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ABSTRACT: 
 
This study has utilized a spatial region growing segmentation and a classification using fuzzy membership vectors to detect the 
changes in the images observed at different dates.  Consider two co-registered images of the same scene, and one image is supposed 
to have the class map of the scene at the observation time.  The method performs the unsupervised segmentation and the fuzzy 
classification for the other image, and then detects the changes in the scene by examining the changes in the fuzzy membership 
vectors of the segmented regions in the classification procedure. The algorithm has evaluated with simulated images and has then 
applied to a real scene of the Korean Peninsula using the KOMPSAT-1 EOC images.  In the experiments, the proposed method has 
shown a great performance for detecting changes in land-cover.  

 
 
 

1. INTRODUCTION 

Change detection is the process of identifying differences in the 
state of an object or phenomenon by observing it at different 
times.  Remote sensing data for change detection can be used 
based on the fact that changes must result in detectable changes 
in measurement or pattern.  From the beginning of the remote 
sensing age, the ability to measure and analyze changes on the 
earth environment has been seen as one of the major advantages 
of remote sensing.  For accurate change detection, many 
algorithms have been developed such as image differencing 
(Singh, 1989), principal component analysis (Buruzzone and 
Prieto, 2000), change vector analysis (Buruzzone and Prieto, 
2002), Markov random fields (Gong, 1993), neural network 
(Dai and Khorram, 1998), feature extraction (Zeng et al., 2002).  
This study proposes an effective method for detecting land-
cover changes in remote sensing using a regional growing 
segmentation and fuzzy classification. 
The spatial region growing algorithm was suggested for image 
segmentation in Lee and Crawford (2005).  The region-growing 
algorithm uses the hierarchical clustering procedure, which 
operates the step-by-step merging of small clusters into larger 
ones based on similarity measures between all pairs of 
candidates being considered for merging.  The algorithm is 
designed to do merging within spatial adjacency under the 
hierarchical constraint and finally partition the image as any 
number of regions which are sets of spatially contiguous pixels 
so that no union of adjacent regions is statistically uniform.  The 
fuzzy classification is an EM (expected maximization) iterative 
approach based on mixture probability distribution (Liang et al., 
1992). Under the assumption of a double compound stochastic 
image process, given an initial class map, this approach 
iteratively computes the fuzzy membership vectors in the E-step 

and the maximum likelihood estimates of class-related 
parameters in the M-step, and when satisfying a convergence 
condition, generates the optimal class map according to the 
fuzzy membership vectors.  In the double compound image 
model, an MRF (Kindermann and Snell, 1982) is used to 
quantify the spatial continuity or smoothness probabilistically, 
that is, to provide a type of prior information on the region-class 
process for image classification. 
 Consider two co-registered images of the same scene observed 
at different times.  One image is supposed to have the class map 
of the scene at the observation time.  The method performs the 
unsupervised segmentation and the fuzzy classification for the 
other image, and then detects the changes in the scene using the 
results of fuzzy classification.  The most important advantage of 
the proposed detection technique is that it can apply to the 
comparison between the images acquired from sensors of 
different spectral ranges and/or with different number, position, 
and width of spectral bands.  The algorithm has evaluated with 
simulated images. 
 
 

2. SPATIAL REGION GROWING SEGMENTATION 

One essential structural characteristic involves hierarchy of 
scene information.  Under the constraint of the hierarchical 
structure, it is then possible to determine natural image 
segments by combining hierarchical clustering with spatial 
region growing.  Hierarchical clustering (Anderberg, 1973) is 
an approach for step-by-step merging of small clusters into 
larger ones.  Clustering algorithm utilize a 
similarity/dissimilarity measure that is computed between all 
pairs of candidates being considered for merging, a rule for 
selecting the pairs to be merged, and a rule for “cutting” the 
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hierarchical tree.  The computational efficiency of hierarchical 
clustering segmentation is mainly dependent on how to find the 
best pair to be merged.  The closest neighbor of region j is 
defined as  
 

CN( ) arg min ( , )
jkj d j k∈= R

 
 

where d(j,k) is the dissimilarity measure between regions j and 
k, and Rj is the index set of regions considered to be merged 
with region j.  The pair of regions is then defined as MCN iff k 
= CN(j) and j = CN(k).  It is easily shown that the best pair is 
one of the MCNs.  In Lee and Crawford (2005), the search for 
the best pair is limited in the set of MCNs the segmentation 
performs to be merged among all the MCN pairs.  But, this 
approach updates the set of MCN pairs at every iteration, and 
may then result in computational inefficiency for the 
segmentation.  This method links two adjacent regions that are 
a MCN pair, using “closest neighbor chain (CN-chain).”  It 
does not require the search of the best pair and the update of the 
set of MCN pairs.  Both the techniques use a multi-window 
strategy of boundary blocking operation (Lee, 1990) to alleviate 
the memory problem and improve the computational 
performance of the algorithm.  
 
 

3. FUZZY CLASSIFICATION USING MRF 

It is natural that neighboring pixels with closer intensity levels 
have a higher probability of being the same class.  Based on this 
idea, spatial continuity can be quantified for image processes 
with the pair-potentials that are functions of a distance between 
the neighboring pixels in the mean intensity μ(ω), which is a 
mapping function of ω into real intensity values.  The energy 
function of the MRF is specified in terms of a quadratic 
function of μ(ω) to define the probability structure of the region-
class process for the segmentation: if [v]2 denotes the vector 
whose elements are squared values of each element of vector v, 
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where ωi is the class of the ith pixel, μ(ωi) is the mean intensity 
vector of class ωi, and αij is a non-negative coefficient vector, 
which represents the “bonding strength” of the ith and the jth 
pixels.  
Without generalization, the observed intensity processes are 
usually assumed to be Gaussian, and using the MRF associated 
with the energy function for region-class processes, the 
posterior joint distribution of the class vector ω and the 
observed intensity process X is then 
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where Σ(ω)  is the covariance matrix of the observed intensity 
process.  If Ω is the set of all possible class configurations,  
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and the conditional probability is then  
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Consider a problem classifying M regions in K classes.   The 
data set of region m, Xm = {xj, j∈Jm}, where Jm is the index set 
of pixels in region m and xj is the data vector of pixel j, is 
associated with an unobserved image class k, which is to be 
estimated.  This association between Xm and class k can be 
specified completely with an unobserved indicator vectors, sm = 

},,1,{ Kkskm = .  In ideal situation, the kth element of sm 

has unit value and all the other elements are zero if region m 
belongs to class k.  The mixture probability distribution of the 
complete data set Z = {Xm,sm} is then expressed as 
 

( | , ) ( | )km kms s
k k m k

m k

F w fΘ = ∏∏Z W X θ  

where W = {wk} represents the weights of the components {fk} 
in the mixture distribution, 1kk

w =∑ , and Θ = {θκ} is the set 

of parameters that define the classes.  The fuzzy classification 
procedure calculates the indicator variables {skm} in the E-step, 
and the likelihood of W and Θ is maximized in the M-step 
using {skm} estimated in the E-step.  In this study, under the 
assumption of additive Gaussian image model, EM iterative 
approach computes the fuzzy vector. Figure 1 shows the EM 
iterative approach to compute the fuzzy vectors. 
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Figure 1. EM iteration. 
 
 

4. DETECTION ALGORITHM 

Consider two co-registered images of the same scene observed 
at different times.  One image is supposed to have the class map 
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of the scene at the observation time.  The proposed detection 
scheme is to find the changes in the other image based on the 
class map.  The other image will be referred to as the observed 
image, and the given class map as the reference class 
configuration.  The changes in the observed image are detected 
by the following procedure: 

 
1) Segment the observed image using the spatial region 

growing algorithm. 
2) Partition the segmented regions that consist of two or more 

classes such that all the resultant regions have a uniform 
class.  For example in Figure 2, the class map has two 
classes and the observed image has been partitioned with 9 
segments, resulting in 17 segments (9 segments of class 1 
and 8 segments of class 2). 

3) Initialize the indicator vectors for the fuzzy classification 
such that the element associated with the region class of the 
reference configuration has unit value and all the others are 
zero. 

4) Perform the classification and generate the final indicator 
vectors for the regions. 

5) Detect the changes in the class configuration of the regions 
by comparing the initial class configuration and the 
resultant indicator vectors. 

 
Figure 3 outlines the proposed detection algorithm.  
 

 
Figure 2. Example of combining class map and region 
segmentation. 
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Figure 3. Detection algorithm. 
 
 

5. EXPERIMENT 

Single- and 3-band 8-bit simulation images have been generated 
using a simple pattern, which may represent a remotely-sensed 
environmental scene, by adding white Gaussian noise, whose 
variance is pixel-independent and region-dependent.  Thus, the 
region-class process is characterized by the mean and variance 
of intensity values.   In order to represent varying noise levels 
in the simulation images, the signal-to-noise ratio (SNR) is 
defined as the ratio of the smallest intensity-level difference to 
the average noise standard deviation.  For computational 
convenience, the SNR values are the same for all bands, the 
variances of all region-classes are identical, and the differences 
between contiguous levels in order of mean intensity are 
constant.  The proposed algorithm has first been evaluated with 
the simulation data.  This study generated simulated 
observation images with two levels of SNR (1.0 and 2.0 for 
single band and 0.5 and 1.0 for three bands) using the additive 
Gaussian image model.   Figures 4-a and -b are the maps of the 
reference class configuration and change-areas for the 
experiments respectively.  The pattern used to simulate the 
observed images and an example of simulated single-band 
observation with SNR = 1.0 are shown in Figures 4-c and –d 
respectively.  Figure 4-e is the map of detected change-areas 
which results from applying the proposed detection scheme to 
the simulation data of Figure 4-d.  Tables 1 and 2 contain the 
results of the experiments for the 4 sets of simulation data.  As 
shown in the tables, the error rates are less than 1% in almost all 
changes for the single-band data of SNR = 1.0 and both the 3-
band data. 
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6. CONCLUSION 

The most intuitive technique to detect change is simple 
differencing followed by threshold.  Change at a pixel is 
detected if the difference in measurement levels of the 
corresponding pixels in consecutive frames exceeds a preset 
threshold.  This technique is computationally efficient, but the 
result is very susceptible to noise and it is not suitable for 
applications of time varying imagery.  The experimental results 
show that the proposed method is quite effective for the change 
detection using the images observed at different dates.  For the 
comparison between the images acquired from sensors of 
different spectral ranges and/or with different number, position, 
and width of spectral bands, the approach, which is based on 
classification, is more appropriate than the conventional 
techniques based on the intensity values. 
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Table 1. Error Rates of Change Detection for Single-Band. 
 SNR = 1.0  SNR = 2.0 

 1 2 3 Error Rate  1 2 3 Error Rate 

1 306725* 1828 320 0.007  307965* 879 29 0.003 
1 1037 10788 109 0.096  29 11905 0 0.002 
1 35 19 14047 0.004  1 0 14100 0.000 
2 18548 715 0 0.037  19103 160 0 0.008 
2 6090 396390* 1844 0.020  969 402533* 822 0.004 
2 4 1813 16936 0.097  0 257 18496 0.014 
3 12254 199 58 0.021  12437 66 8 0.006 
3 10 10389 2528 0.161  0 12807 110 0.009 
3 107 1396 244397* 0.006  32 624 245244* 0.003 
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Table 2. Error Rates of Change Detection for 3 Bands 
 SNR = 1.0  SNR = 2.0 

 1 2 3 Error Rate  1 2 3 Error Rate 

1 308729* 81 63 0.000  308700* 159 14 0.001 

1 17 11863 54 0.006  24 11910 0 0.002 

1 9 1 14091 0.001  3 0 14098 0.000 

2 19094 169 0 0.009  19148 115 0 0.006 

2 1920 400443* 1961 0.010  1317 402068* 939 0.006 

2 0 239 18514 0.013  0 110 18643 0.006 

3 12453 44 14 0.005  12502 3 6 0.001 

3 7 12441 469 0.037  0 12718 199 0.015 

3 67 150 245683* 0.001  7 197 245696* 0.001 

*: Number of pixels of the areas that were actually not changed in the original pattern and were not detected as a 
change area. 

Underline: Number of pixels of the areas that were actually changed in the original pattern and were correctly 
detected as a change area 
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Figure 4. Experimental data and results. 

a) Class map 

c) Simulation pattern d) Simulated single-band image 
(SNR = 1.0) 

Class 1 (in upper patterns)/ 
Change-areas in Class 1 

Class 3 (in upper patterns)/ 
Change-areas in Class 3 

Class 2 (in upper patterns)/ 
Change-areas in Class 2 

b) Map of true change-areas 

e) Map of detected change-areas 


