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ABSTRACT: 
 
Fusion of optical and radar remote sensing data is becoming an actual topic recently in various application areas though 
the results are not always satisfactory. In this paper we analyze some disturbing aspects of fusing orthoimages from 
sensors having different acquisition geometries. These aspects are errors in DEM used for image orthorectification and 
existence of 3D objects in the scene. We analyze how these effects influence a ground displacement in orthoimages 
produced from optical and radar data. Further, we propose a sensor formation with acquisition geometry parameters 
which allows to minimize or compensate for ground displacements in different orthoimages due the above mentioned 
effects and to produce good prerequisites for the following fusion for specific application areas e.g. matching, filling 
data gaps, classification etc. To demonstrate the potential of the proposed approach two pairs of optical-radar data were 
acquired over the urban area – Munich city, Germany. The first collection of WorldView-1 and TerraSAR-X data 
followed the proposed recommendations for acquisition geometry parameters, whereas the second collection of 
IKONOS and TerraSAR-X data was acquired with accidental parameters. The experiment fully confirmed our ideas. 
Moreover, it opens new possibilities for optical and radar image fusion. 
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1. INTRODUCTION 

Data fusion is an extremely emerging topic in various 
application areas during the last decades. Image fusion in 
remote sensing is one of them. However fusion of different 
sensor data such as optical and radar imagery is still a 
challenge. In this paper the term ‘radar’ is equivalent to 
Synthetic Aperture Radar (SAR). Though the data fusion is well 
spread over different communities there are quite few attempts 
of its definition. The first one is the so called JDL information 
fusion definition (U.S., 1991) popular in military community. 
This definition is based on the functional model including 
processing levels and full control on sensors thus making it 
difficult to transfer to other communities. Another data fusion 
definition more suitable for a broader community is introduced 
in (Pohl, 1998) mainly emphasizing (and thus simultaneously 
limiting to) methods, tools and algorithms used. A more general 
definition is proposed in (Wald, 1999; Data Fusion Server) as a 
formal framework in which are expressed the means and tools 
for the alliance of data originating from different sources. 
According this definition an alignment of information 
originating from different sources now becomes a part of the 
fusion process itself.  
There exist numerous remote sensing applications e.g. image 
matching and co-registration (Suri, 2008), pan sharpening 
(Klonus, 2008), orthoimage generation, digital elevation model 
(DEM) generation, filling data gaps, object detection, 
recognition (Soergel, 2008), reconstruction (Wegner, 2009) and 
classification (Palubinskas, 2008), change detection, etc which 
are already profiting or can profit significantly from a data 
fusion. 
For the fusion of data from sensors exhibiting different 
acquisition geometries such as optical and radar missions it is 
important to understand their influence on a fusion process and 

to optimize it if necessary. Of course having not a full control 
on sensors as in a military community it is not so easy but is 
still possible to influence some acquisition parameters. In this 
paper we analyze the effect of ground displacements in 
orthoimages of optical and radar sensors due to the height error 
in the DEM used during orthorectification process and 3D 
objects characteristics (height) for various data acquisition 
parameters such as sensor look angle (elevation) and look 
direction, satellite flight direction and sun illumination 
direction. 
The paper is organized in the following way. First, the 
methodology used for the proposed approach is presented in 
detail. Then, data used in experiments are described, followed 
by the presentation of experimental results, conclusion, 
acknowledgments and finally references. 
 
 

2. METHOD 

In this section we analyze two effects: height error in DEM 
used during orthorectification process and 3D object height and 
their influence on ground displacements in orthoimages from 
optical and radar sensors. The study results in a proposal of 
several data acquisition parameters: sensor look angle 
(elevation) and look direction, satellite flight direction and sun 
illumination direction leading to an optimal sensor formation 
for the following optical and radar data fusion. 
 
2.1 Effect of DEM height 

Ground displacement Δx due the height error Δh in the DEM 
for an optical and a radar sensor orthoimage is shown in Figure 
1.  
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Figure 1. Ground displacement Δx due the height error Δh 
(positive and negative) in a flat DEM for an optical and radar 
sensor orthoimage. Look directions: pink line for an optical 

sensor, blue line – radar sensor. The green horizontal line stands 
for a true DEM, whereas the red line stands for an error in the 

DEM (same for both sensors). Similarly, the green circle stands 
for a true ground position of a 2D point, whereas the red circle 
– a displaced position. Thin black lines perpendicular to blue 
line show approximately the radar wave propagation. Flight 

track is into plane. 
 
Ground displacements are equal to 
 
                                optopt hx θtan⋅Δ=Δ                              (1) 

 
for optical sensors and 
 

                                  
rad

rad
hx
θtan
Δ

=Δ                                  (2) 

 
for radar sensors. We have to note, that ground displacements 
are towards the sensor for the optical case and opposite for the 
radar case (sign of displacement is ignored in formulae). For 
details on radar geometry see e.g. (Oliver, 1998). 
 
2.2 Effect of 3D object height 

Ground displacement Δx for a 3D object of Δh height for an 
optical and a radar sensor orthoimage is shown in Figure 2. 
 
Formulae for ground displacements are the same as in the 
previous sub-section: for optical case equation (1) and radar 
case - (2). The only difference is a displacement direction: it is 
away from sensor for the optical case and opposite for the radar 
case. 
 

 
 

Figure 2. Ground displacement Δx for a 3D object of Δh height 
for an optical and radar sensor orthoimage. Look directions: 

pink line for optical sensor, blue line – radar sensor. The green 
horizontal line stands for a flat DEM, which doesn’t include 

height information of objects. The green circle stands for a true 
ground position of a 3D point, whereas the red circle – a 

displaced position. Thin black line perpendicular to blue line 
shows approximately the radar wave propagation. Flight track is 

into plane. 
 
2.3 Equality of displacements 

We have seen in the previous sub-sections that sizes of ground 
displacement are different (different formulae) for optical and 
radar sensors and, moreover, displacement directions are 
opposite for different sensors. The size equality of ground 
displacements 
 
                                          radopt xx Δ=Δ                               (3) 

 
is fulfilled for the following sensor look (elevation) angles 
 
                                        °=+ 90radopt θθ                            (4) 

 
We have to note, that smaller ground displacements are 
obtained in case of 
 
                                            radopt θθ <                                  (5) 

 
In order to compensate opposite displacement directions for 
different sensors the look directions of different sensors should 
be opposite. Under the conditions of (4) or (5) structures in 
optical and radar images appear almost in the same positions 
thus leading to an easier interpretation and further processing of 
joint data. 
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2.4 Optimal sensor constellation 

In this sub-section we propose an optimal optical and radar 
sensor formation for an image acquisition compensating/ 
minimizing ground displacement effects of different sensors 
(see Figures 3, 4). A sum of look angles should give 
approximately 90° (Figure 3). 
 

θrad 

Radar sensor Optical sensor

θopt

θopt+θsar=90° 

Earth surface  
Figure 3. Proposed optical and radar sensor formation is 

illustrated. A sum of look angles should give 90°.  
 
Flight directions should be as parallel as possible and 
perpendicular to look directions which are opposite for different 
sensors (Figure 4). Same flight directions are not required in 
general e.g. airborne case. A sun illumination direction is from 
an optical sensor to the target on the Earth in order to see a side 
of a 3D object which is in shadow in radar image and thus 
enable full reconstruction of a 3D object. This sensor 
configuration allows a recovery of 3D object shadows during 
further data fusion, except a case when the Sun illumination 
direction is the same as for SAR look direction. Displayed left 
looking radar and right looking optical sensor formation can be 
preferable due to the Sun illumination direction which is from 
an optical sensor to the target on the Earth in order to see that 
side of a 3D object which is in shadow in the radar image and 
thus enable full reconstruction of a 3D object. Of course, the 
second sensor formation with a right looking radar and left 
looking optical sensor can be useful for data fusion too. 
Our approach could be applied in both airborne and space 
remote sensing. As an example we consider the latter one.  
Currently, most space optical remote sensing satellites are 
acquiring data in descending mode, so a radar satellite should 
also acquire in a descending orbit. Thus both satellites would 
fly in the same direction (quasi-parallel orbits). The 
requirement of opposite look angles and a special sun 
illumination direction result in a left looking radar sensor and a 
right looking optical sensor what is achievable with current 
radar missions though not in a nominal mode (left looking 
radar). Additionally, larger look angle of SAR sensor than look 
angle of optical sensor allows minimizing the sizes of ground 
displacements. 
 
 

3. DATA 

The German Aerospace Center DLR and DigitalGlobe have 
been engaged in a modest R&D project to investigate 
complementary uses of Optical and Radar data. Coordinated 
collections of high resolution TerraSAR-X (TS-X) and 
WorldView-1 (WV-1) data during July-August 2009 have been 
acquired. For this experiment one scene of WorldView-1 over 
Munich city, Germany has been acquired. For more detail on 

TS-X see (Eineder, 2005). Other scenes of the same urban area 
of TerraSAR-X and IKONOS have been ordered from existing 
archives. 
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Optical sensor
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Radar sensor 
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Figure 4. Proposed optical and radar sensor formation is 
illustrated. Flight directions should be parallel, in same 
direction and perpendicular to look directions which are 

opposite for different sensors (right drawing). Sun illumination 
direction is from an optical sensor to the target on the Earth. 

 
 

4. EXPERIMENTS 

Two experiments, one with a proposed sensor formation and 
one with an accidental sensor formation were performed to 
show the potential of our approach. The optical image has been 
corrected for absolute position by ground control, which 
yielded a global shift value of approximately 10 m in x-
direction for the WV-1 data and 6 m in x-direction and 2 m in 
y-direction for the IKONOS data in comparison to image 
rectification without ground control. TS-X data Enhanced 
Ellipsoid Corrected (EEC) product can be used without ground 
control, since absolute positioning Root Mean Square Error 
(RMSE) for the Spotlight mode is in the order of 1 m 
(Bresnahan, 2009). 
 
4.1 Proposed sensor formation 

Scene parameters for the proposed sensor formation experiment 
are presented in Table 5. 
 

Sensor
Parameter 

TS-X WV-1 

Image data 7-Jun-2008  18-Aug-2009  
Image time (UTC) 05:17:48 10:50:42 
Mode Spotlight HS PAN 
Look angle 49.45° Right 38.3° Left 
Polarization VV - 
Product EEC L2A 
Resolution gr x az (m) 1.0 x 1.14 0.89 x 0.65 
 
Table 5. Scene parameters of the first experiment over Munich 

city 
 

Part of Munich city acquired by WV-1 (upper image) and TS-X 
(lower image) using the proposed satellite formation is shown 
in Figure 7. Yellow grid lines are for better orientation between 
the two images. Ground objects like streets and plazas as well 
as structures e.g. buildings and trees can be easily detected in 
both images and are found at the same geometrical position in 
both images. Only the feet of the buildings, which are 
differently projected in the radar image due to foreshortening 
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are found at different positions. The roofs and tree crowns are 
well in place and can be overlayed correctly for any further 
processing. Groups consisting of 2, 5 and 6 buildings are 
highlighted in blue color in both images to show a good 
correspondence. 
 
4.2 Accidental sensor formation 

Scene parameters for the accidental sensor formation 
experiment are presented in Table 6. 
 

Sensor 
Parameter 

TS-X IKONOS 

Image data 25-Feb-2008  15-Jul-2005  
Image time (UTC) 16:51:15 10:28:06 
Mode Spotlight HS PAN 
Look angle 22.75° Right 5.0° Right 
Polarization VV - 
Product EEC Orthoimage 
Resolution gr x az (m) 1.6 x 1.3 0.8 x 0.8 
 

Table 6. Scene parameters of the second experiment over the 
city of Munich 

 
Again, part of Munich city acquired by IKONOS (upper image) 
and TS-X (lower image) using the accidental satellite formation 
is shown in Figure 8. Yellow grid lines are for better orientation 
between two images. For this case it is quite difficult to find 
corresponding structures in the two images. Only ground 
objects like streets can be found at similar places but buildings 
are represented in very different geometry and can be hardly 
allocated to each other. Also from a radiometric point of view 
the differences are higher than in Figure 7 probably due to 
different shadow properties. The same groups consisting of 2, 5 
and 6 buildings as in sub-section 4.1 are highlighted in blue 
color in both images again. In this case it is quite difficult to 
identify the same number of buildings in both images. 
 
 

5. CONCLUSIONS 

In this paper we address a problem of fusion of optical and 
radar remote sensing imagery. Alignment of information 
coming from different sources is an important prerequisite for 
the following fusion in various applications. Especially for a 
rapid fusion of optical and radar data a specific imaging is of 
advantage. We propose an optical and radar sensor formation 
which accounts for different acquisition geometries and 
minimizes displacements for ground and 3D-objects in 
orthoimages of optical and radar sensors. The preferred sensor 
formation is a perpendicular viewing from the two sensor 
systems due to the complimentary nature of their viewing 
geometries. For this case the image geometries are nearly 
independent to errors in the underlying DEM and especially to 
buildings or other 3D objects, not represented in the DEM. A 
fast and consistent overlay of the two data sets for on ground 
and other surfaces is reached. As an example two pairs of high 
resolution optical (WorldView-1 and IKONOS) and radar 
(TerraSAR-X) images have been acquired over the urban area - 
Munich city in Germany – for different sensor formations. 
Results show a great potential of the proposed approach for 
further applications of data fusion with optical and radar 
instrumentation since the geometric positions of the objects can 
be observed at the same absolute position. 
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Figure 7. Part of Munich city acquired by VW-1 (upper image) and TS-X (lower image) using the proposed satellite formation. 
Yellow grid lines are for better orientation between two images. Red arrows show flight (az) and look (rg) directions. 

 

rg 

az 

rg 

az 

In: Wagner W., Székely, B. (eds.): ISPRS TC VII Symposium – 100 Years ISPRS, Vienna, Austria, July 5–7, 2010, IAPRS, Vol. XXXVIII, Part 7A
Contents Author Index Keyword Index

185



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 8. Part of Munich city acquired by IKONOS (upper image) and TS-X (lower image) using the accidental satellite formation. 
Yellow grid lines are for better orientation between two images. Red arrows show flight (az) and look (rg) directions. 
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