
A special joint symposium of ISPRS Technical Commission IV & AutoCarto
in conjunction with

ASPRS/CaGIS 2010 Fall Specialty Conference
November 15-19, 2010 Orlando, Florida

WEB MAPPING WITH GOOGLE MAPS MASHUPS: OVERLAYING GEODATA

I. O. Bildirici a, *, N.N. Ulugtekin b

a Selcuk University, Faculty of Eng., Dept. of Geomatic Engineering, 42079 Selcuklu Konya, Turkey –

bildirici@selcuk.edu.tr
b ITU, Civil Engineering Faculty, Dept. of Geomatic Engineering, 34469 Maslak Istanbul, Turkey - ulugtek@itu.edu.tr

Commission IV

KEY WORDS: Web cartography, Google Maps API, map mashups, JavaScript, XML, KML

ABSTRACT:

The term mashup is used for incorporating different web resources and information within a web site. Mashups are an integral part
of Web2.0, which represents a variety of innovative resources, and ways of interacting with, or combining web content. Mashups
are based on Application Programming Interfaces (APIs) that are online libraries of functions. Most of the APIs are available at no
cost to web developers. Most common mashup applications involve web mapping or web cartography. There is a variety of API
providers for map mashups, including Google, Yahoo and etc. The functionality of their APIs are similar, but the data content.
Google provides a huge amount of geodata worldwide. With Google Maps API, web site developers can add dynamic maps to their
pages, and can overlay their own point, line and polygon data on to the maps. Such data can be overlaid within the JavaScript code,
from external XML or KML files. It is also possible to connect a database and overlay data from the database based on a query. In
this study the basics for creating map mashups are introduced, then the ways of overlaying data are discussed and the usage of XML
and KML files are focused on. KML overlays are not flexible and there are some limitations. XML overlays are more flexible, but
there is no standard XML schema. Web developers can define their own elements and attributes, and develop their Javascript code
accordingly. We propose an XML schema, which is full compatible with Google Maps API classes.

* Corresponding author.

1. INTRODUCTION

The World Wide Web (WWW) is the most recent innovative
medium to present and distribute spatial data. Here, the map
plays a key role, and has multiple functions. Maps can play the
traditional role of providing insight into geospatial patterns and
relations. Under these circumstances maps are used as they
would in e.g. an atlas or newspaper to present the structure of a
city or the location of any disaster occurred lately. According to
Kraak & Brown (2001); “Web cartography can be considered a
trend in cartography”. There are also similar terms such as
Internet Mapping, Online Mapping etc. This topic catches the
attention of cartographic community and books and papers
have been published. Some of the recent works are: Cartwright
et al (2007), Peterson (2003).

Map mashups are one of the efficient tools for online mapping,
or web cartography. They are, in general, an integral part of
web2.0, which represents a variety of innovative resources, and
ways of interacting with, or combining web content. This term
is closely related to Tim O'Reilly because of the O'Reilly
Media Web 2.0 conference in 2004 (URL1). Mashups are
created with online libraries and functions called Application
Programming Interfaces (API). Most of the APIs are available
to web developers at no cost. There is a variety of mapping API
providers including Google, Yahoo, etc. Google Maps API is

the most common one of the APIs because of the rich data
content for the whole world. Approximately same vector data
and imagery are used for Google Maps and Google Earth.

With map mashups, dynamic maps can be added to third party
web sites, and third part content can be overlaid on such maps.
Such maps are becoming common in many sites involved in
location, such as on-line auction and shopping websites, hotel
booking sites etc. The most common usage is depicting a
certain address on the map with a marker, mostly the upside-
down rain drop. In this example, the map is brought from
Google’s servers; the point (the marker) is overlaid by the
developer of the web site.

This developments increase the spatial awareness of ordinary
people. There is a huge amount of spatial data available on the
net. The term “neogeography” has emerged to address a set of
new geographic concerns with the rise of such enabling
technologies as web mapping services and pervasive GPS-
enabled devices. Liu and Palen (2010) discusses such issues
and examines the usage of map mashups in the crises
management.

In this paper, we fist introduce the Google Maps API Family,
and then discuss the overlay possibilities in the third party

A special joint symposium of ISPRS Technical Commission IV & AutoCarto
in conjunction with

ASPRS/CaGIS 2010 Fall Specialty Conference
November 15-19, 2010 Orlando, Florida

websites. We examine KML and XML overlays, and propose
an XML schema.

2. GOOGLE MAPS API FAMILY

Google Maps has a wide array of APIs that let web developers
embed the robust functionality and everyday usefulness of
Google Maps into their own websites and applications, and
overlay their own data on top of them. The Google Maps API
family consists of the following (URL 2):

Maps JavaScript API: This API was previously known as
Google Maps API, with which a Google Map can be embedded
in third party web pages using JavaScript. The map can be
manipulated and appropriate content can be added through a
variety of services. Two versions are available: V2 and V3. V2
is deprecated on May 19th, 2010; V3 is the current one. Since
V3 is a rather new development, we use mostly V2 for our
discussion in this paper. This member of the family will be
mentioned as “Maps API” in the next sections of the paper.

Maps API for Flash: This ActionScript API is used to embed a
Google Map in a Flash-based web page or applications.

Google Earth API: A true 3D digital globe can be embedded
into a third party web page. With this API a mashup with the
functionality of Google Earth can be provided for the visitors.

Static Maps API: A fast and simple Google Maps image in a
web page or mobile site without requiring JavaScript or any
dynamic page loading can be embedded.

Web Services: URL requests to access geocoding, directions,
elevation can be realized.

Maps Data API: Map data through Google Data API feeds,
using a model of features (placemarks, lines & shapes) and
collections of features, can be viewed, stored and updated.

All these APIs are free services, available for any web site that
is free to consumers. For Version 2 a key from Google is
necessary, which can be obtained easily. For the current version
(V3) no key is needed. Businesses that charge fees for access,
track assets or build internal applications must use Google
Maps API Premier, which provides enhanced features,
technical support and a service-level agreement. The latter is
not a free service.

Google Maps API Family is programmed with JavaScript, the
most popular scripting language for developing dynamic web
content. Web developers should also use JavaScript, whose use
is free, in their web sites.

The datum of the map data is WGS 84. The default map
projection is the Mercator projection. Due to increasing
distortion towards poles, Polar Regions are not visible, so the
world is shown between ~85 N and ~85 S latitudes. In terms of
scale there are 18 zoom levels ranging from a map scaled
~1:5000 to a world map scaled ~1:250 million. For each level

certain objects are selected and generalized accordingly. It is
noticeable that there is a good text optimization.

A comprehensive summary about Google Maps and Maps API
can be found in URL 3.

In order to use the Maps API, the API library must be declared
in the head section of the HTML document. For V2:

<script src="http://maps.google.com/maps?file=api&
v=2&key=ABQIAAAAEm9eg8M7..."
type="text/javascript"></script>

For V3 (without key):

<meta name="viewport" content="initial-scale=1.0, user-
scalable=yes" />
<link href="http://code.google.com/apis/maps/
documentation/javascript/examples/standard.css"
rel="stylesheet" type="text/css" />
<script type="text/javascript"
src="http://maps.google.com/maps/api/js?sensor=false">
</script>

In the code above, there are some points to be mentioned. In the
viewport declaration the option “user-scalable” enables the user
to change the scale of the map. Otherwise zooming will be
disabled. An important development in the Maps API V3 is the
sensor parameter in the API declaration, with which the built-in
GPS receivers can be reached from the API code, if the web
browser is compatible. Since the web pages created by using
Maps API V3 can be displayed in certain types of the mobile
devices, Iphone and devices running Android operating system,
the internal GPS receivers can easily be used within the web
browsers without installing any software.

The functions calling Maps API functions are to be coded also
in the head section of the HTML document. The map is
displayed within a “div” tag in the body section. V2 code below
displays a simple map with a marker on the centre:

<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="content-type" content="text/html;
charset=utf-8"/>
 <title>Google Maps JavaScript API Example</title>
<script
src="http://maps.google.com/maps?file=api&v=2&
key=..." type="text/javascript"></script>
<script type="text/javascript">
 function load() {
 if (GBrowserIsCompatible()) {
 var map = new GMap2(document.getElementById("map"));
 map.setCenter(new GLatLng(41.05, 29.05), 11);
 map.addControl(new GScaleControl());
 var customUI = map.getDefaultUI();
 map.setUI(customUI);
 var point=new GLatLng(41.05, 29.05);
 var marker=new GMarker(point);
 map.addOverlay(marker);
 GEvent.addListener(marker,"click", function() {
 var myHtml = "Center of the map"+point;
 map.openInfoWindowHtml(point, myHtml);
 });}
 }
</script>
</head>
<body onload="load()" onunload="GUnload()">
<div id="map" style="width: 400px; height: 400px">
</div>
</body>
</html>

A special joint symposium of ISPRS Technical Commission IV & AutoCarto
in conjunction with

ASPRS/CaGIS 2010 Fall Specialty Conference
November 15-19, 2010 Orlando, Florida

In the head section the API library is declared within the first
script tag. In the second script tag there is a function named
load that will be invoked when page is loading. This is declared
in the body tag. In this function: a map object is created from
GMap2 instance; the centre and the scale (zoom level) of the
map is declared; a bar scale is added; the user interface of the
map is declared (the map type buttons and navigation tool); a
point is created from the geographical coordinates; at that point
a marker is created; and a “click” event for the marker is
created causing an info window is displayed.

In the body section a div tag is declared, in which the map is
displayed. Within the div tag dimensions of the map are
determined.

The map created with this code is shown in Figure 1. The local
language of the client has been recognized automatically, so the
buttons up right are in Turkish.

Figure 1. A simple map with a marker on the centre

3. OVERLAYS

Three types of spatial data can be overlaid on Google Maps,
point, line, polygon, which are called markers, polylines and
polygons in Google Map’s terminology. Image overlays are
also possible. To determine the locations geographical
coordinates (longitude and latitude) are used. The datum is
WGS84. The map on the background consists of frames each
downloaded from a different server. The overlays are combined
with the background image (map) without downloading any
image again. Because of this technique overlay process
occurred in the client computer. So overlays are easy to be
performed, and costs no extra time and download.

3.1 Overlays within the JavaScript Code

The simplest way of overlaying data is to do this within
JavaScript code. In the example in Figure 1, a marker (point) is
overlaid on the center point of the map. The most common
situation is the following. In a website of a company (or a shop)
there is a marker showing the address of the company on the
map. Here a marker representing the address is overlaid on the
map.

After creating a map the code below creates a marker and
overlays it.

var marker=new GMarker(GLatLng(41.05, 29.05));
map.addOverlay(marker);

The function GLatLng creates a point. The parameters are
latitude and longitude in decimal degrees. GMarker delivers a
marker attached to this point. addOverlay method performs the
overlay. Here a standard Google marker is shown (upside down
rain drop). In order to use a symbol an icon is needed. The
image format for icons is PNG with transparent background.
Google provides a set of basic icon images for mapping
purposes. There are also other web sites that publish free icon
images.

Defining an icon is complex because of the number of different
images that make up a single icon in the Maps API. At a
minimum, an icon must define the foreground image, the size
of type GSize, and an icon offset to position the icon.

The simplest icons are based on the G_DEFAULT_ICON type.
Creating an icon based on this type enables to change the
default icon by modifying only a few properties.

In the code below, an icon using the G_DEFAULT_ICON type
is defined, and then modified to use a different image.

var point=new GLatLng(41.11, 29.02);
var myIcon=new GIcon(G_DEFAULT_ICON);
myIcon.image="http://atlas.selcuk.edu.tr/maps/icons/uni
versity.png";
myIcon.iconSize=new GSize(24,24);;
markerOptions = { icon:myIcon };
var marker=new GMarker(point,markerOptions);
map.addOverlay(marker);

Similarly polylines (Gpolyline) and polygons (GPolygon) are
also created, and overlaid. The code below creates a simple
polyline passing through 5 random points around the centre of
the map. The result is shown in the figure 2. The second and the
third parameters of the GPolyline are the color and the
thickness of the polyline. Geodesic polylines are also possible.

var points=new Array();
for(var i=0;i<4;i++)
{
 points[i]=new GLatLng (0.1*Math.random()
+41.05,0.1*Math.random()+29.05);
}
var poly=new GPolyline(points,"#ff0000", 2);
map.addOverlay(poly);

A special joint symposium of ISPRS Technical Commission IV & AutoCarto
in conjunction with

ASPRS/CaGIS 2010 Fall Specialty Conference
November 15-19, 2010 Orlando, Florida

Figure 2. A simple polyline

The class GPolygon is very similar to GPolyline class.

This approach is useful if few objects are to be overlaid.
Otherwise KML or XML files should be used.

3.2 KML Overlays

The content of the KML files can be overlaid on the Google
Maps. The whole file is overlaid once. This can be thought as
an individual layer. The file must be located on a valid URL
address.

Since the KML objects and Maps API objects (or classes) are
different, all attributes of the KML objects can not supported.
So the appearance of KML contents may not be the same in the
Google Earth and the Maps API. In Maps API V2, some
attributes such as icon sizes of markers, line thicknesses and
colors of polylines and polygons are ignored when overlaid.
Such problems are mostly solved in the Maps API V3.

There are still some problems:

• All content is displayed as a separate layer at once.
• Only two attributes, name and description, are

available. Therefore creation of a legend is not
possible, and making queries based on attributes or
thematic representations are limited.

The advantage of this approach is that a variety of GIS software
can export to KML file format.

The V2 code below displays a KML content.

gx1 = new GGeoXml("http://www.example.com/test.kml");
map.addOverlay(gx1);

Above, for each object in the KML file an info window,
triggered by clicking, is created. In the info window the name
and description attributes of the object that is clicked are
displayed.

In Maps API V3, a KML layer is defined, which is attached to a
map.

var map = new google.maps.Map(
 document.getElementById("map_canvas"),
 myOptions);

var nyLayer = new google.maps.KmlLayer(
 'http://www.example.com/example.kml',
 {
 preserveViewport:true,
 suppressInfoWindows:true,
 map: map});

3.3 XML Overlays

When many objects are to be overlaid, using XML files is
another alternative. There is not any certain XML schema
suggested by Google. Instead, Maps API provide efficient tools
to parse XML files. So the developers define their own XML
schema and create JavaScript code accordingly.

Since this approach is very flexible, automatic legend creation
and thematic representations on certain attributes are possible.
Another advantage is the simple structure of XML files. By
using a text or XML editor, data can be updated without
changing JavaScript code. People without programming skills
can easily do this.

The authors suggest following schema for XML data. The main
element is markers. Under markers three elements can be
defined for point, line and area objects (or geometries):

• marker
• polyline (includes point elements)
• polygon (includes point elements)

For each of these elements certain attributes are needed, which
match properties and options of GMarker, GPolyline and
GPolygon classes (for more information see URL 4). In table 1,
2, 3 and 4 the attributes for marker, point (child element of
polyline and polygon), polyline and polygon elements are
given.

According to specifications mentioned above an XML file
looks like as follows:

Attribute Meaning
Id* Identifier
lat Latitude in decimal degrees
long Longitude in decimal degrees
name Name of the point
description The HTML content to be displayed in

the info window
cat Category or class required for legend
ico_wsize Icon width in pixels
ico_hsize Icon height
ico_wssize* Shadow width
ico_hssize* Shadow height
ico_icon Icon image file name
ico_shadow* Shadow image file
a01,a02,…* Additional attributes for thematic

A special joint symposium of ISPRS Technical Commission IV & AutoCarto
in conjunction with

ASPRS/CaGIS 2010 Fall Specialty Conference
November 15-19, 2010 Orlando, Florida

representations
Table 1. Attributes of marker element, optional ones are

marked with *

Attribute Meaning
Lat Latitude in decimal degrees
Long Longitude in decimal degrees
Table 2. Attributes of point element (child element of the

elements polyline and polygon)

Attribute Meaning
id Identifier
name Name
description The HTML content to be displayed in

the info window
cat* Category or class required for legend
cat_img* Icon file to be used for legend
color Line color
weight Line weight
opacity Opacity or transparency
options Options for GPolyline class
a01,a02,…* Additional attributes for thematic

representations
Table 3. Attributes of polyline element, optional ones are

marked with *

Attribute Meaning
id* Identifier
name Name of the point
description The HTML content to be displayed in

the info window
cat* The legend category or class
cat_img* Icon file to be used for legend
scolor Stroke color
sweight Stroke weight
sopacity Stroke opacity
fcolor Fill color
fopacity Fill opacity
Options* Options for GPolygon class
a01,a02,…* Additional attributes for thematic

representations
Table 4. Attributes of polygon element, optional ones are

marked with *

 <?xml version="1.0" encoding="UTF-8"
standalone="yes"?>
<markers>
 <marker lat="37.949615" long="32.496411" name="M1
Shopping Mall" cat="Mall" desc="…" ico_wsize="20"
ico_hsize="20" ico_wssize="20" ico_hssize="20"
ico_icon="icons/supermarket.png"/>

<Polyline name="tram" desc="…" color="#ff0000"
weight="5" opacity="0.5" options="">
 <point lat="37.88913" long="32.49349" />
 <point lat="37.92008" long="32.4961" />
 <point lat="38.02723" long="32.510684"/>
 </polyline>
</markers>

In order to parse an XML file GXml class (V2) is used.
Following code creates markers from an XML file. A click
event for each marker is also added to invoke an info window.

GDownloadUrl("konya1.xml", function(data, responseCode)
{
var xml = GXml.parse(data);
var markers =
xml.documentElement.getElementsByTagName("marker");
for (var i = 0; i < markers.length; i++) {
 var pnt = new
GLatLng(parseFloat(markers[i].getAttribute("lat")),
 parseFloat(markers[i].getAttribute("long")));
var icon = new GIcon();
icon.iconSize = new
GSize(markers[i].getAttribute("ico_wsize"),
markers[i].getAttribute("ico_hsize"));
icon.iconAnchor = new GPoint(12, 16);
icon.image = markers[i].getAttribute("ico_icon");
var msg=markers[i].getAttribute("desc");
mrk[i]=new GMarker(pnt,icon);
GEvent.addListener(mrk[i], "click", function() { var
myHtml = msg;
map.openInfoWindowHtml(point, myHtml); });
}});

The code is somehow complicated, but flexible in terms of
visualizing the XML content. Additionally, the XML content
can be updated without touching the code. Furthermore a
number of attributes can be used, while there are only two
attributes in KML files (name and description).

GXml class does not exist in the Maps API V3, unfortunately.
Such a class may be added in the future. XML parsing like V2
still possible by using a JavaScript code available at URL 5. A
sample map using this code can be seen at URL 6.

3.3.1 Applications

By using XML overlay methodology explained here two maps
were created: Earthquake map of Konya and city map of Konya
(Turkey).

In Konya, approximately 90 earthquakes greater than two in
magnitude occurred in two months, September and October
2009. Since earthquakes are rare in this region, there was a
great panic in the society. The earthquake data are taken from
the website of Kandilli Observatory and Earthquake Research
Institute (URL 7). Earthquake data includes date and time,
geographical coordinates in WGS84 datum, magnitude, depth,
and place name. The authors developed a program that converts
earthquake data into XML format. The attributes such as date
and time, magnitude are taken as additional attributes, with
which thematic representations are created. The sizes of icons
depend on the magnitude, the colors on the month, in which the
earthquake occurred. By using buttons users can see all the
earthquakes, or filter them according to the month (September,
October, and November). The default view is a physical map.
Users can switch to the road map or satellite image. Some
information about the topic is also added at the right side. The
appearance of the website is shown in figure 3.

A special joint symposium of ISPRS Technical Commission IV & AutoCarto
in conjunction with

ASPRS/CaGIS 2010 Fall Specialty Conference
November 15-19, 2010 Orlando, Florida

Figure 3: Konya earthquake map (http://atlas.selcuk.edu.tr/maps)

Another application of XML overlays is the city map of Konya,
which is crated for visitors of the Department of Geomatics
Engineering of Selcuk University. For this purpose a number of
points of interests (POI) were determined and an XML file was
created. The POIs are divided into 10 classes for the legend,
which is created automatically based on these classes. For each
class custom icons are defined, and for each POI an info
window triggered by clicking the item is defined, in which the
name and description attributes are displayed. The description
attribute contains HTML code with links and images about the
POI. This HTML code in the info window is displayed, in
which users can see images about the POI and clickable web
site links. E.g., in the info window of a hotel, the image of the
hotel and a link to the hotel’s website are displayed.

All POIs are listed in a drop-down list box at the right side.
When an item in the list is selected, the item is centered on the
map with a circle around. The content of the drop-down list is
filled automatically from the XML file.

Since the tram line connecting Selcuk University Campus and
the downtown is not shown on the Google Map, an XML file is
prepared and shown on the map when clicking the “tram”
button. After second click the line is removed. Similarly the
POIs (places) can be on and off. On the top of the page, and
below the legend there is a link to Campus map where the
location of the department and more details of the campus area
are displayed. In this map, a detailed layer of buildings, the
tram line and stops in the campus area, the entrance to the
Faculty, in which the Geomatics Engineering Department is
located, and the entrance to the convention center are shown as
overlays.

The appearance of this website is shown in figure 4. These
maps mentioned above and similar maps can be found in URL
8.

A special joint symposium of ISPRS Technical Commission IV & AutoCarto
in conjunction with

ASPRS/CaGIS 2010 Fall Specialty Conference
November 15-19, 2010 Orlando, Florida

Figure 4: The city map of Konya (http://atlas.selcuk.edu.tr/maps/)

3.4 Overlays from a Database

Spatial data can be retrieved from a Geodatabase, and overlaid
on Google Maps. Doing so, large volumes of data can be
overlaid. After retrieving data, appropriate JavaScript code is
created on the fly, and sent to client computers. The code run
on the server can be written with any programming language,
e.g. ASP, PHP etc. In this way commercial GIS software and
Maps API can be combined.

4. CONCLUSION

In the map mashups created by using any mapping API, at least
one point (a marker) is overlaid. The most common purpose of
map mashups is to show the location of any business, say the

location of a company, a hotel, a convention center, etc. If few
items are be overlaid, it is realized within the Javascript code.
In other cases data should be taken from a file or a database.
Maps API supports KML overlays. In KML files only two
attributes are available (name and description). Therefore
thematic representations are limited to these attributes. XML
overlays are more flexible, and more attributes can be used.
The advantage of KML files is that these files can be created by
Google Earth. Additionally some of the GIS software can
export to KML format. XML files should be created manually,
and edited by using text editors such as Notepad. Specific
computer programs can be developed to create XML files from
a variety of GIS data files. The authors also developed such
programs for certain applications. Another alternative is of
course getting data from a geodatabase and cerate Javascript
code on the fly.

A special joint symposium of ISPRS Technical Commission IV & AutoCarto
in conjunction with

ASPRS/CaGIS 2010 Fall Specialty Conference
November 15-19, 2010 Orlando, Florida

For XML overlays, there is no standard schema. We propose
XML schemas for point, line and area objects. These schemas
include attributes required for optimal representation of
markers, polylines and polygons. The methods and properties
of GMarker, Gpolyline and GPolygon classes are taken into
account. Similar schemas and applications can be found on the
net. A more comprehensible and standardized XML schema
can be formed in the future. It will be feasible that such a
schema will be compatible with Google’s and other map APIs.

5. REFERENCES

Cartwright, W., Peterson, M.P., Gartner, G., 2007, Multimedia
Cartography, Second Edition, Springer, Berlin, Heidelberg,
New York.

Kraak, M.J., Brown, A., 2001, Web Cartography, Taylor &
Francis, London.

Liu, S. B., Palen, L., 2010. The New Cartographers: Crisis Map
Mashups and the Emergence of Neogeographic Practice,
Cartography and Geographic Information Science, Vol. 37,
No. 1, 2010, pp. 69-90.

Peterson, M.P. (ed), 2003, Maps and the Internet, Elsevier
Science.

URL1: http://en.wikipedia.org/wiki/Web_2.0, accessed 30
August 2010.

URL 2: http://code.google.com/intl/tr-TR/apis/maps/, accessed
30 August 2010.

URL 3: http://en.wikipedia.org/wiki/Google_Maps, accessed 30
August 2010.

URL 4:
http://code.google.com/intl/tr/apis/maps/documentation/
javascript/v2/reference.html, accessed 30 August 2010.

URL 5: http://photomunchers.appspot.com/js/util.js, accessed
30 August 2010.

URL 6: http://gmaps-samples-v3.googlecode.com/svn/trunk/
xmlparsing/downloadurl.html, accessed 30 August 2010.

URL 7: http://www.koeri.boun.edu.tr/scripts/lasteq.asp,
accessed 30 August 2010.

URL 8: http://atlas.selcuk.edu.tr/maps

