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ABSTRACT:

The development of reliable change detection techniquaa fiemote sensing data is one of the main challenges in unuavtly
and change monitoring research. One of the main open issmsssts in automatizing the detection of changes whosepirgtion
has remained up-to-now visual in most operational apptinatin remote sensing. When dealing with urban areas, ossilplity to
cope with the automatic growth monitoring is the explogatof the height information relative to the different maade objects that
exist in the scene. In fact, the comparison of Digital Swefiodels (DSMs), acquired at different epochs, should ple@we valuable
information about the 3D urban changes occurred in thestimliea. Nevertheless, while most of the changes are dptitsible and
easily detectable by an expert user, automatic processelfficult to achieve due to the problems of co-registratiad the significant
height difference that may occur between DSMs acquired fiifferent sensors and/or generated by different algoisthifhis results
in the detection of virtual or irrelevant changes. Thisdetiproposes two semi-automatic methods for 3D change titategsing
DSMs obtained from different sources. While the first metisdshsed on the simple subtraction of DSMs from two epocless¢icond
one consists in comparing the classification maps of theeeDd8Ms, through class-for-class differencing. In both saselaptative
post-processing steps have been introduced in order faglissh real from virtual changes. Evaluations of the psggbapproaches
have been carried out to detect the 3D changes that haveredénrthe city center of Munich in Germany from 2003 to 2005.

1 INTRODUCTION tracted from DSMs. However, careful post-processings lshou
also be adopted to avoid the extension of the 2D errors inhe 2
. ) change maps into the 3D ones.
In the last few decades, the constantly intensive globaimib |, s article, we propose two methods to detect changésdns
|zat|0n_has_ made the urban and suburba_n areas among the mest, city center of Munich in Germany by using DSMs acquired
dynamic sites on Earth. Therefore, new innovative toolsréfe  4m two different sensors: Laser and Ikonos stereo daz (se

quired for better monitoring and finer description of suchaat _tion 2). While in the first method (section 3), we detect cleng
Remotely sensed imagery in some cases may be the only eeliably iel.level, in the second one (section 4), our focus isera

source for better understanding of urban areas. In fact|lisat targeted at class-level. It is worth to note that in both sase
imagery can significantly improve the monitoring of citi®sd 55 adaptative post-processing steps and we includexiosa
wide range of applications, e.g. urban growth monitoringas-  ynowiedge in order to distinguish real from virtual changés

ter damage assessment, urban change detection, etc. fact, when urban scenes have to be interpreted, many wovks ha
Our overall objective in this paper is the development G&f®e  poen combining contextual features to the geometric artd-tex
techniques to detect automatically 3D changes inside udiban |5 ones to determine plausibility and enforce constraiimtis-

eas. Since the height information is very important in cbara g assignments (Hoiem et al., 2008, Chaabouni-Chouayatth a

terizing man-made structures, we suggest to use Digitdb8er  paicyy 2010). Since contextual knowledge has been usefuéin
Models (DSMs) from two different epochs in order to identify jgentification of different urban structures using aeriaatellite

3D changes. Indeed, very high resolution stereo data iSya Vefimages it may also be the clue in our case to generate aecurat

promising source to extract 3D surface models. Many worke ha 3p change detection maps inside urban areas when using DSMs.
been dedicated to detect 2D changes using remote sensimg dat

(e.g. (Lu et al., 2004)), but the issue of 3D change deteat®n

ing DSMs has been seldom tackled in the literature. DSMbase 2 DESCRIPTION OF THE TEST DATA

change detection researches (e.g. (Gong et al., 2000/ dedé,

2001, Hollands et al., 2007)) mainly propose to compute Emp In this paper, we study the potential changes that have ceatur
difference between DSMs from different epochs. Such an apthe city center of Munich in Germany from 2003 to 2005 by using
proach could provide reliable results if the same sensoséslu DSMs. These DSMs have been co-registered after estimatihg a
However, with different sensors (which is quite often theedaor ~ then eliminating the 3D shift between them. Figure 1 illasis
various DSM generators, we are in general faced by the proble the two co-registered DSMs used in this work. They are:

of co-registration and significant differences at buildmglines.

Post-p_rocessing steps are thus highly _required to disshgeal e a 1m resolution Laser DSM from February 2003 ; and

from virtual changes. In other publications (e.g. (van dend®

et al.,, 2008, Champion et al., 2009)), the authors propogsed t e a 1m resolution DSM generated from Ikonos stereo images
improve 2D change detection, obtained when comparing isnage acquired in July 2005, using the Semi-Global Matching al-
acquired at different epochs, by including the 3D inforroatex- gorithm (SGM) implemented at DLR ((Hirschmduller, 2008,
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(a) Laser DSM from 2003.
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(b) Ikonos DSM from 2005.

Figure 1: The two DSMs used in this work to monitor the potrthanges that have occurred in Munich from 2003 to 2005.

d’Angelo et al., 2008)). The resulting DSM has been filled
using inverse distance weighted interpolation in ordeeto r
move the occluded areas.

From Figure 1, we can see how a difference regarding the DSM
sources (here Laser and Ikonos stereo data) influencesriee ge
ation and consequently the appearance of the differentmrade
structures in the DSMs. In fact, already from a visual DSM®s€o
parison, many interesting observations can be made:

on both DSMs. This mask has been generated by comput-
ing the Normalized Differenced Vegetation Index (NDVI)
from the red and infra-red bands of the Ikonos image. Actu-
ally, eliminating the vegetation from our 3D change detec-
tion scheme is not so critical since our focus in this paper
is only 3D changes relative to building construction and de-
struction.

3 PIXEL-BASED 3D CHANGE DETECTION

o ) ) _ In this first method, we detect changes that occurred in Munic
e The building outlines appear sharp in the Laser DSM, whilef.om 2003 to 2005 at pixel level, by using only the height mfo

they are quite smooth in the Ikonos DSM. Two reasons couldnation. We start by computing the simple difference betwtben
explain this smoothness effect: 1) First, the presenceaafsh 1,0 DSMs of Figure 1. The result is given in Figure 2.

ows on buildings outlines in the stereo Ikonos images result
in the rise of occluded areas in the generation of the DSM
by the SGM algorithm. These occluded areas are then re
placed by smooth slopes during the interpolation step. 2)
The second reason for these smoothness artifacts comsists
the fact that only one pair of stereo data is used in the genera
tion of the Ikonos DSM. This produces more occluded areas

and therefore smoother slopes on buildings outlines. Actu- 400

ally, the problem of occlusion is in general less pronounced
when more pairs of stereo images are involved in the DSM
generation, as stated in (Hirschmuller, 2008). This e
Laser vs. lkonos DSM behaviors disturbs our 3D change
detection when this latter is based on computing a simple 8
pixel or object based DSM subtraction, since this will unfor
tunately result in the detection of virtual changes. In orde
to solve this first problem, adaptative post-processingsste
have been applied to each of our 3D change detection algo
rithms, so that these virtual changes are removed and only2
the real ones are kept. More details about our differentpost
processing steps will be given in sections 3 and 4.

60

The class of vegetation is also seen differently from theek.as
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and Ikonos stereo images. As a matter of fact, the Laser dafaigure 2: Pixel-based change detection: Absolute difiegere-
of Figure 1 corresponds to the last pulse range and thereforéveen the DSMs of Figure 1. The simple DSMs difference is not
the vegetation pixels are mostly not available. To cope withenough robust to distinguish real from virtual changes.

this second problem, a vegetation mask has been applied

87



In: Paparoditis N., Pierrot-Deseilligny M., Mallet C., Tournaire O. (Eds), IAPRS, Vol. XXXVIII, Part 3B — Saint-Mandé, France, September 1-3, 2010

From the absolute difference of Figure 2, we notice that a simIn comparison to the absolute difference map, the deteafon
ple difference between DSMs at different epochs is not ehougthe different changes from the binary map of Figure 4, coeld b
robust to detect the real changes. As a matter of fact, it-highmore easily and straightly performed. In fact, the thredimg
lights also virtual changes coming from the different natof  step succeeds in removing most of the virtual changes cdiysed
the DSM sensors (here Laser and lkonos stereo data). Indieed, the DSM computation errors. Moreover, we notice that thiedif

fact that the buildings outlines appear sharp inthe LaséiB8d  ent constructed and destructed buildings correspond ttathe
rather smooth in the Ikonos one, results in the rise of podylike ~ green and red segments, respectively. Neverthelessjmslifte
changes on the borders of the buildings in the difference. mapvirtual changes do still remain and need to be removed. Fhere
Moreover, some virtual changes arise from errors in the DSMore, more adaptative post-processing steps are requicethat
computation resulting in small differences in the heightcttA  only real changes are kept. For this purpose, we proposésin th
ally, they are not very critical since they could be elimathby  work to apply some opening and closing morphological opera-
simple thresholding. tions in order to make the real changes more compact and the
We propose to apply several post-processing steps to kdgp onvirtual ones thinner. In our case, we have used an openieg filt
the real changes and remove the virtual ones (caused byfthe diwith a7 x 7 kernel followed by a closing one withfax 5 kernel.
ferent nature of the DSM sources and also from the computatio This results in a much cleaner change map as could be seen in
errors). The complete flowchart of this pixel-based 3D cleang Figure 5.

detection algorithm is depicted in Figure 3.

Contextual Knowledge
DEM,

Virtual Changes () «
Removal Change Map

DEM,

Figure 3: Flowchart of the pixel-based 3D change detectpn a
proach.

3.1 Virtual changes removal

Our virtual changes removal is done in two steps. First, we ap

ply a thresholding so that height differences less thanestiaold

T are considered as computation errors and not detected as 3D

changes. Then, we binarize the thresholded map into pesitiv

(construction) and negative (destruction) changes. Fdr piel

(i,7), we compute the new binary change map BC as follows: Figure 5: Pixel-based change detection: Binary changetiete
map after applying morphological operations: the positnel

if DSMz(i,j) —DSMu(i,j) > T BC(i,j) =+ (1)  negative changes are highlighteddreenandred, respectively.
if IDSMa(i,4) — DSM1(i,5)] < T BC(i,j) =0 (2)  The black pixels correspond to no change. While the realgsn
if DSM2(i,7) — DSMi(i,j) < —T BC(i,j) = — (3) become more compact and the virtual ones are thinner.

The binary change map BC obtained when applying a threshold
T = 5mis given in Figure 4. 3.2 Contextual knowledge introduction

When the goal is to detect urban changes (constructed and de-
structed buildings), it is better to treat each change aglesiob-
ject (or vector). That is why, we propose at this final stepwaf o
approach to vectorize the binary change map of Figure 5.rAfte
that, we suggest to include some contextual knowledge giatin
describing the geometry of the changed objects. Indeednwhe
dealing with man-made structures such as building, gegnigetr
one of the most important features that should be included fo
better characterization. We mainly used two shape feattines
size and the compactness as indicatives of largeness ang- hom
geneity, respectively. The compactness is defined as :

VTA

compactness- ZT , (4)

where A and P denote respectively the area and the perimeter
of the corresponding vector. Based on these two shape ésatur

;‘, we perform a query on the thresholded binary vectorized map

selecting the large compact polygons since buildings agem

Figure 4: Pixel-based change detection: Binary changetiete  eral characterized by such property. In our case, polygdiser
map. The pOSitiVe and negative changes are hlghllght(—‘d i (Size > 1000 and compactness> 05) or (Size > 500 and
andred respectively. The black pixels correspond to no change.compactness> 0.9) have been selected. The resulting change
map is illustrated in Figure 6.
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tect a height elevation over a quite large area from 2003 to
2005. Unfortunately, no reference has been found to affirm
the accuracy of our detection approach in the case of these
two changes. However, oum-situ verification confirms the
modernity of the corresponding buildings style.

e Change 7 corresponds to a real positive change. It is the
"Maximilianhdfe” store which has been in construction be-
tween 2002 and 2005 according to (Maximilianhofe, 2007).

To evaluate the completeness of the proposed approachya vis
comparison of the contents of the Laser DSM and the lkonos
stereo images has been performed. This comparison hasghowe
that no large changes have been missed during our 3D change
detection procedure.

4 CLASS-BASED 3D CHANGE DETECTION

Figure 6: Pixel-based change detection: Final change tilatec
map. Real positive and negative changes are correctly tdetec
and highlighted i andred, respectively.

In this second method, the changes are detected at clads-lev
The complete flowchart is depicted in Figure 7.

_ Contextual Knowledge
Classified DEM,
3.3 Evaluation of the final Change map Change Detection| _ |Virtual Changes é Change Map

‘ Maps Removal
Figure 6 shows a cleaner change map. The introduction of thE.assiﬁed DEM,

contextual knowledge has thus succeeded in removing thyénmsl
like virtual changes coming from the different sensor mat@nly  Figure 7: Flowchart of the class-based 3D change detectien a
large compact segments, generally corresponding to bgsdi proach.
are kept. However, the detected segments do not fit exadthy wi
the borders of the buildings. This is due to the smoothness ar
tifacts that we have explained in section 2, and also to tlee us
of morphological operations which remove unfortunatelytpa The first step of this second 3D change detection methodstsnsi
from real changes. The choice of the opening and closinggkern in performing an IsoData unsupervised classification ortwtee
size should be very carefully done so that the maximum of reaPSMs of Figure 1. The IsoData algorithm is a variation of the
changes is kept and the maximum of virtual ones is removed. Ifk-means clustering algorithm which uses splitting and rimgyrg
order to evaluate the accuracy of our 3D change detectian alg clusters methods to do the clustering (Tou and Gonzalez})197
rithm, its correctness and completeness have been verffied. To get a robust class separation, we have tuned many IsoData
the correctness, dn-situ identification has been carried out: parameters regarding the iterations (e.g. maximum nuntier o
erations, minimum change between iterations), the clsigteg.
« Change 1corresponds to a real positive change. It is themaximum and minimum number of clusters) and the splittird) an

shopping center named "Oberpollinger”. According to (Obelmerglng parameters (e._g. minimum n_umber of plxe_ls per rggio

pollinger, 2010, Wikipedia, 2009a), an extension of thédbui The resulting classification maps are |IIustrateq in F@Jrféhree

ing has been done between 2003 and 2006. clust(_ers_ have been generated, that match mainly with tisseta
of buildings, ground and vegetation. Here also, we couldisate

e Change 2corresponds to a real negative change. Accordinghe different nature of the sensors (Laser and Ikonos) Isasza
to (Schorghuber-Unternehmensgruppe, 2005), this mgjldi impact on the classification maps: the building outlines do n
was destroyed in November 2004 and replaced later witrappear in the same position in the classification maps of 2003
another one whose big opening was in April 2006. and 2005, although the two DSMs are well co-registered in the

. ) same UTM projection. Adaptative post-processing stepshare

» Change 3corresponds to a real positive change. Itis theeqyired to detect only the real changes. This effect isitilso
Ohel Jakob synagogue which was built between 2004 angateq in the change detection maps presented in Figures 9 an
2006 as the new main synagogue of the Munich Jewish comy |, this analysis, we do not apply a simple differencing of
munity. According to (Wikipedia, 2009b), the synagogue the two classification maps. We rather perform a class{fssc
was inaugurated in November 2006. difference to identify, for each initial state class (in tiassifica-

e Change 4corresponds to a real positive change. It is the!ion map of 2003), the classes into which those pixels crairge
"Schrannenhalle” in Munich. The building was still in con- e final state image (in the classification map of 2005). @ban
struction in 2003. A big opening has been organized orfdetection statistics are also reported in Table 1 in termseof
September 5, 2005 to celebrate the end of the construction§€Ntages.

More details could be found at (Schrannenhalle, 2010). Initial State
e Change 3 and6 seem to be real positive changes because | Vegetation| Ground
from the DSMs depicted in Figure 1, we could already de{ Vegetation| 100 %
] ) . Final State| Ground 65.67% 1.9%
1Changes 5 and 7 have been combined in a same polygon in our ap- 34.33% | 98.1%
proach but they correspond to two different buildings safeat by a nar- . .
row street in reality. That is why they have been linked in tkenos Table 1: Change detection matrix.

DSM and therefore clustered in a same polygon in our approach
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(a) Laser DSM from 2003. (b) Ikonos DSM from 2005.

Figure 8: Unsupervised classification of the DSMs. Tég andblue clusters match with the ground, buildings and vegetation
classes, respectively.

4.1 Virtual change removal and contextual knowledge in-
troduction

According to Figures 9 and 10 and Table 1, the problem of &irtu
changes detection is more pronounced in the ground to build-
ing change map than in the building to ground one. Indeed,
a quite high percentage of pixels (34.33%) has been comlverte
from ground to buildings from 2003 to 2005. They are more
likely to be a mixture of real and virtual changes. Thus, a-con
textual knowledge introduction as done in section 3 shoed |

to more accurate change results. To remove virtual chamges f
the ground to building change map, we have appligcd open-

ing kernel morphological filter followed by & x 5 closing one.

A cleaner map, more suitable to the step of the contextuakkno
edge introduction, has thus been provided, as seen in Fidure

Figure 9: Building to ground change map.

Figure 11: Ground to building change map after applying mor-
phological operations. A cleaner map is obtained whereaned!
virtual changes are more compact and thinner, respectively

To move to the object-level and finalize our 3D change deiecti
scheme, we have introduced, as in the first method, the doafex

Figure 10: Ground to building change map.
g g g P knowledge derived by the two shape parameters (compactness
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and size). Polygons satisfying these properties: (siZz®00 and  between the two techniques was done in terms of parametriza-
compactness> 0.5) or (size > 500 and compactness- 0.9), tion. In fact, in the class-based change detection methade m
have been selected. The final result is given in Figure 12. parameters need to be tuned when classifying the two DSMs.
The results are globally satisfying and promising, althosgme

of them could still be improved and completed. They can be con
sidered as preliminary results for some higher level urbaa a
monitoring where more 3D change scenarios such as forestra-
tion/deforestration are involved, or DSM quality analysis
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