the data set area are 

2416.93 m, and 1125.40 m and the LIDAR covered area is 

about 1.9 km2 with point’s count of 1,834,455. The LIDAR 

point’s density is about 1 point/m2. With this density, the 

threshold for height similarity has been chosen to be 1 m, and 

the area threshold used for classification has been selected to be 

50. The curvature threshold has been chosen to be 0.43 based 

on visual trials. 

Figure 5.a depicts the height profile of a sample area of the test 

data, the brighter points represents higher elevation points. 

Figure 5.b shows an aerial image of the same area presented in 

Figure 5.a. Figure 5.c shows the classification results over the 

previous aerial image. The ground class is the visible region of 

the aerial image. Figure 5.d illustrates the buildings boundary 

and its significant points. Another sample area with its results is 

shown in Figures 6.a-6.d. 

 

 

 Classification Results 

buildings vegetation ground 

R
ef

er
en

ce
 

D
a

ta
 

buildings 68848 890 2066 

vegetation 54 10980 107 

ground 394 477 245128 

 

Table 1. Confusion matrix of the proposed approach. 

 

Table 1 shows the confusion matrix of the proposed approach 

computed using a manually classified area of the data set. As a 

measure of the overall accuracy, the kappa index of agreement 

for this matrix is computed and found to be 0.96 which 

indicates very good performance.  

 

 
 

Figure 5.a. Height profile of area (I). 

 

 
 

Figure 5.b.  Aerial image of area (I). 

 

 
 

Figure 5.c. Classification results over aerial image of area (I). 

(red for buildings, green for vegetation, and the rest is ground) 

 

 
 

Figure 5.d. Building boundaries 

 and its significant points (red color) of area (I). 
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Figure 6.a. Height profile of area (II). 

 

 
 

Figure 6.b. Aerial image of area (II). 

 

 
 

Figure 6.c. Classification results over aerial image of area (II). 

(red for buildings, green for vegetation, and the rest is ground) 

 

 
 

Figure 6.d. Building boundaries 

 and its significant points (red color) of area (II). 

95.9% of the reference building area has been correctly 

classified, while 98.5% of the reference vegetation area has 

been correctly classified. 3.8% of the area classified as 

vegetation belongs to ground class, this percentage of 

misclassification is mainly due moving objects on the roads 

such as cars, and can be corrected using the neighbourhood of 

these areas. 7.2% of the area classified as vegetation belongs to 

building class; this error is mainly caused by the small 

architectural details that fails to form a large patch, and by the 

overlap between buildings and tress, and again the first reason 

can be avoided if the neighbourhood of these areas are 

considered.  

The results of the proposed approach are interpretable and 

directly linked to the deployed parameters, and therefore there 

is a high potential to tune these parameters and enhance the 

performance accordingly.   

 

 

 
 

Figure 7. 3D model of the entire data set rendered over Google 

Earth scene of test area using COLLADA language. 

 

 

4. CONCLUSIONS 

A fast approach for classification of LIDAR data has been 

proposed and evaluated using test data. The high accuracy level 

achieved signifies the value of the single return LIDAR data as 

a convenient source for classification. It also denotes the 

validity of the assumptions used in the proposed approach. In 

contrast to the heuristic clustering algorithms, the presented 

classification approach is not based on iterative processing and 

it requires accessing the data points twice only. The 

interpretability of the obtained results and its direct link to the 

used parameters enables discovery of improvement 

opportunities and parameter tuning in a controlled fashion.       

A fast 3D rendering technique is presented for the visualization 

purposes.  
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