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ABSTRACT:

Remote Sensing is trending towards the use of greater detail of its source data, advancing from ever better resolving satellite imagery via
decimeter-type aerial photography towards centimeter-level street-side data. It also is taking advantage of an increase in methodological
sophistication, greatly supported by rapid progress of the available computing environment. The location awareness of the Internet
furthermore demonstrates that large area remote sensing strives for a model of human scale detail. This paper addresses the task of
mapping entire urban areas, where objects to be mapped are naturally three dimensional. Specifically we are introducing a novel
approach for the segmentation and classification of buildings from aerial images at the level of pixels. Buildings are complex 3D
objects which are usually represented by features of different modalities, i.e. visual information and 3D height data. The idea is to treat
them in separated processes for learning and then integrate them into a unified model. This aims to exploit the discriminative power
of each feature modality and to leverage the performance by fusing the classification potentials at a higher level of the trained model.
First, representative features of visual information and height field data are extracted for training discriminative classifiers. We exploit
powerful covariance descriptors due to the low-dimensional region representation and the capability to integrate vector-valued cues such
as color or texture. Then, a stacked graphical model is constructed for each feature type based on the feature attributes and classifier’s
outputs. This allows to learn inter-dependencies of modalities and to integrate spatial knowledge efficiently. Finally, the classification
confidences from the models are fused together to infer the object class. The proposed system provides a simple, yet efficient way to
incorporate visual information and 3D data in a unified model to learn a complex object class. Learning and inference are effective
and general that can be applied for many learning tasks and input sources. Experiments have been conducted extensively on real aerial
images. Moreover, due to our general formulation the proposed approach also works with satellite images or aligned LIDAR data. An
experimental evaluation shows an improvement of our proposed model over several traditional state-of-the-art approaches.

1. INTRODUCTION

Remote sensing is rapidly moving towards half-meter satellite
imagery, decimeter aerial imagery and centimeter-type street-side
photography, and all of these in a multi-spectral mode. Simul-
taneously, large areas of the World are now being mapped at
human-scale detail to support the Internet’s recent appetite for
location awareness. This is resulting in a new domain of large-
area urban mapping, however to result not in photo-textured point
clouds, but in interpreted objects from which one can build a
model of the urban World. A central task is the segmentation
and classification of images of buildings. This needs to be fully
automated to be at sufficiently low cost so that large area map-
ping is feasible.
A large urban area may encompass 150 to 500 square-kilometers.
Large scale aerial imagery may be at a pixel size of 10 cm. Such
large urban area may be covered by 10,000 large-format aerial
photographs at high overlaps. We are thus addressing a challeng-
ing task of scene interpretation and understanding. It is essential
for many location-based applications, such as detailed image de-
scription (Meixner and Leberl, 2010), realistic 3D building mod-
eling (Zebedin et al., 2008) or virtual city construction (Leberl et
al., 2009). Over the years, the automated building extraction has
been an active research topic. Considering a large scale process-
ing, the problem of building classification becomes very difficult
for many reasons. Buildings are complex objects with many ar-
chitectural details and shape variations. Buildings are located in
urban scenes that contain various objects from man-made to natu-
ral ones. Many of those are in close proximity or disturbing, such
as parking lots, vehicle, street lamps, trees, etc. Some objects are
covered with shadows or cluttered. These difficulties make the
problem of a general building detection challenging. Figure 1 de-
∗ Corresponding author.

Figure 1: Typical color images of complex urban scenes taken
from the dataset Graz, Dallas and San Francisco.

picts typical urban scenes taken from three challenging datasets
Graz, Dallas and San Francisco showing some of these difficul-
ties. We therefore propose an approach which combines several
feature cues such as color, texture and 3D information in order to
obtain a reliable building extraction from aerial images.

With the success of the aerial imaging technology, high resolu-
tion images can be obtained cost-effectively. Multiple sources
of data become available, i.e. color, infrared and panchromatic
images (Zebedin et al., 2006). Furthermore, since the aerial im-
ages are taken with a high overlap from different camera view-
points, a dense match approach (Klaus et al., 2006) can be ap-
plied to obtain range images, representing digital surface models
(DSM), from neighboring images. Taking into account the DSM,
3D height information describing the real elevation of each pixel
from ground can be computed. The obtained 3D information in
combination with visual cues can be exploited efficiently for tasks
like accurate building extraction. Figure 2 shows two classifica-
tion results obtained for a scene of Graz by separately incorporat-
ing color and 3D information. It is obvious, that a combination of
both cues will provide an improved classification results. More-
over, aerial images contain a huge amount of data, which requires
efficient methods for processing. This work presents a general
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Figure 2: A classification result obtained by using only color (b)
or 3D height information (c). In this work we apply a stacked
graphical model in order to combine the strength and advantages
of both pipelines.

yet efficient approach that integrates the power of discriminative
feature cues.

Automatic building classification and extraction has been a very
active research topic in photogrammetry and computer vision for
years. The proposed approaches heavily differ in the use of data
sources, extracted feature types, the applied models or the evalu-
ation methods (Jaynes et al., 2003, Matei et al., 2008, Lafarge et
al., 2008, Mueller and Zaum, 2005, Persson et al., 2005, Xie et
al., 2006, Sirmacek and Unsalan, 2008).
Traditional approaches for general image classification problems
are mainly based on locally extracted features and a learned clas-
sifier that discriminate the object from background. Visual infor-
mation describing the appearance, such as color and texture are
mixed together in a single feature vector to represent the object
instance. A concatenating of multiple feature types into a single
vector may cause an encountered affect, i.e. one feature type may
inhibit the performance of another; besides, it may also cause the
problem of over-fitting due to redundancy and correlation in the
input data (Duda et al., 2001). Moreover, standard learning algo-
rithms, such as Naive Bayes, logistic regression, support vector
machines (SVM) assume that the training data is independent and
identically distributed. This is inappropriate in many cases, as im-
age pixels possess dependencies, e.g. if a pixel is labeled as build-
ing, it is likely that a neighboring pixel is also labeled as building;
non-building pixels tend to be next to other non-building pixels.
The spatial dependencies should be exploited properly to improve
the classification performance rather than classifying each of the
image sites independently.
There have been wide research interests in random field mod-
els, i.e. Markov random field (MRF), conditional random field
(CRF) (Lafferty et al., 2001, Li, 2001), and their variants in the
computer vision community. These models aim to incorporate
contextual information to the decision of the object class for im-
proving the performance of the classifiers. In (Korc and Foer-
stner, 2008), the authors employed MRFs and showed that pa-
rameter learning methods can be improved and that using the ap-
proach to interpret terrestrial images of urban scenes is feasible.
In the vision community, modern approaches exploit graphical
models for integrating additional information about the content
of a whole scene (Shotton et al., 2006, Larlus and Jurie, 2008,
Verbeek and Triggs, 2007).
Recently, Ma and Grimson (Ma and Grimson, 2008) proposed a
coupled CRF model for decomposing the feature space in order
to learn the object classes. Besides, there have been attempts to
model contextual interactions by employing related predictions
in a stacked graphical model (SGM) learning framework (Kou
and Cohen, 2007). This model enables efficient learning and in-
ference. Moreover, the concept of a relational template can be
flexibly exploited to incorporate multi-modal interactions. Our
work can be considered as an extension of both, the coupled CRF

model (Ma and Grimson, 2008) and the SGM learning (Kou and
Cohen, 2007). In this work we propose a novel approach based on
an ensemble of SGM in order to integrate different data sources
for building classification at the pixel level.
In contrast to the work of Matikainen et al. (Matikainen et al.,
2007), where they proposed to use a DSM segmentation and a
classification pipeline discriminating buildings from trees, we fo-
cus on a more direct and general approach. Our model is com-
prised of multiple classifiers that are learned over stages and then
fused together. Each classifier is responsible for a certain fea-
ture modality and modeled as a SGM for the learning procedure.
For each SGM, we propose to use a relational template which
takes into account the predictions not only of related instances of
a certain feature type, but also predictions from other types. This
enables to learn not only spatial knowledge of object class, but
also the inter-modality dependencies. The proposed system pro-
vides a simple yet efficient framework to model a complex object
class such as buildings and exploit the potentials from different
aspects of the object properties. Learning and inference are ef-
fective, general and straightforward, that can be easily applied
for many other learning tasks.

Our paper is organized as follows: In Section 2. we introduce
our novel framework. Section 3. describes the aerial imagery and
the involved feature cues. Section 4. highlights the experimental
evaluation. Finally, Section 5. concludes the work and discusses
open issues for future work.

2. OUR FRAMEWORK

Let the observed data from an input image be X = {xi, 0 <
i < |X|}, where xi is the data from a site i. The problem is to
find the most likely configuration of the labels Y = {yi}, where
yi ∈ {c1 . . . ck}. For an image labeling, a site is a pixel loca-
tion, and a class may be a car, a building, etc. For the task of the
building segmentation each pixel in the aerial image, represented
by a feature vector xi, is mapped to a bit yi ∈ {−1,+1}, cor-
responding to either building or non-building. A traditional CRF
with local potentials and pairwise (spatial) dependencies can be
written as

P (Y |X) =
1

Z(X)

∏

i∈S
A(yi, X)

∏

i,j∈Ni

B(yi, yj , X), (1)

where A(yi, X) corresponds to the local potential of xi given a
class label yi; B(yi, yj , X) is the interaction potential function
which encodes the dependencies between data X, labels at i and
its neighbor j, based on the set of pixels in a neighbor Ni of xi.
Z(X) is a partition function and S defines a set all available im-
age sites. Note that in the formal CRF formulations, potentials
depend on the whole image X , not only on the local site xi. A
SGM can be seen as a simplified form of the CRF, given in Equa-
tion 1, which allows a flexible structure for the interactions and
provides efficient learning and inference. The general stacked
model is formulated as a combination of T multiple components
of conditional distribution that capture contextual information

P (Y |X) =
1

Z(X)

T∏

t=1

pt(yi|X). (2)

The number of components T depends on the model built for a
particular application. The flexibility of a CRF formulation al-
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lows to incorporate multiple aspects of data from the image, such
as: local statistic of an image site, neighboring labels, or poten-
tials from higher levels of contexts. This property will be em-
ployed in our framework, where we propose to use a two-staged
approach.

2.1 The Ensemble Model - Stage 1

We decompose the input feature space into different feature cues,
which represent multiple modalities of the input data. These
types of features may be representative for color, texture and 3D
information. Assuming that T feature types are extracted from
an input image X , X = {Xt}, t ∈ T , then the CRF of the first
stage can be modeled as combination of multiple sources

P(1)(Y |X) =
1

Z(X)

T∏

t=1

pt(1)(Y |Xt), (3)

where each pt(1)(y|x) is a SGM. The main reasons of decompos-
ing the input data and using an ensemble model are: First, as it
has been investigated, object properties such as color, shape, tex-
ture, 3D data, etc. play different roles in distinguishing object
classes (Kluckner et al., 2009, Ma and Grimson, 2008). There-
fore, we treat them separately in different classification processes
and combine them at later stages to infer the object classes (Nils-
back and Caputo, 2004). At the first stage, we employ multiple
strong classifiers learned from different feature modalities. The
classifiers provide a probabilistic class assignment in terms of
a likelihood. In this work, we use efficient randomized forests
(RF) (Breiman, 2001) as base classifiers to generate initial yet
accurate confidence maps (Kluckner et al., 2009, Shotton et al.,
2008). However, any other types of classifiers, that results a class
probability, e.g. boosting, SVM, etc., can be applied to our frame-
work. In order to train the the classifiers of the ensemble, we
use fast covariance matrix descriptors as feature representation as
proposed by (Kluckner et al., 2009). The details for the feature
representation and the base classifier are described in Section 2.3
and Section 2.4.

Since random field modeling approaches exploit contextual infor-
mation to improve the detection rate of standard classifiers, it is
intuitively sensible that different object’s property have their own
context where it is more likely to appear. This is especially true in
our application, where multiple sources of aerial image data are
employed, i.e. color image and height data: it may be claimed
that pixels with similar color could have similar labels; however,
this is not true for height data: pixels with the same height val-
ues may belong to buildings or trees. So, the ensemble model
comprised of multiple SGMs, where each responses to a certain
feature type, is useful to exploit potential of each feature type and
its own context.

2.2 The Ensemble of a SGM - Stage 2

We are interested in a model that captures the dependencies among
different kinds of feature modalities and spatial knowledge as
contexts. Therefore, the second stage of the model is based on the
features and the outputs of classifiers from the first stage. Again,
we treat each type of features separately. At this stage, we model
the dependencies between the feature types and the spatial con-
text. This enables to handle inter-features dependencies and to
learn the interactions at a higher level:

P(2)(Y |X) =
1

Z(X)

T∏

t=1

pt(2)(Y |Xt, p(1)). (4)

We propose a new relational template for the SGM, in which each
feature vector of a certain type is expanded with predictions from
its related instances. In particular, each original feature vector
of a certain feature type is augmented (stacked) with the predic-
tion confidences from its neighboring sites and confidences from
other feature types, which forms a new training set. This allows to
learn the spatial dependencies as well as the inter-modality rela-
tionships. We use an aggregate function to build the new training
dataset: For each feature type t ∈ T , each instance xt

i is ex-
panded with the prediction confidences from its neighbor Nj and
from other feature types ptNj

and pT\tj , respectively:

xt
i,new = (xt

i, p
t
Nj
, p

T\t
Nj

, 0 < j < 8). (5)

Multiple discriminative probabilistic classifiers are now learned
on these new training sets. At this stage, we use a linear SVM
due to efficiency and its discriminative power. Finally, the clas-
sification confidences of the classifiers are fused together for the
inference of the object classes.

2.3 Feature Representation

In the vision community, covariance matrix based descriptors are
widely used for detection and classification tasks (Tuzel et al.,
2006) due to providing a compact and low-dimensional feature
representation. A set of independent feature vectors fi ∈ F ,
where F is an image structure that includes the feature attributes
for e.g. color, height, etc. and i defines an image site, can be rep-
resented by a sample mean µi and a covariance matrix Σi defin-
ing the first and second order statistics. Importantly, extended
integral images (Tuzel et al., 2006) provide an efficient compu-
tation of covariance matrices within rectangular image regions.
Since the space of covariance matrices is non-Euclidean, these
descriptors can not be directly used as a feature representation
for learning RFs or SVMs. Here, we exploit a derived represen-
tation based on Sigma Points (Kluckner et al., 2009) to obtain a
valid feature space, that can be trained with our machine learn-
ing techniques. Please note, due to our general model, any other
feature representation or classification procedure can be applied.

2.4 Randomized Forests as Base Classifier

An RF classifier (Breiman, 2001) consists of a collection ofK de-
cision trees. The nodes of each tree include fast binary decisions
that give the direction of splitting left and right down the tree un-
til a leaf node is reached. Each leaf node l ∈ L contains a learned
class distribution P (c|L). By propagating single class distribu-
tions bottom-up to the root node for all K trees in a forest the
resulting accumulated probabilities yields an accurate class distri-
bution P (c|L) = 1

K

∑K

i=1
P (c|li). As demonstrated in (Shot-

ton et al., 2008, Kluckner et al., 2009), RF classifiers give robust
and accurate results in challenging image classification tasks. To
grow each tree of the forest, node tests are learned by using only a
small chosen subset of the training dataXt (Shotton et al., 2008).
The learning proceeds from the root node top-down by splitting
the subset at each node into tiled left and right subsets. The de-
cisions in the nodes minimize the sample weighted information
gain ratio (Shotton et al., 2008) of the class distribution in cur-
rently available subsets of the training data. Proposed decisions
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in (Shotton et al., 2008) arise by reason of comparing two ran-
domly chosen elements of a given feature vector. At evaluation
time, the class distribution for each pixel is determined by parsing
down the extracted feature representation in the forest. RFs pro-
vide robust probabilistic outputs and are extremely fast to train
and test.

2.5 Learning and Inference

In this work, the RF classifiers provide the local class potentials
for each individual feature type. After obtaining initial classi-
fication confidences at the first stage, the new training sets are
constructed using Equation 5. At the second stage, linear SVMs
are employed to train these new expanded datasets. We keep the
same parameters for individual classifiers at each stage. Thus,
there is no need for a parameter tuning in a high-dimensional
space. After learning, the classifiers are applied to various test
images. However, due to spectral differences in color and spec-
ified height conditions, we have to train individual models for
each dataset of Graz, Dallas and San Francisco. We then com-
bine the confidence maps (rather than hard output of classifiers)
to infer the final object class. Our ensemble model enables to
classify buildings from aerial images and to segment building’s
regions at the pixel level. This involves inferring a true label
for each pixel, which is done by computing the most likelihood
y∗ = argmaxyP (Y |X), given the features X and the classifi-
cation function. The overall procedure for learning and inference
of the model is summarized in Algorithm 1.

Algorithm 1 Learning and Inference
1: Learning algorithm:
2: Given a training set (Xt, Y ), for each feature types t ∈ T .
3: For each feature type t ∈ T
4: - Stage 1: Learn the local model using an RF with (Xt, Y )
5: - Compute a probabilistic class assignment pt(1)
6: - Expand the dataset by stacking (Eq. 5): xti,new = (xt

i, p(1))
7: - Stage 2: Learn the SGM using SVM with (Xt

new, Y )
8: Inference:
9: Given a test image X , for each feature type t ∈ T

10: Compute P t
(1)(Y |X) and P t

(2)(Y |X)

11: Infer final class labels: y∗ = argmaxy
∏

t
P t
(2)(Y |X)

3. AERIAL IMAGERY

We perform experiments on high resolution aerial images ex-
tracted from three datasets (Graz, San Francisco and Dallas) show-
ing different characteristics. The dataset Graz shows a colorful
appearance with challenging buildings, the images of San Fran-
cisco have suburban occurrence in a hilly terrain and Dallas in-
cludes large building structures and is mainly dominated by gray
valued areas. The aerial images are taken with the Microsoft Ul-
traCam in highly overlapping strips, where each image has a res-
olution of 11500× 7500 pixels with a ground sampling distance
of approximately 10 cm. We use two types of image information,
which are: the RGB color image and the 3D height data produced
by using the DSM (Klaus et al., 2006) and a subsequently com-
puted digital terrain model (DTM) (Champion and Boldo, 2006).
By combining the DTM and DSM, we obtain an absolute eleva-
tion per pixel from ground, which is used as the 3D height infor-
mation. Additionally, we exploit texture information, provided
by processing the color images with first-order derivative filters.
Figure 3 shows a typical scene taken from Graz, including the
color image, the hand-labeled ground truth mask and the corre-
sponding normalized 3D information. In our approach we exploit
such ground truth map with two classes to train our classifiers in
a supervised manner.

Figure 3: A scene taken from the Graz dataset: the color im-
age, the hand-labeled ground truth map and the corresponding
normalized 3D height information (from left to right).

Graz Classification Accuracy (%)
Model types Overall Building Non-Build.

SVM 88.15 91.47 85.77
RF 85.42 76.95 91.46

Stacked RF model 88.39 91.45 88.39
Our SGM model 91.65 93.38 91.09

Dallas Classification Accuracy (%)
Model types Overall Building Non-Build.

SVM 93.11 90.40 94.41
RF 91.76 75.86 99.39

Stacked RF model 93.31 90.94 94.63
Our SGM model 93.76 90.81 95.12

San Francisco Classification Accuracy (%)
Model types Overall Building Non-Build.

SVM 87.97 81.31 96.79
RF 91.17 89.33 93.62

Stacked RF model 92.12 88.34 94.32
Our SGM model 93.98 94.40 93.42

Table 4: Performance evaluation of different models in terms of
correctly classified pixels obtained for the datasets Graz, Dallas
and San Francisco. We compute a global rate and the accuracy
individually for each of the classes building and non-building
by considering a hand-labeled ground truth map. The accuracy
measurements for the building and non-building class are also re-
ferred to as completeness and correctness, respectively. The rates
are given for the models integrating the visual feature cues and
the 3D height information.

4. EXPERIMENTS

In this section we evaluate our proposed framework on a large
amount of real world data. We compare the performance of our
model to several traditional state-of-the-art approaches. The com-
parisons include the performances of a traditional RF and SVM
classifiers, both integrating appearance and 3D height, a SGM
with RFs as base classifier (in the following we call it a stacked
RF), and our ensemble model also including the second stage of
our approach. Each of the base RF classifiers consists of K =
8 trees with a maximum depth of 14. For the stacked models
(including the stacked RF and our ensemble model), the cross-
validation parameter is set to 4 and the relational template takes
into account 8 direct neighboring pixel sites. We use a linear
SVM for learning the stacked RF and our ensemble model at the
second stage. The feature instances are collected on a regular im-
age grid incorporating a small spatial neighborhood of 11 pixels
in order to include important context information. The covariance
feature representation based on Sigma Points comprises a com-
pact statistical description of an image region with a dimension
of d′ = d(2d + 1), where d denotes the number of considered
feature modalities. Note, we consider each color channel of an
RGB image as a single modality.
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Figure 5: The corresponding classification results for the images
presented in Figure 2 by integrating appearance and height infor-
mation: (a) the ground truth image, (b) the results obtained by our
SGM and (c) a traditional RF based classification. Compared to
Figure 2, our SGM obtains sharp delineated building boundaries
and false positive classified regions are consistently eliminated.

For training and testing the model, six representative triplets ex-
tracted from the large images are used. Each of these sub-images
has a size of 4000×3200 pixels. The images cover large dense ur-
ban areas, which contain various complex objects, such as build-
ings of variant sizes and complex architectures, road net, parking
lots, trees, shadow, water surface, etc. For the quantitative com-
parison we evaluate each labeled pixel with respect to the avail-
able ground truth data.

Considering Figure 2, it is obvious that a classifier, only trained
on 3D features, fails in river regions, where the dense matching
process provides regions with many undefined heights. In addi-
tion, tree areas are classified as buildings due to similar building
height. By using only the 3D height data an RF classifier obtains
a detection rate of 78.57% on this scene extracted from Graz.
Exploiting only the visual feature modality, the raw RF classi-
fier correctly assigns the pixels at a rate of 79.20%. However,
there are significant missed detections in regions on the ground,
that have similar appearance as buildings. A combination of the
height and the visual features within an RF classification process
significantly improves the final labeling at the pixel level to an
accuracy of 85.42%. By integrating the height field data with
the visual information within our proposed SGM framework, we
obtain an overall pixel classification rate of more than 90% on
all three datasets. The detection rates in terms of accuracy at the
pixel level of different models are summarized in Table 4. The
supervised segmentation of building regions obtained by a tra-
ditional RF classifier is shown in Figure 5(c), while the perfor-
mance of our SGM is depicted in Figure 5(b).

The classification is given as raw outputs of each model with-
out applying a post-processing step. However, this could be done
to remove small noisy areas on the ground. Besides, our SGM
obtains sharp delineated building boundaries and false positive
classified regions are consistently eliminated. The improvement
is obvious and results from the feature decomposition and inte-
gration at higher level with spatial context. Moreover, we ob-
tain a very fast learning and inference thanks to the intrinsic sim-
ple model structure and the efficient relational template for the
stacked graphical learning. A classification of an image with a
dimension of 4000×3200 pixels can be obtained within few min-
utes using an unoptimized implementation. Figure 6 shows an
improved performance of our approach compared to traditional
state-of-the-art methods such as RF classifiers on larger scenes
taken from Dallas and San Francisco, respectively.

5. CONCLUSION

We have proposed an efficient approach for learning multiple fea-
ture modalities, i.e. visual features and 3D height data. Our
method decomposes an input feature space into different feature
modalities in order to train individual probabilistic classifiers. In
this work we used randomized forests as base classifiers, trained
with various feature types, at the first stage of a stacked graphical
model. Then, an ensemble of stacked models with a novel rela-
tional template has been employed for learning the dependency of
different modalities. We successfully applied the proposed model
to the challenging problem of the building classification task in
high resolution aerial images, taken from three different datasets.
Experiments have shown an improvement of our approach over
several traditional state-of-the-art methods. The model is suit-
able for learning 3D objects like buildings from aerial imagery,
but can be applied for other object classes. Due to efficiency, the
proposed framework provides a promising application for large-
scale computation in aerial imagery. For future work there should
be more study on modeling context information for each feature
type, which represent different aspects of data. Multiple kernels
would be helpful in weighting the contribution of each source of
information. In addition, we plan to apply our framework to var-
ious detection tasks in standard evaluation image collections.
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