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ABSTRACT:

Synthetic Aperture Radar (SAR) has been proven to be a powerful earth observation tool. Due to its sensitivity to vegetation, its
orientations and various land-covers, SAR polarimetry has the potential to become a principle mean for crop and land-cover
classification. A variety of polarimetric classification algorithms have been proposed in the literature for segmentation and/or
classification of polarimetric SAR images into classes reflecting canonical scattering processes and/or some statistical properties.
However, classification based on polarimetric data alone does not provide sufficient sensitivity for the separation of some classes
such as forests. The use of other kinds of characteristics like texture provides better sensitivity for class separation. In this paper, we
wish to address this issue, testing and comparing some polarimetric SAR classification algorithms using texture. Such an analysis
will allow us to evaluate the importance of texture considering and to prove if the chosen texture model parameters describe, also,
physical properties of the targets. Thus, the proposed approach is compared with the Wishart classifier showing interesting results.
The test area used is the Oberpfaffenhofen in Munich and the SAR images are acquired in the P band.

* Corresponding author.

1. INTRODUCTION

Synthetic Aperture Radar (SAR) has been proven to be a
powerful earth observation tool. In many remote sensing
applications important additional information can be derived
from multipolarised imagery. The number of studies and
applications involving polarimetric SAR data is increasing
steadily. Radar polarimetry has for long been known as a
powerful method for soil moisture and surface roughness
identification, sea ice detection and delineation of vegetation
and land cover (Ferro-Famil, 2003; Macri, 2003; Hoekman,
2003; Lee, 2004; Martini, 2004; Wakabayashi, 2004; Alberga,
2007; Liang, 2008). Many features such as intensities,
coherency matrix, correlation and phase differences have been
used in various classification experiments.
The first algorithms developed for classification of polarimetric
SAR images have ignored the spatial information (texture) and
used the Whishart distribution as the basis of the classification
scheme. But, th last decade, several research papers revealed the
contribution of texture in polarimetric classification
improvement. Thus, some authors used texture for classification
without a decomposition method. Yu and Acton (2000)
presented a partitioning scheme using an initial texture
segmentation based on watershed algorithm. Ersahin et al.
(2004) have proposed a neural network unsupervised
classification scheme using covariance matrix parameters and
texture features derived from gray level co-occurrence matrices.
Recently, some authors proposed to employ texture features
calculated from polarimetric data after decomposition. So,
Beaulieu and Touzi (Beaulieu, 2004) introduced a segmentation
algorithm that takes into account texture information where the
K-Wishart distribution is used to model textured areas.
Rodionova (2007) demonstrated that textural features defined in
every scattering categories of Freeman and Durden
decomposition make better object discrimination of SAR
polarimetric images. In (Khan, 2007), good classification results

have been achieved using neural network with a feature set
including undecimated wavelet, transform-based features and
texture features along with nonlinear features and a partial set
from the elements of the coherence matrix. Liang (2008) also
investigated the performance of different texture features using
neural network classifier. Bombruno (2008) demonstrated that
the use of an appropriate texture distribution is useful to
segment textured PolSAR images. Dabboor et al. (2008), also,
combined the textural features in each scattering category
obtained from the Freeman-Durden decomposition with the
number of the scattering mechanisms from the entropy
calculated from the Cloude-Pottier decomposition. in order to
perform the segmentation process. Zhang et al. (Zhang, 2009)
combined the scattering powers of MCSM (Multiple-
Component Scattering Model) and selected texture features
from Gray-level co-occurrence matrices using SVM (Support
Vector Machine) classifier and neural network (Zhang, 2009).
The objective of this paper is to evaluate the performance of
texture modelling of polarimetric SAR images in land-cover
classification by two steps scheme: the first step is Cloude and
Pottier decomposition and the second one is markovian textural
classification applied on decomposed images. For evaluation
purpose, the result is compared to a classification obtained
using Wishart classifier.

2. POLARIMETRIC SAR CLASSIFICATION

Many supervised and unsupervised classification methods have
been proposed, such as methods based on the maximum
likelihood (ML), artificial neural networks (NN), support vector
machines (SVM), fuzzy methods, etc. An usual approach is to
classify polarimetric SAR images based on the inherent
characteristics of physical scattering mechanisms using
decomposition theorems (Cloude, 1996; Touzi, 2004). Several
decomposition techniques were proposed. These techniques are
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based on three principal approaches known as coherent
methods, Huynen decomposition (Huynen, 1970) and non
coherent methods. These methods split the scattering matrix
into the sum of elementary scattering matrices, each one
defining a deterministic scattering mechanism (Touzi, 2007). As
we are dealing with texture which is a neighbourhood property,
we choose to compare the textural classifier to a classifier based
on incoherent decomposition. Indeed, non coherent
decompositions permit to take into account the context, thus
neighbourhood. For this purpose, we used whishart classifier. In
fact, the characteristic decomposition of the Hermitian target
coherency matrix allowed Cloude and Pottier to derive key
parameters, such as the scattering type α and the entropy H,
which have become standard tools for target scattering
classification and for physical parameter extraction from
polarimetric SAR data.

2.1 Textural Classifier

Image texture, defined as a function of the spatial variation in
pixel intensities, is useful in a variety of applications and has
been a subject of intensive study by many researchers. The
texture parameter is extremely important for radar imagery
interpretation, especially in terrain mapping. In fact, Radar
image depends heavily on the scattering of ground objects and
its textures/structures strongly vary with different objects. Many
models have been employed in texture analysis including
autoregressive model, Markov random fields (MRF), Gaussian
random fields, Gibbs random fields, World model, wavelet
model, multichannel Gabor model, fractal model, etc (Chellapa,
1993; Bader, 1995; Arivazaghan, 2003). In this study, we use a
non parametric Markovian model that has been successfully
applied to SAR image classification (Kourgli, 2009) and adapt
its formulation to polarimetric images.

2.1.1 Texture model: Markov theory states that each pixel in
an image has an independent local spatial property
characterized by its surrounding neighbours. A discrete Markov
field {X} is defined on a 2-D lattice S with a neighbourhood
structure NS. Its global properties () are controlled by means
of local properties which are defined by local conditional
probabilities (Derin, 1987; Li, 2000) The Markov property
describes local conditional dependence of pixels image as:

 
 SrrSS

rrSSs

NrxXxXP

srSrxXxX

Ssx







,/

,,/

,,
(1)

Another attractive property of an MRF is that, by the
Hammersley-Clifford theorem (Hammersley, 1971) an MRF can
be characterized by a global Gibbs distribution that is usually
defined with respect to cliques. A clique C is a particular spatial
configuration of pixels, in which all its members are statistically
dependent of each other:
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 is called energy and is

obtained by summing potential functions VC(x) while ZS is a
normalizing constant. A probability model is usually specified
by a parametric probability distribution. The model is to be
identified, in order to find best values for unknown parameters
of the model for a given training texture. Due to usually
complex mathematical form of texture distribution and because
almost natural textures are quasi-stationary, parametric models
fail to model them. Hence, we adopted an energy formulation
defined by a Neighbourhood Likeness Measure (NLM) which is
estimated between the neighbourhood NS and all the
neighbourhoods NY contained in the texture sample Y.

This measure is given by:
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Texture modelling can be performed in order to reproduce
natural textures, but it can also be used as a tool for a
classification or for a segmentation purpose.

2.1.2 Classification: The texture segmentation problem is
the labelling of pixels in a lattice to one of texture classes, based
on a texture model and the observed intensity field. Bayesian
approaches, where maximum a posteriori (MAP) estimation is
usually involved to image segmentation, have been proven
efficient. In addition, we adopted the assumption presented in
(Bouman, 1994) which states that the joint probability of a pixel
in a window FS can be approximated by the product of the
neighbourhood probabilities over this window:
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As a combined use of physical scattering characteristics and
statistical properties for terrain classification is desirable, we
apply textural classification on Pauli decomposed vector.
The Pauli vector, for a full polarimetric data, is given by:
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The first element of the vector expresses odd bounce scatterer
type such as the sphere, the plane surface or reflectors of
trihedral. The second one is related to a dihedral scatterers or
double isotropic bounce and the third element is related to
horizontal and a cross polarising associated to the diffuse
scattering or volume scattering.

Using the probability defined above and Pauli decomposition,
we performed a classification scheme which is described as
follows:

In: Wagner W., Székely, B. (eds.): ISPRS TC VII Symposium – 100 Years ISPRS, Vienna, Austria, July 5–7, 2010, IAPRS, Vol. XXXVIII, Part 7A
Contents Author Index Keyword Index

107



 Select from each texture image a sample.

 Scan the mosaic texture using a window sized FS with
a step of one pixel in the row and column directions,
and calculate the joint probabilities defined by
equation (4) for each sample in the three decomposed
images

 The central pixel of the window considered will be
assigned to the class maximizing the joint probabilities
calculated.

2.2 Wishart classifier

In this work we are using the non coherent decomposition
proposed by Cloude and Pottier. It is based on the coherency
matrix calculated using the Pauli basis and given by (Cloude
and Pottier, 1997):

  T
Pp kkT


 (6)

This is a multilook 3x3 positive semi-definite hermitian
coherency matrix where the superscript T denotes the matrix

transpose, and < > indicates multilook averaging. The 2 on

the term is to ensure consistency in the span (total power)
computation. The eigenvectors and eigenvalues of the
coherency matrix [T] can be calculated to generate a diagonal
form of the coherency matrix which can be physically
interpreted as statistical independence between a set of target
vectors.

2.2.1 Entropy, alpha and anisotropy: The eigenvalues of
[T] have direct physical significance in terms of the components
of scattered power into a set of orthogonal unitary scattering
mechanisms given by the eigenvectors of [T], which for radar
backscatter form the columns of a 3 x 3 unitary matrix. Hence,
we can write an arbitrary coherency matrix in the form
(Papathanassiou, 1999):
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where [∑] is a 3x3 diagonal matrix with nonnegative real
elements:
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[U3]= [u1 u2 u3] is a unitary matrix, where u1, u2 and
u3 are the three unit orthogonal eigenvectors

After eigen vector decomposition of the coherency matrix the
entropy H, which is a measure of the randomness of the
scattering process, is deduced from the eigen values as:
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where Pi are the probabilities obtained from the
eigenvalues i :
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The entropy H represents the randomness of the scattering. H =
0 indicates a single scattering mechanism (isotropic scattering)
while H = 1 indicates a random mixture of scattering
mechanisms with equal probability and hence a depolarising
target.
The parameter α is indicative of the average or dominant
scattering mechanism. It describes the dominance of the
scattering mechanism in terms of volume, double bounce or
surface scattering types. The  angle is obtained from the i

angles of each of the eigen vectors as follow:
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The anisotropy A is a parameter complementary to the entropy.
It measures the relative scattering of the second and the third
eigenvalues of the eigen-decomposition. It is given by:

32

32








A (12)

If the pair H −α plotted on a plane then they are confined to a
finite zone. This plane is subdivided into eight zones
characterizing different classes corresponding to different
scattering mechanisms.

2.2.2 Classification: The basic scattering mechanism of each
pixel of a polarimetric SAR image can be identified by
comparing its entropy and parameters to fixed thresholds. The
different class boundaries, in the H-alpha plane, have been
determined so as to discriminate surface reflection (SR), volume
diffusion (VD) and double bounce reflection (DB) along the 
axis and low, medium and high degree of randomness along the
entropy axis. When the anisotropy parameter is introduced, it
allows the possibility to distinguish different clusters where the
centers belong to the same H −α partition (Ouarzeddine, 2007).

The eight classes resulted from the H−α decompositions are
used as training sets for the initialization of the unsupervised
Wishart classifier. For a coherency matrix <Ti> of a pixel i of a
multilook image (L-looks) knowing the class ωi, the Wishart 
complex distribution is given by:
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Where q=3 in the case of reciprocity (i.e., Shv=Svh),   and tr
(.) indicate the determinant and the trace of the matrix
respectively, and Γ(.) is the gamma function.
A probabilistic measurement of the distance between the a
coherence matrix of an unspecified pixel <Ti>, and the average
coherence matrix Σm of the class candidate ωm , is obtained
using:

       immmi TtrTd 1ln,  (15)

Mathematically, each coherency matrix of an individual pixel is
assigned with the most likely class ωm with the minimal
distance, if and only if :

     jimi TdTd  ,, (16)

for all m=n.

The clusters of the first itération are used us a training set for
the second itération until a consequent result is obtained.

3. DATA USED

The data is related to the site of Obepfaffenhofen and is
captured on May 2000. It is covering the southern part of
Munich, Germany and an area that embraces about 1 Km2 was
chosen in this study. The radar used is the Aeos1 of the Ex
private Aerosensing GmBH company. An airborne radar with
the P band (72 cm). The SAR images are acquired in fully
polarimetric mode and are of important value to supply
information on the terrain type. An area of 600×600 pixels has
been extracted for this study (Figure 1).

Figure 1: A colour composite of the test site using the Pauli
basis.

4. CLASSIFICATION RESULTS

From Wishat classification result, we selected six samples sized
12×12 pixels, three forest types (magenta, yellow and cyan),
two for base area (blue and green), and the last represents built
up area (red). First, we considered each image from Pauli vector
decomposition apart and performed textural classification in
each scattering category. The result obtained for each
decomposed image is shown in Figure 2.a, 2.b and 2.c, while
Figure 2.d is a colour composite of the three probability images
before labelling.

a) b)

c)

Figure 2: The textural classification using Pauli images (a,b and
c) and their colour composite (d)

The different classes are well segmented in all the three
scattering channels. Indeed, the result obtained is interesting
since all the classes are almost correctly recognized, however,
some confusion occurs at the boundaries of different classes.
These preliminary results show that the model texture is
sensitive to the polarization (the classification results are
different for each scattering type) and that the different
scattering mechanisms have also been discriminated. The
composite colour (Figure 2.d) of the different segmented
decompositions provides a first classification that is interesting.
In a second step, we classified the image on the basis of the
three Pauli images simultaneously maximizing probability over
the three images. The results are illustrated in Figure 3. We
have reduced the classification result of Wishart classifier to the
same number of classes. The polarimetric textural classification
(Figure 3.b) appears consistent with the result obtained from
Wishat classifier (Figure 3.c). We notice a large similarity for
base area (in blue and in green) and built-up area (in red).
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a) b)

c) d)

Figure 3: A colour composite of the test site (a) using the Pauli
basis decomposition, polarimetric classification (b : textural
classifcation, c : Wishart-A-α classification) and an image

extracted from google earth software of the test site

For a comparison purpose and to check the efficiency of our
textural classification, we computed the classification
percentage for each class (table 4) taking the Wishart
classification result as a reference.

Classes Color+rate

Built-up Red 89.53
Mixed forests Cyan 44.45
Deciduous forests Yellow 86.86
Bare soil Blue 47.73
Grass and fields Green 91.56
Coniferous forests magenta 68.28

Table 4: Classification percentage

While showing good rates for three classes (>86%), textural
classification performs less better for the other samples. The
weak rates obtained for bare soil (in blue) and mixed forests (in
cyan) could be justified by a bad localization of the
corresponding samples used in textural classification process.
Furthermore, we give at Figure 3.d an optical image (Google
Earth) of the same area. We can see that buit-up area (in red)
has well identified by the textural classification, but some
confusion occurs between decidious forests (in yellow) and
built-up area. This gives a clear indication of how the
classification algorithm has performed. Thus, textural modelling
performed in every scattering type of Pauli decomposition
makes good object discrimination of SAR polarimetric images

if samples are correctly chosen. This can be done, for example,
by using H −α partition.

5. CONCLUSION

The different polarisations respond in different ways to the
orientation and shape of the objects from which scattering takes
place. It is obviously important to have tools that make full use
of this information. The main purpose of this paper was to test
object separability performance by using texture modelling in
each scattering type. As the information in the fully polarimetric
data can not be completely represented by one single feature,
the combination of different polarimetric features incorporating
spatial information seems to give interesting results. Indeed,
textural modelling of polarimetric images provides a possibility
to separate different classes and proves the texture features
polarization dependence. It was shown that texture significantly
contributed to land cover discrimination where backscattering
coefficient could fail. Thus, our results confirm previous
findings that texture incorporating can improve polarimetric
images interpretation and help in land cover identification.
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