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ABSTRACT: 
 
Several methods of automated line simplification exist, but most involve parameters selected arbitrarily or heuristically, with 
little or no reference to the scale change between original data and generalized output.  Also, while routines such as the 
Douglas-Peucker algorithm achieve simplified line correlates by retention of characteristic points from the input line, little 
analysis has been devoted to whether those points remain characteristic at the generalization target scale.  A new algorithm is 
presented based on regular hexagonal tessellation.  Mosaics of equilateral hexagons are used to sample lines, where the hexagon 
width relates directly to target scale.  Inside each hexagon tessera, input line vertices are collapsed to a single vertex, and the 
resulting set of points constitute simplified correlate lines appropriate for the generalized map scale.  Hexagonal width is derived 
in relation to target scale in two ways: by applying the Radical Law, and by selecting measures pursuant to Tobler's ideas on 
spatial resolution.  Results yield a useful scale-specific method of line generalization. 
 
 

INTRODUCTION 
 
Line simplification is arguably one of the most important 
generalization operators, since almost every map includes 
some form of lines.  Yet the theory of this particular 
operator seems to exist in an unsatisfactory state in the 
literature, given the profusion and diversity of pieces 
written about it and the continued concern with unresolved 
geometric and practical issues.  Not the least of reasons that 
may contribute to this is the relative lack of consensus 
regarding the definitions, requirements, and processes of 
the broader concept of generalization, but it is here 
suggested that most of the reason derives from the fact that 
line simplification is rarely considered in direct relation to 
map scale, which, in the author’s opinion, is the most 
important factor driving the need to generalize at all.  
Rather, attention has gone to and significant advances in 
theory have been made in measures of geometric difference 
between original and generalized lines.  This has resulted in 
importance being placed on characteristic points, without 
enough consideration of how these behave at smaller and 
smaller scales.   
 
This paper is organized in two parts.  The first part 
discusses and comments on current theory in line 
generalization, including aspects such as characteristic 
points, effects and measurements of simplification, and 
scale and resolution.  The second introduces two algorithms 
developed by the author in response to outstanding issues in 
the line generalization literature, displays some preliminary 
results, and discusses present limitations and future 
development of the methods. 

1. LINE GENERALIZATION THEORY 

1.1 Characteristic Points 

With the exception of those defined by functions such as 
Bezier curves, digital cartographic lines are ontologically 
different from lines drawn by manual cartographers, as they 
are composed of sequences of coordinates forming stations 
joined by straight line arcs.  Essentially, a vertex in a 
cartographic line represents a chance for that line to change 
direction in any magnitude of degrees, and to continue as a 
straight segment for any distance to the next vertex.  
Collective measures of distance between vertices have been 
elegantly modeled by Peucker (1976) as frequency, a 
concept that allows for the simplification of a line by the 
reduction of that frequency according to a bandwidth, as 
occurs in the Douglas-Peucker algorithm (1973).   
 
Placement of vertices in many vector data sets has been 
done by human digitization, and thus, whether guided by 
cartographic standards or not, reflects someone’s 
approximation of what may be an infinitely complex 
natural line.  This model is accepted on the assumption that 
selecting good points permits the capture of any line (Jenks, 
1981).  Research has shown that there is a tendency 
towards structure in the choices people make when asked to 
approximate complex figures with a finite number of points 
(Marino, 1979).  The assertion of psychologist Fred 
Attneave (1954) that characteristic points exist in complex 
line drawings, and that these exist at those points of greatest 
directional change (salient points, apexes of curves, sudden 
angles, etc.) has been cited by many cartographic scholars 
concerned with vector generalization.  Yet Attneave 
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acknowledges nearly immediately after making this 
assertion that scale profoundly influences our perception of 
characteristic points: in describing his now famous 38-point 
approximation of a sleeping cat, he goes on to say that one 
could define a characteristic point at the tip of every strand 
of fur if one observed so closely.  Characteristic points, 
then, are chosen as those that seem to compose an effective 
gestalt of the object at the viewing scale, and are thus scale-
dependent. 
 
Characteristic points in digital cartographic lines and their 
retention in line simplification have become a major aspect 
of the generalization literature.  Jenks (1979) defines 
characteristic points as being of two types: those that are 
relevant to perceived form (e.g. curve apexes) and those 
that are given particular geographic importance (e.g. where 
a river passes under a bridge).  This division is helpful, 
because it helps to clarify those processes of line 
simplification that are necessarily discretionary and those 
that may be effectively treated by the objective application 
of automated algorithms.  However, many authors have not 
made this distinction while advocating strongly for the need 
to retain characteristic points in line simplifications.  
Emphasis on characteristic points is demonstrated by the 
manner in which it dovetails with the definition of line 
simplification given by many authors: the removal of 
vertices from a line to arrive at a representative subset of 
vertices (McMaster and Shea, 1992; McMaster and 
Veregin, 1997; Veregin, 1999; White, 1985).  While many 
authors posit that simplification occurs properly when the 
subset of retained points is composed of characteristic 
points from the original line, only a few discuss 
characteristic points, before or after simplification, in 
explicit relation to scale change (Buttenfield, 1989; 
Cromley and Campbel, 1992; Dutton, 1999).  Still others 
relate characteristic points to neighborhood-level line 
complexity and suggest ways in which such points can 
define simplification between them (Buttenfield and 
McMaster, 1991; Plazanet, 1995).   
 
1.2 Simplification 
 
Line simplification is an expressly spatial operator, 
concerned with the alteration of feature geometry for 
representation at smaller scales.  Simplified lines will 
necessarily differ in geographic position at various places 
along their length from their original counterparts.  
McMaster’s (1987) suite of geometric measures between 
original lines and their simplified correlates permits 
objective analysis and measurement of generalization 
degrees and positional error introduced by the 
simplification process.  Simplification methods that retain a 
subset of the original line vertices are often advocated for 
on the grounds that they preserve some degree of positional 
accuracy.  While many authors rightly observe the 
alteration of line position in absolute Euclidean space, and 
by corollary the positional errors introduced in line 
simplification, few consider whether given displacement 
values are acceptable or not at intended generalization 

scale, a matter best considered with regard to visual 
resolution at specific scales. 
 
Perhaps a more serious concern is the manner in which a 
simplified line may acquire erroneous topological 
relationships with other map features (e.g. a river jumping 
to the opposite side of a point-feature city).  Methods of 
dealing with this potential problem seem at present to 
necessitate human editing, but efforts by some have 
increased understanding of the problem toward efficient 
solutions (Saalfeld, 1999; Shi and Cheung, 2006).  Here 
Jenks’ distinction between characteristic points that are 
deemed geographically important and those that are 
geometrically descriptive may be useful in guiding edits, 
with greatest concern focused on the former. 
 
Several authors have suggested the use of some or all of 
McMaster’s displacement measures in parameterization or 
optimization of line simplification (Cromley and Campbell, 
1992; Jenks, 1989; Veregin, 1999).  One motivation for this 
is likely to be that input parameters determining degrees of 
generalization for most simplification algorithms, such as 
the Douglas-Peucker or Visvalingam-Whyatt (1993) 
methods, do not relate lucidly to displacement measures 
taken after simplification.  Further, most of these input 
parameters do not relate to target map scale.  
 
1.3 Scale and Resolution 
 
With few exceptions (such as Cromley and Campbell, 
1992; Dutton, 1999; Li, 1996), scale is little discussed in 
direct relation to other aspects of line simplification.  
Töpfer's Radical Law (Töpfer and Pillewizer, 1966)  
remains the most cogent treatment of generalization of any 
kind with direct relation to scale.  The Law is a series of 
equations, each accompanied by certain constant and 
exponent values that tailor it to a particular map feature 
type.  Each equation ingests the number of features of the 
relevant type at the starting map scale, and expresses how 
many of these features should be retained upon reduction to 
a specified scale.  As several scholars have noted, the Law 
provides a rational guide to the quantity of features to 
retain, but does not address which features should be 
retained. 
 
Tobler (1987) defines average spatial resolution as “the 
content of the geometric domain of observation divided by 
the number of observations, all raised to the power one over 
the spatial dimension”, where the domain is a length, area 
or volume in one, two or three dimensions, respectively.  
Working with the measure of the smallest mark that can be 
made on a map as approximately a half-millimeter, Tobler 
relates resolution to map scale with a simple rule: “divide 
the denominator of the map scale by 1,000 to get the 
detectable size [of features drawn to scale] in meters.  The 
resolution is one half of this amount”.  Resolution is half 
since, from sampling theory, an object can only be certainly 
detected if the sampling frequency is half its width, thus 
ensuring the object can’t pass undetected between samples.  
Tobler further suggests that a good rule of thumb is to use a 



 

A special joint symposium of ISPRS Technical Commission IV & AutoCarto 
i n  c o n j u n c t i o n  w i t h  

ASPRS/CaGIS 2010 Fall Specialty Conference 
November 15-19, 2010 Orlando, Florida 

!!

!!
!!

!!
!!
!!
!!

!!

!!
!!

!!
!!
!!!! !! !!

!!

!!

!!
!!

!!
!!

!! !!
!!

!! !! !!!!
!!
!!
!!
!!
!!
!!
!!!! !!!!

!!!!

!!
!!
!!!!!!!!

!!
!!
!!
!!
!!
!!
!!!!!! !!!!

!!
!!

!!

!!
!!
!!!!!!!!!!

!!
!!
!!

!!
!!
!!
!!!!!!!!!!

!!
!!

!! !!
!!!!

!!
!!
!!
!!!!

!!
!!
!!
!!
!! !!

!!

!!
!!
!!
!!
!!
!!!!

!!
!!

!!

!!
!!

!!

!!
!!
!!

!!

!!
!!
!!

!!!!
!!
!!
!!
!!

!!

!!
!!

!!
!!
!!

!!!!
!!!!!!!!

!!!!
!!

!!
!!
!!
!!

!
! !

!

!

!

!

!

!

!

!

!
!

!

!

!

!

! !

sampling rate one-fifth the size of the smallest features one 
wishes to detect.  (For example, at a scale 1:25,000, 
resolution is 12.5 m, detectable object width is 25 m, and 
rule-of-thumb detectable object width of 62.5 m.)  Other 
authors have also described resolvable units: McMaster and 
Shea (1992) note that 0.02 mm at a viewing distance of 30 
cm is about the smallest size of object the human eye can 
resolve, and they wisely suggest no cartographer should 
make marks so extremely small. 
 
Li and Openshaw (1993) have suggested that generalization 
be carried out according to a “natural principal,” found in 
the effect of resolution change in human vision as viewing 
distance increases.  They assert that generalization  should 
be undertaken primarily in response to reduction in map 
area as a consequence of scale change, and that scale 
change provides an “objective criterion that can be used in 
analytical algorithms to automate the generalization 
process” (1993).  They declare that “the remaining problem 
is to determine how the scale change can best be linked to 
the degree of generalization needed to retain legibility”. 
 

2. GENERALIZATION USING HEXAGONAL 
TESSELLATIONS 

2.1 Algorithm Description 
 
The remainder of the paper describes two line 
generalization algorithms developed by the author.  
Motivation behind the development of these originated 
from the author’s belief that map scale plays a defining role 
in determining the appropriateness of levels of 
generalization, and thus should be directly referenced in the 
generalization process itself, rather than used a posteriori to 
evaluate generalizations produced without careful scale 
specificity.  Further motivation originated from the desire 
to devise algorithms with input parameters directly and 

objectively related to target scale and/or scale change. 
 
The algorithms do not attempt to locate and retain 
characteristic points.  On the belief that these are scale-
specific, and therefore not necessarily appropriate for 
representing a given figure at smaller scales, the author 
instead adopts a position similar to that described in 
Buttenfield (1985), wherein all vertices along a 
cartographic line are considered equiprobable in position.  
Rather than rely on the retention of a critical point at the 
apex of a curve, for example, the algorithms presented 
below will retain the curve only if it remains large enough 
on the map after scale reduction to visually register at the 
map’s calculated resolution. 
 
The methods presented here are predicated on the notion 
that regular tessellations of equilateral hexagons at various 
resolutions (i.e. various hexagon widths, being the 
perpendicular distances from one side to the side opposite) 
can be used in line sampling strategies that capture the 
essential form of a line at varying levels of spatial detail.  
Essentially, the idea is to sample a line with uniform aerial 
frequency directly scaled to target map scale, and to 
collapse all input vertices in the neighborhood of a sample 
locale to a single vertex.  If the distance between sampling 
locales is proportioned according to expectable visual 
resolution in the reduced map space at target scale, the 
collapsed vertices should constitute a generalized line with 
visually resolvable detail that maintains geometric form to 
the degree at which a viewer may expect, at target scale, to 
perceive it.  Equilateral hexagons are used in a honeycomb 
configuration because of the radial symmetry inherent to 
hexagonal tessellations (i.e. distances from the centroid of 
one hexagon to any of its six topologically-adjacent 
neighbors are equal), which creates a spatially-uniform 
sampling strategy.  Also, tessellations of equilateral 
hexagons, if considered along with the centroids of the  

Figure 1. Generalized approximation.  Input line vertices are in grey.  Output vertices are located in each hexagon at 
the mean x-y coordinate pair calculated from the input vertices in that hexagon.  These vertices, as well as the resulting 
line, are in black. 
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hexagons, also qualify as Dirichlet or Voronoi tessellations, 
meaning that any point in any given hexagon is closer to 
the centroid of that hexagon than to the centroid of any 
other hexagon. 
 
The algorithms, in using scalable aerial units to perform 
local generalization, bear resemblances to those of Dutton 
(1999), Li and Openshaw (1993), and Perkal (1966).  
Differences to the work of these authors lie in the non-fixed 
positioning of the tessellation, and the ways in which 
tesserae width is related to target scale. 
 
The first algorithm is a method of creating a generalized 
approximation of the input line, and is illustrated in Figure 
1.  The products of the first algorithm are considered 
approximations because they do not create a line from a 
subset of the input line vertices, but rather use new, derived 
points in each tessera.  The second algorithm is a method of 
creating a simplified correlate of the input line, and is 
illustrated in Figure 2.  (In both figures, only those 
hexagons from a continuous tessellation which intersect the 
input line are drawn for visual clarity.)  The second 
algorithm does create a line from a subset of the input line 
vertices.  The algorithms are essentially alike, except in the 
decision of how and where to collapse input points in each 
hexagon to a single vertex.  Both algorithms calculate a 
spatial mean inside each hexagon for the set of input line 
vertices that fall within it: the first uses the x-y coordinate 
of that spatial mean as the single vertex representative of 
the input vertices in that hexagon, while the second selects 
the input vertex closest to the spatial mean as the single 
vertex to be retained in that hexagon.   
 
 

 
The algorithms presented here can be categorized using 
schemes developed by other authors.  McMaster and Shea 
(1992) identify five classes of line simplification 
algorithms, namely: 1) independent point algorithms, which 
do not consider line geometry or topological relationships, 
2) local processing routines, which use neighboring points 
to select generalized points, 3) constrained extended local 
processing routines, which consider geometry beyond 
neighboring points in nearby line segments, 4) 
unconstrained extended local processing routines, which 
consider geometry beyond nearby line segments and are 
defined by geomorphic characteristics of the line, and 5) 
global routines, which consider whole lines and work 
iteratively.  The algorithms presented here belong best in 
their second category.  Also, in their present 
implementation, the algorithms operate irrespective of any 
other map features with which the lines will be drawn, and 
thus constitute an example of in vacuo generalization 
(Saalfeld, 1999); this is distinct from en masse or en suite 
generalization, which take topological relationships of the 
line and all other features into consideration, and which 
take topological relationships of the line and nearby 
features into consideration, respectively.  It can be seen 
therefore that generalizations made using these algorithms 
may be subject to topological inconsistencies with other 
map features.  While it is true that generalized lines may 
pass outside the set of hexagons which intersect the input 
line, this seems to be rare and to occur with small aerial 
displacement measures as compared to the area of one 
hexagon.  While further testing on multiple input lines will 
better define this phenomenon, it is presently suggested that 
so long as other map features lay outside of the hexagons 
which intersect the input line, there is negligibly low 

Figure 2. Simplification.  Input line and vertices are in grey.  Mean x-y coordinates in each hexagon calculated from 
the input vertices in that hexagon, drawn with white circles.  The vertex among the input vertices in each hexagon 
closest to the mean x-y coordinate is selected; these, as well as the resulting line, are in black.
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chance they will acquire erroneous topological 
relationships with the line upon its generalization. 
 
Two methods of determining hexagon sizing in relation to 
target map scale have thus far been pursued.  The first is an 
application of the Radical Law.  By this determination, 
hexagon width is defined such that the frequency of 
vertices in the output line reflects a linear decrease in the 
frequency of vertices in the input line, proportional to the 
difference in scale between input and target lines.  The 
mean distance between each node in the input line is 
calculated, and the hexagon width is set as this value 
increased by the target and input data scale quotient: 
 

                       
d

t

n

l
w        

(1) 
 

    where  w = hexagon width 
Σ l= the sum of all arc lengths between vertices 
in the input line 
n = the number of all arcs between vertices in the 
input line  

 t = the denominator of the target scale 
 d = the denominator of the input data scale. 
 
The second determination is based on Tobler’s (1987) rule 
for spatial resolution.  In applying the rule to the perception 
of successive vertices in a cartographic line, the author has 
chosen to select a resolution one half the rule-of-thumb 
detectable size.  This value is taken for the hexagon width, 
which defines the sampling resolution of the resulting 
tessellation.  Thus, for example, at a map scale of 
1:250,000, detection width is 250 m, resolution is 125 m, 
rule-of-thumb detection width is 625 m, and the hexagon 
width for the algorithms described here is 312.5 m.   
 
2.2 Preliminary Results and Future Work 
 
Results from both algorithms, using both methods of 
hexagon width determination discussed above, are 
presented as a series of four in Figure 3.  The input line is 
an arbitrary section of the Black River in Orleans County, 
Vermont, taken from the USGS National Hydrography 
Dataset (NHD), High resolution.  This portion, measuring 
approximately 12.9 km in length, was chosen upon visual 
inspection for its sinuosity and the presence of at least two 
distinguishable levels of physical form (i.e. tight sinuous 
sections needing generalization at smaller scales, and larger 
trends in shape).  The author hoped such complexity would 
test the abilities of the algorithms to reproduce both general 
form as well as local detail.  The maps are projected in 
UTM.  In all cases input scale was 1:24,000, and the lines 
were generalized to a target scale of 1:100,000.  Hexagon 
widths, being the only input parameters, were set at 57.24 
m for the examples pursuant to the Radical Law (A & B), 
and at 125 m for the examples pursuant to Tobler's 
resolution theory (C & D). 
 

Results are presented here for visual comparison and 
demonstration; no attempt has yet been made to analyze the 
results quantitatively, though future work will be devoted to 
this.  While at present evaluations are exclusively 
subjective, the approximation in line C, generated with a 
hexagon resolution persuant to Tobler's resolution theory 
and utilizing the mean x-y coordinates calculated in each 
hexagon, seems to generate the most aesthetically pleasing 
and geometrically lucid line.  
 
Future work will involve testing the algorithms on many 
more cartographic lines representing features with broadly 
varying geomorphologies, such as rivers, shorelines and 
roads, as well as polygon boundaries such as state borders.  
Particular attention will go to testing the algorithms on 
input lines with widely-varying component arc lengths.  
Quantitative analysis and measurement of the products of 
the algorithms will also be performed and compared to the 
products of other, existing routines.  It is presumed that the 
algorithms developed here will be best suited to lines 
representing naturally sinuous, complex features such as 
watercourses.  Variations in the placement and orientation 
of the hexagonal tessellation are also possible, and work 
will explore the consequences of these. 
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